• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 796
  • 278
  • 64
  • Tagged with
  • 1128
  • 595
  • 191
  • 170
  • 156
  • 142
  • 136
  • 134
  • 117
  • 114
  • 114
  • 96
  • 96
  • 85
  • 78
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Investigation des mécanismes de l'instabilité génétique dans la production de cellulose chez Komagataeibacter rhaeticus et premier essai d'un système d'édition CRISPR-Cas9 chez cet organisme

Arcand, Bruno 13 February 2024 (has links)
Titre de l'écran-titre (visionné le 12 février 2024) / La cellulose d'origine bactérienne est un matériau unique, dont les propriétés la rendent intéressante pour plusieurs domaines. En effet, la finesse de ses fibres, leur degré d'organisation cristalline, ainsi que l'absence de lignine, pectine, et d'hémicellulose en font une substance plus absorbante, résistante et biocompatible que le la cellulose végétale, ce qui la rend plus appropriée pour des applications médicales et optoélectroniques. Cependant, la production de cellulose bactérienne à échelle industrielle rencontre plusieurs obstacles, tels que la perte spontanée de la production de cellulose au cours de la culture des bactéries productrices, ainsi qu'un rendement qui est économiquement non rentable. De plus, les outils de biologie moléculaire adaptés aux souches productrices de cellulose sont limités ce qui restreint les essais de manipulation génétique ayant pour but d'augmenter leurs productivités de cellulose. Dans cette étude, nous démontrons que l'insertion de l'élément transposable IS*1032* dans un site spécifique situé à la base 502 dans le gène *bcsA* chez *Komagataeibacter rhaeticus* iGEM entraîne l'interruption de la production de cellulose dans au moins 12% des mutants cellulose négatif (Celˉ). Une analyse par qPCR a permis d'estimer le nombre de copies de cet élément par cellule à 16 ± 2 copies. Nous proposons une stratégie pour bloquer l'insertion de l'élément transposable IS*1032* en modifiant le site d'insertion de cet élément sur BcsA. Cela était effectué en se basant sur une analyse *in silico* des effets d'une substitution de l'acide aminé présent sur le site d'insertion tout en vérifiant que la structure 3D de la protéine BcsA ne soit pas déformée. Des essais préliminaires suggèrent que l'expression de la protéine modifiée chez un mutant Celˉ pourrait entraîner la réversion à un phénotype Cel⁺ stable. Nous démontrons donc l'efficacité de deux marqueurs de sélection chez *K. rhaeticus*, soit la tétracycline (*tetA*) et la streptomycine (*aadA*). Nous constatons aussi que le glycérol est une source de carbone efficace en milieu minimal pour une surproduction de cellulose chez cette souche bactérienne. / Bacterial cellulose, or BC, is a unique material, whose properties make it interesting for several fields. Indeed, the fineness of its fibers, their degree of organization, as well as the absence of lignin, pectin, and hemicellulose make it a more absorbent, tough and biocompatible substance than plant-based cellulose making it more appropriate for applications in medicine and optoelectronics. However, the industrial production of bacterial cellulose encounters several obstacles, such as the spontaneous loss of cellulose production during cultivation of these bacteria as well as its low yields making the whole production process economically nonviable. In addition, molecular biology tools adapted to cellulose-producing strains are limited, which restricts genetic manipulation trials aiming at increasing their cellulose productivity. In this study, we demonstrate that the insertion of the IS*1032* transposable element into a specific site located at base 502 in the *bcsA* gene in *Komagataeibacter rhaeticus* leads to the interruption of cellulose production in at least 12% of cellulose-negative (Celˉ) mutants. A qPCR analysis allowed us to estimate the number of copies of this element per cell at 16 ± 2 copies. We then propose a strategy to block the insertion of the transposable element IS*1032* by modifying the insertion site of this element on BcsA. This was conducted based on an *in-silico* analysis of the effects of a substitution of the amino acid present in the insertion site while verifying that the 3D structure of the BcsA is not affected. Preliminary experiments suggest that the expression of the mutant BcsA protein in a Celˉ mutant can cause a stable reversion to the Cel⁺ phenotype. We propose new and useful tools for genetic manipulation of *Komagataeibacter rhaeticus*. We also demonstrate the efficiency of two selection markers in *K. rhaeticus*, namely tetracycline (*tetA*) and streptomycin (*aadA*). We report that glycerol is an efficient carbon source to be used in minimal medium for high cellulose production in this bacterial strain.
202

Functional and genetic approaches to decipher novel roles of Src homology region 2 domain-containing phosphatase-1 (SHP1) in physiology and metabolism

