• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 194
  • 48
  • 38
  • 12
  • 8
  • 8
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 397
  • 397
  • 74
  • 74
  • 72
  • 57
  • 57
  • 48
  • 45
  • 45
  • 39
  • 37
  • 36
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
291

Strukturelle und funktionelle Charakterisierung von dem mitochondrialen Membranprotein Menschlicher Spannungsabhängiger Anionen Kanal (HVDAC) und dem Membranprotein bindenden Conotoxin Conkunitzin-S1 mit Flüssigphasen NMR / Structural and functional characterisation of the mitochondrial membrane protein human voltage-dependent anion channel (HVDAC) and the membrane protein-targeting Conotoxin Conkunitzin-S1 by solution NMR

Bayrhuber, Monika 26 June 2007 (has links)
No description available.
292

Discovery and Characterization of Novel ADP-Ribosylating Toxins

Fieldhouse, Robert John 20 December 2011 (has links)
This thesis is an investigation of novel mono-ADP-ribosylating toxins. In the current data-rich era, making the leap from sequence data to knowledge is a task that requires an elegant bioinformatics toolset to pinpoint questions. A strategy to expand important protein-family knowledge is required, particularly in cases in which primary sequence identity is low but structural conservation is high. For example, the mono-ADP-ribosylating toxins fit these criteria and several approaches have been used to accelerate the discovery of new family members. A newly developed tactic for detecting remote members of this family -- in which fold recognition dominates -- reduces reliance on sequence similarity and advances us toward a true structure-based protein-family expansion methodology. Chelt, a cholera-like toxin from Vibrio cholerae, and Certhrax, an anthrax-like toxin from Bacillus cereus, are among six new bacterial protein toxins identified and characterized using in silico and cell-based techniques. Medically relevant toxins from Mycobacterium avium and Enterococcus faecalis were also uncovered. Agriculturally relevant toxins were found in Photorhabdus luminescens and Vibrio splendidus. Computer software was used to build models and analyze each new toxin to understand features including: structure, secretion, cell entry, activation, NAD+ substrate binding, intracellular target binding and the reaction mechanism. Yeast-based activity tests have since confirmed activity. Vibrio cholerae produces cholix – a potent protein toxin of particular interest that has diphthamide-specific ADP-ribosyltransferase activity against eukaryotic elongation factor 2. Here we present a 2.1Å apo X-ray structure as well as a 1.8Å X-ray structure of cholix in complex with its natural substrate, nicotinamide adenine dinucleotide (NAD+). Hallmark catalytic residues were substituted and analyzed both for NAD+ binding and ADP-ribosyltransferase activity using a fluorescence-based assay. These new toxins serve as a reference for ongoing inhibitor development for this important class of virulence factors. In addition to using toxins as targets for antivirulence compounds, they can be used to make vaccines and new cancer therapies. / Natural Sciences and Engineering Research Council (CGS-D), Canadian Institutes of Health Research, Cystic Fibrosis Canada, Human Frontier Science Program, Ontario government (OGSST), University of Guelph (Graduate Research Scholarship)
293

Pattern Recognition in Single Molecule Force Spectroscopy Data

Paulin, Hilary 05 September 2013 (has links)
We have developed an analytical technique for single molecule force spectroscopy (SMFS) data that avoids filtering prior to analysis and performs pattern recognition to identify distinct SMFS events. The technique characterizes the signal similarity between all curves in a data set and generates a hierarchical clustering tree, from which clusters can be identified, aligned, and examined to identify key patterns. This procedure was applied to alpha-lactalbumin (aLA) on polystyrene substrates with flat and nanoscale curvature, and bacteriorhodopsin (bR) adsorbed on mica substrates. Cluster patterns identified for the aLA data sets were associated with different higher-order protein-protein interactions. Changes in the frequency of the patterns showed an increase in the monomeric signal from flat to curved substrates. Analysis of the bR data showed a high level of multiple protein SMFS events and allowed for the identification of a set of characteristic three-peak unfolding events.
294

NMR and Biophysical Studies of Modular Protein Structure and Function

Chitayat, Seth 28 September 2007 (has links)
Proteins modularity enhances the multi-functionality and versatility of proteins by providing such properties as multiple and various ligand-binding sites, increased ligand affinity through the avidity effect, and the juxtaposition of ligand-binding modules near catalytic domains. An NMR-based "dissect-and-build" approach to studying modular protein structure and function has proven very successful, whereby modules are initially characterized individually and then correlated with the overall function of a protein. We have used the dissect-and-