Kumar, Amit 28 June 2024 (has links)
La résistance à l'insuline associée à l'obésité est une condition qui favorise les troubles métaboliques tels que le diabète de type 2 (T2D) et la stéatose hépatique non alcoolique (NAFLD). Des altérations de l'homéostasie des lipides et du glucose, ainsi qu'une inflammation chronique de bas grade sont les caractéristiques du T2D et de la NAFLD. SHP-1 (codé par le gène *PTPN6*) est une tyrosine phosphatase avec deux domaines SH2 et est connu pour agir comme modulateur du métabolisme du glucose et des lipides. SHP-1 régule également la signalisation des cytokines et l'expression des gènes inflammatoires. En plus d'être localisé dans le cytoplasme, SHP-1 se trouve également dans le noyau des cellules épithéliales. La fonction de ce SHP-1 nucléaire reste inconnue. Ici, nous avons étudié les fonctions dépendantes et indépendantes de la tyrosine phosphatase de SHP-1 dans le contrôle des voies métaboliques. Des découvertes antérieures de notre laboratoire ont établi un lien entre SHP-1 et l'activité du récepteur activé par les proliférateurs de peroxysomes γ2 (PPARγ2). PPARγ2 est un facteur de transcription activé par des ligands et contrôle le métabolisme des lipides. Dans le chapitre II, nous avons constaté que SHP-1 interagit avec PPARγ2 principalement via son domaine SH2 en N-terminal et peut déphosphoryler PPARγ2 *in vitro*. Nos données suggèrent que PPARγ2 est phosphorylé sur le résidu tyrosine 78 (Y78) et que la déphosphorylation catalysée par SHP-1 est associée à la stabilité de PPARγ2. L'invalidation génétique de SHP-1 dans des cellules exprimant PPARγ2 augmente l'expression des cibles transcriptionnelles de PPARγ2 telles que *FABP4* et *CD36* en plus d'augmenter l'adipogenèse. Ces effets étaient atténués dans des cellules exprimant une forme mutée de PPARγ2 où la tyrosine 78 avait été remplacée par une phénylalanine ne pouvant être phosphorylée (Y78F). Collectivement, ces résultats indiquent que l'activité phosphatase de SHP-1 contrôle la stabilité de PPARγ2 et donc affecte l'adipogenèse. SHP-1 est un modulateur de la signalisation de l'insuline. L'invalidation génétique de SHP-1 spécifiquement dans les hépatocytes chez la souris (SHP-1 KO) est associée à une glycémie à jeun plus basse que celle de leurs congénères non transgéniques. Les souris SHP-1 KO présentaient également une diminution importante de la production hépatique de glucose, suggérant donc l'existence d'une autre fonction de SHP-1 sur l'homéostasie du glucose, possiblement indépendante de l'insuline. Dans le chapitre III, nous avons découvert que SHP-1 agit comme coactivateur pour contrôler la transcription du gène phosphoénolpyruvate carboxykinase 1 (PCK1) et donc régule la gluconéogenèse. SHP-1 est recruté à la région régulatrice du gène *PCK1*, le cite potentiel où il interagit avec l'ARN polymérase II (RNAPII). Le recrutement de SHP-1 à la chromatine est dépendant du facteur de transcription transducteur de signal et activateur de transcription 5 (STAT5). L'épuisement de STAT5 ainsi que SHP-1 résulte en une diminution du niveau de transcrit de *PCK1* et une réduction de la gluconéogenèse. Ensemble, ces résultats indiquent que nous avons découvert une nouvelle fonction de SHP-1 où la phosphatase agit comme un co-régulateur transcriptionnel clef du gène *PCK1* et exerce un contrôle sur la gluconéogenèse. / Insulin resistance coupled with obesity is a condition that promotes metabolic disorders such as type 2 diabetes (T2D) and non-alcoholic fatty liver disease (NAFLD). Alterations in lipid and glucose homeostasis, as well as low-grade chronic inflammation are the hallmarks of T2D and NAFLD. SHP-1 (encoded by the gene Protein Tyrosine Phosphatase Non-Receptor Type 6, *PTPN6*) is a tyrosine phosphatase with two SH2 domains and is known to act as a modulator of glucose and lipid metabolism. In addition, SHP-1 also regulates cytokine signaling and inflammatory gene expression. Besides being localized in the cytoplasm, SHP-1 is also found in the nucleus of epithelial cells. The function of this nuclear SHP-1 remains elusive. Here, we investigated tyrosine phosphatase dependent and independent functions of SHP-1 in controlling metabolic pathways. Previous findings from our laboratory established a link between SHP-1 and peroxisome proliferator-activated receptor γ2 (PPARγ2) activity. PPARγ2 is a ligand-activated transcription factor that controls lipid metabolism. In chapter II, we found that SHP-1 interacts with PPARγ2 mainly via its N-terminal SH2 domain and can dephosphorylate PPARγ2 *in vitro*. Our data suggest that PPARγ2 is tyrosine phosphorylated mainly on tyrosine residue 78 (Y78) and SHP-1-mediated dephosphorylation of PPARγ2 is associated with its stability. The knockdown of SHP-1 in PPARγ2 expressing cells resulted in enhanced expression of the classical PPARγ2 targets *FABP4* and *CD36* coupled with increased adipogenesis. These effects were blunted in cells expressing mutant PPARγ2 where tyrosine 78 has been replaced with the non-phosphorylatable phenylalanine (Y78F). Collectively, phosphatase activity of SHP-1 controls the stability of PPARγ2 thereby affecting lipid metabolism. SHP-1 is a modulator of insulin signaling. Hepatocyte-specific SHP-1 KO mice compared to their wild type control littermates exhibited lower fasting glucose and markedly decreased hepatic glucose production suggesting the existence of an additional insulin-independent effect of SHP-1 on glucose homeostasis. In Chapter III, we found that SHP-1 acts as a co-activator for controlling the transcription of the phosphoenolpyruvate carboxykinase 1 (*PCK1*) gene thereby regulating gluconeogenesis. SHP-1 is recruited to the regulatory region of the *PCK1* gene, the potential site where it interacts with RNA polymerase II (RNAPII). The recruitment of SHP-1 to the chromatin was mediated by the transcription factor signal transducer and activator of transcription 5 (STAT5). Depletion of STAT5 as well as SHP-1 resulted in a decrease in *PCK1* transcript levels and blunted gluconeogenesis. Taken together, we discovered a novel function of SHP-1 whereby it acts as a key transcriptional co-regulator of the *PCK1* gene and exerts control over gluconeogenesis. Collectively, findings from these studies provide novel functions of SHP-1 in controlling lipid and glucose metabolism.
203

Impact des niveaux de protéine C-réactive sur le risque d'incidence et de progression de sténose aortique médié par la lipoprotéine(a)

Girard, Arnaud 04 April 2024 (has links)
Thèse ou mémoire avec insertion d'articles. / La sténose aortique (SA) est la maladie valvulaire cardiaque la plus répandue au monde. La lipoprotéine(a) (Lp[a]) est un transporteur lipidique dérivée des lipoprotéines de faible densité (*Low density* lipoprotein, LDL) dont les niveaux sanguins sont fortement liés à un risque accru de SA. Des récentes études ont suggéré que la Lp(a) n'influencerait le risque de sténose qu'en présence de hauts niveaux d'inflammation basal. Nous avons donc émis l'hypothèse que la Lp(a) aurait un effet sur le risque d'incidence et la progression de la SA indépendamment des niveaux d'inflammation. Nous avons testé cette hypothèse en utilisant les données de l'étude EPIC-Norfolk et de la UK Biobank pour étudier le lien entre les niveaux de Lp(a), de CRP, un marqueur d'inflammation systémique, et d'incidence de SA et de l'étude ASTRONOMER pour investiguer la relation entre la Lp(a), la CRP et la progression de la SA. Les résultats obtenus dans EPIC-Norfolk et la UK Biobank étaient très similaires. Ces résultats ont révélé que le fait d'avoir un haut niveau de Lp(a) menait à un plus grand risque d'incidence de SA indépendamment des niveaux d'inflammation. Les résultats de progression dans l'étude ASTRONOMER ont démontré que la Lp(a) était associé à une progression plus rapide de la SA en présence ou en absence d'inflammation mais que l'inflammation pourrait aussi jouer un rôle dans la progression de la maladie. Ceci signifie que la Lp(a) est associée à l'incidence et à la progression de la SA et que l'utilisation de marqueurs d'inflammation comme la protéine C-réactive pourrait aider à identifier les patients atteints de SA à risque d'avoir une progression rapide de la maladie. / Calcific aortic valve stenosis (CAVS) is the most common heart valve disease worldwide. Lipoprotein(a) (Lp[a]) is a lipid transporter derived from Low density lipoprotein (LDL) whose blood levels are strongly linked to an increased risk of CAVS. Recent studies have suggested that Lp(a) may only influence the risk of stenosis in the presence of high levels of basal inflammation. We therefore hypothesized that Lp(a) would influence the risk of incidence and progression of CAVS independent of inflammation levels. We tested this hypothesis using data from the EPIC-Norfolk study and the UK Biobank to investigate the link between levels of Lp(a), CRP, a marker of systemic inflammation, and CAVS incidence, and the ASTRONOMER study to investigate the relationship between Lp(a), CRP, and CAVS progression. The results obtained in EPIC-Norfolk and the UK Biobank were very similar. These results revealed that having a high Lp(a) level led to a greater risk of CAVS incidence independent of inflammation levels. The progression results in the ASTRONOMER study demonstrated that Lp(a) was associated with more rapid progression of CAVS in the presence or absence of inflammation, but that inflammation could also play a role in the progression of CAVS. This means that Lp(a) is associated with the incidence and progression of CAVS and that the use of inflammatory markers such as C-reactive protein could help identify CAVS patients at risk of having rapid progression of the disease.
204

Implication du remodelage de l'unité neurovasculaire dans la maladie d'Alzheimer : l'hypoperfusion cérébrale et le système de l'activateur tissulaire du plasminogène

Bordeleau, Maude 23 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2015-2016 / L’unité neurovasculaire (NVU) est centrale dans l’élimination de la β-amyloïde dont l’accumulation promeut le développement de la maladie d’Alzheimer (AD). Suivant une perturbation vasculaire, le bris ou l’altération de la barrière hématoencéphalique induit le remodelage de la NVU. Par exemple, les cellules endothéliales sécrètent l’activateur tissulaire du plasminogène (t-PA), ce qui module les cellules composant la NVU. C’est pourquoi, nous nous sommes intéressés à ce remodelage dans la AD en étudiant l’effet de l’hypoperfusion cérébrale chronique sévère (SCCH) et de l’administration du t-PA. Suite à la SCCH, les souris développant la AD, APPswe/PS1, démontrent un déclin cognitif plus important causé par un dysfonctionnement des microglies. En contre partie, nous avons observé une amélioration des fonctions cognitives des APPswe/PS1 suite à l’injection systémique du t-PA qui induit l’activation des microglies via la protéine apparentée au récepteur des protéines de faibles densité, LRP1, et promeut l’élimination de l’Aβ. Ainsi, nos résultats démontrent que le remodelage de la NVU peut aggraver la pathogenèse, mais également fournir des pistes de traitement. / Brain remodeling by the neurovascular unit (NVU) has gain interest in disease such as Alzheimer’s disease (AD). Following vascular perturbation, NVU go through remodeling due to disruption or alteration of brain-blood barrier. One of the molecule inducing remodeling is the tissue-plasminogen activator (t-PA) released by endothelial cells. In fact, t-PA can act both as an enzyme and a cytokine. Thus, we studied the effect of vascular perturbation and t-PA system in AD. By developing a new model of a severe chronic cerebral hypoperfusion (SCCH), we demonstrate that SCCH aggravates memory loss in AD mice, APPswe/PS1, due to microglia dysfunction. Indeed, low glucose environment lowers microglia’s activity and phagocytosis capacity. On the other hand, systemic administration of t-PA improves cognition as well as decreases amyloid burden in APPswe/PS1. Acting as a cytokine, rt-PA binds LRP1 which induces microglia’s activation and promotes amyloid elimination. These data suggest that NVU remodeling occurring in AD may participate in the disease pathogenesis and provide new insight of treatment, such as rt-PA.
205

Modélisation in vitro de variants génétiques dans des globules rouges dérivés de cellules souches hématopoïétiques avec CRISPR-Cas9

Boccacci, Yelena 11 July 2023 (has links)
Titre de l'écran-titre (visionné le 29 juin 2023) / Les techniques d'édition du génome telles que CRISPR-Cas9, permettant l'introduction ciblée de modifications génétiques, offrent de nombreuses possibilités de développement d'outils de recherche ainsi que d'applications thérapeutiques. Dans le cadre de mes travaux effectués en co-direction à Héma-Québec, je me suis intéressée au potentiel de CRISPR-Cas9 en lien avec le système hématopoïétique et plus particulièrement en lien avec les globules rouges. Premièrement, j'ai exploré dans le chapitre 1 la modification spécifique de groupe sanguins qui est d'intérêt pour augmenter les possibilités transfusionnelles. Des globules rouges (GRs) de groupe sanguin rare Rhnull ont été créés en supprimant le gène RHAG des cellules souches hématopoïétiques (CSH) avec CRISPR-Cas9, suivi d'une différentiation érythrocytaire in vitro. Ce groupe sanguin pourrait théoriquement être utilisé pour transfuser des individus ayant n'importe quel variant Rh, en plus d'être utile en tant que réactif de sérologie. Le gène ABO a aussi été supprimé des CSH de groupe A, pour produire des GRs de groupe O. L'absence d'expression résiduelle des antigènes de type A obtenue à partir des CSH hétérozygotes A/O pourrait permettre de futures applications transfusionnelles comme des cas de donneur/receveur compatibles pour des phénotypes rares mais incompatibles pour le système ABO. Ensuite, un aspect prometteur du système CRISPR-Cas9 étant la correction thérapeutique de maladies génétiques, les greffes autologues de CSH génétiquement modifiées par cette technologie font l'objet de plus en plus d'études cliniques. Dans ce contexte, j'ai travaillé sur la modélisation in vitro de variants génétiques avec comme preuve de concept l'anémie falciforme puisque cela pourrait contribuer à l'étude des répercussions potentielles de l'édition du génome sur les CSH et les GRs, et complémenter les études cliniques. Une récapitulation complète de l'érythropoïèse in vitro jusqu'à la production de GRs matures a été considérée pertinente pour une caractérisation plus fidèle à la réalité de phénotypes érythrocytaires, pour étudier l'impact de divers variants sur les GRs, en plus d'être avantageuse dans l'optique de futures transfusions. La production de GRs in vitro est un objectif important en médecine transfusionnelle depuis plusieurs années et il est possible de reproduire l'érythropoïèse in vitro à partir de plusieurs sources cellulaires, dont les CSH. Cependant, les protocoles publiés à ce jour mettent peu l'accent sur l'étape de maturation finale des réticulocytes en GRs matures, analogues à ceux retrouvés en circulation, ou requièrent l'utilisation de cellules accessoires ou nourricières. Or, l'utilisation de cellules accessoires ou nourricières pourrait restreindre de potentielles applications pertinentes du modèle comme les transfusions et l'édition génétique ex vivo. Dans un premier temps, j'ai développé dans le chapitre 2 un protocole de culture cellulaire permettant une maturation accrue des réticulocytes en GRs in vitro ainsi qu'une maximisation de leur survie en culture durant cette étape, dans un milieu ne contenant aucun composé animal, cellules accessoires ou cellules nourricières. Les GRs obtenus ont un phénotype similaire à celui des GRs produits par le corps humain et ils peuvent être conservés en solution nutritive pendant 42 jours comme pour les GRs récoltés de dons de sang. Dans un second temps, j'ai optimisé dans le chapitre 3 un protocole d'édition avec CRISPR-Cas9 compatible avec la clinique, sans vecteur viral et sans sélection, dans le but d'être combiné à la production de GRs. L'introduction à une fréquence élevée de la mutation causant l'anémie falciforme, notamment de manière bi-allélique, dans des CSH suivie de la différenciation complète en GRs a permis de générer des GRs adoptant la forme caractéristique en faucille après exposition à des niveaux d'oxygène physiologiques, récapitulant ainsi l'anémie falciforme in vitro. De plus, un sous-produit d'édition produisant un variant de globine beta qui semble exprimé à des niveaux significatifs dans les GRs est présent à la suite du ciblage de la mutation dans le gène de la globine beta. La présence de ce variant mérite attention dans l'optique du développement thérapeutique pour l'anémie falciforme. En conclusion, les procédures optimisées de culture de GRs et de modifications génétiques avec CRISPR-Cas9 présentées dans cette thèse peuvent être combinées de différentes façons afin de fournir une plateforme d'étude de variants érythrocytaires in vitro, en plus de contribuer aux efforts vers la transfusion de GRs produits in vitro et d'accompagner les thérapies d'édition génétique arrivant en clinique. / Genome editing techniques, such as CRISPR-Cas9, allowing the introduction of targeted genetic modifications, offer numerous research tool possibilities and potential cellular therapies. As part of my work done in co-direction at Héma-Québec, I became interested in the potential of CRISPR-Cas9 in relation to the hematopoietic system and more particularly in relation to red blood cells. First, I explored in chapter 1 specific blood type modifications that are of interest in increasing transfusion opportunities. Rhnull cultured red blood cells (cRBCs) were produced by deleting RHAG gene in hematopoietic stem and progenitor cells (HSPCs) with CRISPR-Cas9, followed by in vitro erythroid differentiation. These red blood cells (RBCs) could theoretically be used to transfuse all Rh types, in addition to their relevance as RBC reagents for serology laboratories. ABO gene was also deleted in type A HSPCs to produce type O RBCs. The absence of residual A antigen expression when starting with heterozygotes A/O donors could allow future transfusion applications like cases of individuals compatible for rare phenotypes but frustratingly not for ABO. Then, a promising aspect of the CRISPR-Cas9 system being the therapeutic correction of genetic diseases, autologous hematopoietic stem cell (HSC) transplants genetically modified by this technology are the subject of more and more clinical studies. In this context, I worked on the in vitro modeling of genetic variants with sickle cell anemia (SCA) as proof of concept since it could contribute to the efforts aiming at studying and understanding potential side effects of genome editing on HSCs and RBCs, and complement clinical studies. The complete recapitulation of erythropoiesis in vitro, including terminal RBC maturation, was considered essential for the faithful characterization of erythroid phenotypes, for studying the impact of genetic variants on RBCs, in addition to being beneficial for future transfusion purposes. Production of cRBCs has been a major objective in the field of transfusion medicine for several years and erythropoiesis can be reproduced in vitro starting with several cell sources, one of which being HSPCs. However, current protocols do not focus on the process of reticulocyte maturation into RBCs, analogous to those found in the circulation, or they require accessory or feeder cells. Of note, accessory or feeder cells could restrict potentially relevant applications of the model like transfusions or ex vivo genome editing. First, I developed in chapter 2 a cell culture protocol allowing an increased maturation of reticulocytes into RBCs in vitro as well as a maximization of their survival in culture, using an animal component-free, accessory-free, and feeder-free medium. The resulting cRBCs had a similar phenotype as native RBCs and they could be stored for 42 days like RBCs collected from blood donations. Second, I optimized a virus-free and selection-free CRISPR-Cas9 strategy compatible with the clinic to use it in combination with cRBCs production. High efficiency introduction of the SCA-causing mutation, notably bi-allelic introduction, followed by mature cRBCs production yielded cells acquiring the characteristic sickled shape after exposition to physiological oxygen levels, thereby recapitulating SCA in vitro. Furthermore, an editing by-product giving rise to a beta globin variant seemingly expressed at significant levels in RBCs was present following the targeting of the mutation in the beta globin gene. The presence of this beta globin variant thus deserves further attention in the context of therapeutic development for SCA. To conclude, optimized procedures of RBCs' culture and CRISPR-Cas9-mediated genome editing presented in this thesis can be combined in several ways to provide a platform for the study of erythroid variants in vitro, in addition to contributing to the efforts towards future cRBCs transfusion and accompanying the coming gene editing therapies.
206

Assemblage in vitro de la nucléocapside du virus de l'hépatite C

Boivin, Annie 12 April 2018 (has links)
Le virus de l'hépatite C (VHC) infecte plus de 170 millions de personnes dans le monde. À l'heure actuelle, les thérapies utilisées contre ce virus sont insatisfaisantes. La protéine de la capside (C) du VHC est impliquée dans l'assemblage viral et l'encapsidation du génome. Les domaines chargés positivement de la moitié NH2-terminale de la protéine C (C 1-82) sont suspectés être responsables de l'interaction avec l'ARN viral génomique. Dans cette étude, différents mutants (ponctuels et de délétion) de la C 1-82 ont été générés et exprimés dans E. coli afin d'identifier une (des) région(s) de la protéine essentielle(s) pour l'assemblage viral. Or, tous les mutants produits dans cette étude ne sont affectés ni dans la reconnaissance de l'ARN ni dans la formation de pseudo-nucléocapsides virales (PNV). Ces résultats suggèrent que c'est la charge globale de la protéine qui est importante pour l'interaction avec l'ARN et non une région précise dans la portion NH2-terminale.
207

Impact d'un traitement avec fenofibrate ou atorvastatin sur la cinétique in vivo de la protéine C-réactive

Lévesque, Josée 16 April 2018 (has links)
Tableau d’honneur de la Faculté des études supérieures et postdoctorales, 2008-2009 / Les travaux de maîtrise présentés dans ce mémoire ont permis d'évaluer le métabolisme in vivo de la protéine C-réactive (CRP) chez des patients diabétiques de type 2, en réponse à un traitement avec le fenofibrate ou l'atorvastatin, ce qui n'avait jamais encore été fait. Cela a permis d'identifier avec une relativement bonne certitude le mécanisme par lequel les concentrations plasmatiques de CRP sont réduites suite à un traitement avec une statine ou un fibrate. Ces travaux suggèrent donc qu'une baisse de production endogène du CRP, et non une augmentation de sa clairance, soit responsable des réductions plasmatiques de CRP. De plus, nos observations supp~rtent une association entre une réduction des concentrations plasmatiques de CRP et une amélioration du contrôle glycémique, ce qui renforcit l'importance de l'inflammation dans le développement du diabète de type 2 et de ses complications. D'autres études sont nécessaires afin de valider ces données.
208

Développement d'une approche de thérapie génique de la dystrophie musculaire de Duchenne en utilisant la technologie CRISPR-Cas9 Prime editing

Happi Mbakam, Cedric 11 July 2023 (has links)
Titre de l'écran-titre (visionné le 29 juin 2023) / La Dystrophie Musculaire de Duchenne (DMD) est une maladie neuromusculaire héréditaire causée par des mutations dans le gène DMD codant pour la dystrophine, une protéine importante dans le maintien de l'intégrité de la membrane des fibres musculaires. L'absence de la dystrophine se manifeste par la dégénérescence progressive des fibres musculaires à l'effort. La DMD représente un fardeau pour les patients et leurs familles. Elle affecte environ 20 000 nouveaux nés de sexe masculin dans le monde chaque année. Il existe plusieurs approches thérapeutiques allant du ciblage de l'ARNm au remplacement ou substitution de la dystrophine. Cependant, ces traitements sont transitoires et induisent des améliorations phénotypiques limitées. La découverte il y a une dizaine d'années du système CRISPR-Cas a ouvert des possibilités presque illimitées en biologie. Ce système a été modifié et adapté en 2019 pour développer le Prime editing, une technologie dynamique de modification du génome. Cette technologie permet de faire une interconversion de tout nucléotide du génome, des insertions ou des délétions de nucléotides. Le système d'édition est constitué d'un plasmide éditeur (PE2) fait d'une Cas9 nickase fusionnée à une transcriptase inverse et d'un plasmide contenant un ARN guide pour le Prime editing (pegRNA) contenant une séquence espaceur, une séquence d'amorçage et une matrice pour la transcriptase inverse (RTT). Notre étude visait donc à utiliser cette technologie CRISPR-Cas9 Prime editing pour développer une approche de traitement permanent de la DMD. Les deux premiers chapitres de cette thèse présentent de façon approfondie l'état de la littérature actuelle sur les différentes approches thérapeutiques de la DMD. Le premier chapitre décrit les stratégies moléculaires médiant la restauration de la dystrophine. Ces approches incluent la lecture à travers les codons, les sauts d'exons, la modification de l'ADN par la technique CRISPR, la modulation des progéniteurs, le remplacement et la substitution du gène DMD ainsi que la transplantation cellulaire. Le deuxième chapitre apporte plus de détails et de précisions sur les approches CRISPR en développement pour la DMD permettant ainsi de mieux comprendre la pertinence de notre choix technologique (CRISPR-Cas9 Prime editing) pour l'approche que nous avons développé dans cette thèse. Le troisième chapitre de cette thèse vise à démontrer la capacité du Prime editing à introduire ou corriger des mutations ponctuelles dans le gène DMD et permettre l'expression de la protéine dystrophine complète. Initialement, nous avons conçu plusieurs pegRNAs pour introduire les mutations nonsenses présentes dans la population canadienne dans les exons 6, 9, 20, 35, 43, 55 et 61 du gène DMD. Suite à des taux d'édition très faibles variant entre 2 et 10%, plusieurs optimisations dont, les traitements répétés consécutifs, l'usage d'un guide supplémentaire pour induire une autre coupure de l'autre brin d'ADN à distance du site de coupure initial, et l'ajout d'une mutation simultanée dans la séquence adjacente au protoespaceur (PAM) pour préserver la mutation induite, ont permis d'augmenter jusqu'à 5,8 fois le taux d'édition. Ces stratégies ont permis par la suite de corriger la mutation c.428 G>A dans l'exon 6 des myoblastes d'un patient suivi par l'expression de la dystrophine détectée par western blot à partir des protéines provenant de la fusion des myoblastes en myotubes. Le séquençage haut débit analysé par CRISPResso2 a montré un taux d'INDEL inférieur à 1%. Le quatrième chapitre de cette thèse vise à démontrer la capacité du Prime editing à corriger efficacement la mutation c.8713C>T dans l'exon 59 du gène DMD dont la position à +13 nucléotides du site de coupure la rend défavorable pour la correction par Prime editing. Plusieurs variants de PE2 ont été testés et le meilleur variant (SpCas9-NGG) a été choisi pour la suite des expériences. Ajoutées aux optimisations du chapitre 3 précédent, la variation de la longueur du RTT et des mutations synonymes supplémentaires à différentes positions de la cible ont permis d'augmenter jusqu'à 7 fois le taux d'édition. Cette autre stratégie a été utilisée pour la correction de la mutation c.8713C>T dans l'exon 59 des myoblastes d'un patient à un taux de 22% suivi par l'expression de la dystrophine (42%). Le cinquième chapitre de cette thèse a permis de démontrer la capacité du Prime editing à effectuer en plus des substitutions, des délétions et des insertions de nucléotides dans les sites d'épissages afin de médier un saut d'exon et restaurer l'expression de la dystrophine. La stratégie consistait à corriger dans les myoblastes de patients, les mutations causées par les délétions de l'exon 52 et des exons 45-52 en modifiant respectivement les sites donneurs d'épissage des exons 51 et 53 pour les éliminer. Cela a permis la jonction respective de l'exon 50 à l'exon 53 et de l'exon 44 à l'exon 54 pour les délétions 52 et 45-52 respectivement. Ces modifications des sites d'épissage ont permis l'expression de la protéine dystrophine. Ces résultats sont une preuve de principe et démontrent le potentiel de notre approche à modifier efficacement le gène DMD pour médier la restauration de l'expression de la dystrophine chez les patients DMD. Cependant, il sera important de développer un système de livraison efficace en utilisant par exemple un vecteur Dual-AAV ou des particules virales VLPs ayant respectivement des capsides ou des glycoprotéines spécifiques des muscles squelettiques et cardiaques pour un essai in vivo de ces stratégies. Il sera également pertinent de développer une approche Prime editing multiplexe afin de cibler simultanément plusieurs mutations du gène DMD et examiner les effets hors cibles et immunologiques de cette dernière. / Duchenne Muscular Dystrophy (DMD) is an inherited neuromuscular disease caused by mutations in the DMD gene encoding dystrophin, a protein involved in maintaining muscle fibers membrane integrity. The absence of dystrophin leads to a progressive muscle wasting due to muscle contractions. DMD represents a burden for patients and their families. It affects approximately 20,000 newborn males worldwide each year. There are several therapeutic approaches ranging from mRNA targeting to dystrophin replacement or substitution. However, these treatments are transient and induce limited phenotypic improvements. The discovery a decade ago of CRISPR-Cas system opened almost unlimited possibilities in biology. This system was modified and adapted in 2019 to develop the Prime editing, a dynamic genome editing technology. That technology makes possible the interconversion of any nucleotide of the genome, and the insertions or deletions of nucleotides. The editing system consists of a prime editor plasmid (PE2) made of a Cas9 nickase fused to a reverse transcriptase and a plasmid encoding a Prime editing guide RNA (pegRNA) containing a spacer sequence, a primer binding site (PBS) sequence and a reverse transcriptase template (RTT). Our study therefore aimed to use this CRISPR-Cas9 Prime editing technology to develop a permanent treatment approach for DMD. The first and second chapters of this thesis present in depth the state of the current literature on the different DMD therapeutic approaches. The first chapter describes the molecular strategies involved in the dystrophin restoration. These approaches include read through codon, exon skipping, CRISPR DNA editing, progenitor modulation, DMD gene replacement or substitution, and cell transplantation. The second chapter provides more details and precisions on the CRISPR approaches in development for DMD, thus allowing a better understanding of the relevance of our technological choice for the approach that we have developed in this thesis. The third chapter of this thesis aims to demonstrate the ability of Prime editing to introduce or correct point mutations in the DMD gene and restore the expression of the dystrophin protein. We initially designed several pegRNAs to induce the nonsense mutations present in the Canadian population in exons 6, 9, 20, 35, 43, 55 and 61 of the DMD gene. Following very low editing rates varying from 2 to 10%, several optimizations including consecutive repeated treatments, the use of an additional sgRNA to induce a second nick at a distance from the initial nick site, and the simultaneous mutation in the protospacer adjacent motif (PAM) to preserve the induced mutation, permitted to increase by 5.8-fold the editing rate. These strategies subsequently made possible to correct the c.428 G>A mutation in exon 6 of a patient's myoblasts. That was followed by dystrophin expression detected by western blot from proteins coming from the fusion of the myoblasts in myotubes. High-throughput sequencing analyzed by CRISPResso2 showed an INDEL rate less than 1%. The fourth chapter of this thesis aims to demonstrate the ability of Prime editing to efficiently correct the c.8713C>T mutation in exon 59 of the DMD gene whose position at +13 makes it unfavorable to the correction by Prime editing. Several PE2 variants were tested, and the best variant (SpCas9-NGG) was chosen for further experiments. Added to the optimizations of the previous chapter 3, varying the RTT length and additional synonymous mutations at different positions beside the target increased the editing rate by 7-folds. This other strategy was used for the correction of the c.8713C>T mutation in exon 59 of a patient's myoblasts at the editing rate of 22% followed by the dystrophin expression (42%). The fifth chapter of this thesis has demonstrated the ability of Prime editing to perform in addition to substitutions, deletions, and insertions of nucleotides in the splice sites to mediate exon skipping and restore the dystrophin expression. The strategy consisted of correcting in patient myoblasts, the mutations caused by the deletions of exon 52 (Del52) and exons 45-52 (Del45-52) respectively by modifying the splice donor sites of exons 51 and 53 for their skipping. This allowed the binding of exon 50 to exon 53 and exon 44 to exon 54 respectively for Del52 and Del45-52 permitting the expression of the dystrophin protein. These results are a proof of concept and demonstrate the potential of our approach to effectively modify the DMD gene to mediate the dystrophin restoration in DMD patients. However, it will be important to develop an efficient delivery system using for example a Dual-AAV vector or virus like particles (VLPs) with skeletal and cardiac muscle-specific capsids or glycoproteins, respectively, for in vivo experimentation of these strategies. It will also be relevant to develop a multiplex Prime-editing approach to simultaneously target multiple DMD gene mutations and examine the off-target and immunological effects.
209

La protéase rhomboide PARL, nouveau contrôleur de l'apoptose et de la régulation de la morphologie mitochondriale : découverte des mécanismes moléculaires reponsables de son activité

Vijey Jeyaraju, Danny 12 April 2018 (has links)
Tableau d'honneur de la Faculté des études supérieures et postdoctorales, 2006-2007 / Remodeling of mitochondria is a dynamic process coordinated by fusion and fission of the inner and outer membranes of the organelle, mediated by a set of conserved proteins. In metazoans, the molecular mechanism behind mitochondrial morphology has been recruited to govern novel functions, such as development, calcium signaling, and apoptosis, which suggests that novel mechanisms should exist to regulate the conserved membrane fusion/fission machinery. Here we show that phosphorylation and cleavage of the vertebrate-specific PP domain of the mammalian presenilin-associated rhomboid-like (PARL) protease can influence mitochondrial morphology. Phosphorylation of three residues embedded in this domain, Ser-65, Thr-69, and Ser-70, impair a cleavage at position Ser77|Ala78 that is required to initiate PARL-induced mitochondrial fragmentation. Our findings reveal that PARL phosphorylation and cleavage impact mitochondrial dynamics, providing a blueprint to study the molecular evolution of mitochondrial morphology. / Le remodelage de la morphologie et de la structure de des cristae des mitochondries est un processus dynamique régulé par un ensemble conservé de protéines qui coordonnent la « fusion » et la « fission » de la membrane interne et externe de l'organelle. Pendant l'évolution des métazoaires, les mécanismes moléculaires qui contrôlent ces processus ont été recrutés pour régler de nouvelles fonctions, tels le développement, la signalisation du calcium, et l'apoptose. Ceci suggère donc que des mécanismes, toujours inconnus, doivent exister pour réguler la machinerie de la fusion/fission des membranes mitochondriales. Dans cette étude nous démontrons que la phosphorylation et le clivage d'un domaine de la protéase rhomboide PARL (presenilin-associated rhomboid-like), lequel est présent uniquement chez les vertébrés règlent la morphologie des mitochondries. Nous montrons que la phosphorylation de trois acides aminés conservés dans ce domaine, la Ser-65, la Thr-69 et la Ser-70, empêche un clivage aux positions Ser77-Ala78 qui est requis pour initier la fragmentation mitochondriale induite par PARL. Nos résultats démontrent que la phosphorylation et le clivage de PARL ont un impact sur la dynamique des mitochondries, ce qui nous fournit un modèle pour étudier l'évolution moléculaire de la morphologie des mitochondries.
210

Rôles et régulation des protéines de l'anémie de Fanconi dans les voies de réparation des cassures double-brin de l'ADN

Joshi, Niraj Gaurishankar 24 April 2018 (has links)
L’anémie de Fanconi (AF) est une maladie génétique récessive caractérisée par des anomalies congénitales, une défaillance progressive de la moelle osseuse, une hypersensibilité aux pontages inter-brins de l’ADN (ICLs) et une susceptibilité à développer le cancer. La voie AF implique au minimum 20 gènes FANC (FANCA-FANCU) et les protéines encodées par ces gènes interagissent également dans une voie cellulaire connue permettant la résistance des cellules aux ICLs de l’ADN. Les agents pontants qui génèrent les ICLs lient de manière covalente les deux brins de l’ADN, créant de ce fait une obstruction physique aux processus cellulaires qui nécessitent le déroulement des deux brins d’ADN tels que la réplication de l’ADN et la transcription. La monoubiquitination de FANCI et FANCD2 par la E3 ubiquitine ligase FANCL est l’évènement culminant de l’activation de la voie AF. Ce processus est dépendant des protéines FANC ayant un rôle en amont de cette étape. Le complexe moléculaire formé par FANCI et FANCD2 coordonne plusieurs événements de la voie AF à la suite de sa monoubiquitination. Tout au long de mon travail de doctorat, nous avons étudié différents aspects de la voie de l’anémie de Fanconi. Nous avons montré deux importants domaines de liaison à l’ADN dans FANCD2 dans lesquels se trouvent six acides aminés polaires, principalement des résidus lysines, très conservés à travers l’évolution. Ces domaines contribuent de manière importante à la liaison à l’ADN dépendante des charges spécifiques. Un de ces domaines de liaison à l’ADN s’avère être également une séquence de localisation nucléaire (NLS) dont la mutation empêche la localisation nucléaire de FANCD2. Les mutants cytoplasmiques de FANCD2 ont aboli leur monoubiquitination et furent incapables de promouvoir la monoubiquitination de FANCI, de même que l’association à la chromatine. Lorsque les défauts de transport nucléaire sont complémentés par un NLS hétérologue, il en résulte une réduction de la monoubiquitination de FANCD2. Ainsi, nos résultats suggèrent que le domaine de liaison à l’ADN et le NLS identifiés dans cette étude soient des régions cruciales de FANCD2. Les cassures double-brins de l’ADN (CDB) sont un autre aspect de la voie de AF qui a fait l’objet de nos études. Les CDB sont des structures intermédiaires formées au moment du décrochage (« unhooking ») du pont inter-brin lors du processus de résolution des ICLs. Nous avons attribué de nouvelles fonctions pour la protéine FANCG dans l’inhibition de la résection des extrémités d’ADN générées par la CDB, affectant ainsi le choix de la voie de réparation de l’ADN. Cette fonction de FANCG est indépendante des autres protéines FANC ayant un rôle en amont, à l’exception de la protéine FANCA. Nous avons également mis en lumière de nouvelles fonctions pour les protéines AF/cancer du sein BRCA2 et PALB2 aux fourches de réplication bloquées. Puis, nous avons également montré qu’un rôle pour ces protéines consiste en la stimulation de la polymérase eta (Polη) afin d’initier la synthèse de l’ADN. En effet, BRCA2 et PALB2 interagissent avec Polη et sont requises pour le recrutement de cette polymérase aux fourches de réplication bloquées. De plus, elles stimulent la synthèse d’ADN dans la D-Loop via la stimulation de la Polη, un élément essentiel à ce processus. Nous concluons donc que PALB2 et BRCA2, en plus de leurs fonctions dans la stimulation de la formation de la D-Loop par RAD51, jouent un rôle crucial dans la synthèse d’ADN associée à la recombinaison via la réparation de l’ADN régulée par la Polη. / Fanconi anemia (FA) is a recessive genetic disorder characterized by congenital abnormalities, progressive bone marrow failure, DNA interstrand cross-links (ICLs) hypersensitivity, and cancer susceptibility. The FA pathway consists of at least 20 FANC genes (FANCA-FANCU), and the encoded protein products interact in a common cellular pathway to gain resistance against DNA ICLs. The ICL-producing agents covalently cross-link two DNA strands and thus, are obstructions to processes which requires unwinding of the two DNA strands such as DNA replication, and transcription. FA pathway activation culminates in the monoubiquitination of FANCD2 and FANCI proteins by E3 ubiquitin ligase FANCL, a process dependent on other upstream FA proteins. The molecular complex formed by FANCI and FANCD2 coordinates multiple events in the FA pathway upon its monoubiquitination. Throughout my doctoral work, we studied various aspects of the FA pathway. We have demonstrated two major DNA binding motifs (DBMs) in FANCD2, comprising of six evolutionally conserved polar amino acids predominantly consisting of lysine, which contributed to the specific charge dependent DNA binding. One of the DBM also consisted of a nuclear localization sequence (NLS), disruption of which abrogated the nuclear localization of FANCD2. The cytoplasmic mutants of FANCD2 had abolished monoubiquitination and were unable to promote FANCI monoubiquitination and chromatin association. Complementation of the nuclear transport defect by a heterologous NLS resulted in the reduction of FANCD2 monoubiquitination. Our results suggest that the DNA binding and NLS identified in this study are crucial regions of FANCD2. DNA double-strand breaks (DSB) are produced as one of the structural intermediates upon ICL unhooking step. We assigned novel functions to the FA protein FANCG in limiting the DNA end-resection, and thus it affects the repair pathway choice. This function of FANCG is independent of other upstream FA proteins except FANCA. We also reveal new functions for FA/breast cancer proteins BRCA2 and PALB2 at blocked replication forks and show a role for these proteins in stimulating polymerase eta (Polη) to initiate DNA synthesis. PALB2 and BRCA2 interact with Polη, and are required to sustain the recruitment of Polη at blocked replication forks. PALB2 and BRCA2 stimulate Polη-dependent DNA synthesis on Displacement loop (D-loop) substrates. We conclude that PALB2 and BRCA2, in addition to their functions in stimulating D-loop formation by RAD51, play crucial roles in the initiation of recombination-associated DNA synthesis by Polη-mediated DNA repair.

Page generated in 0.0367 seconds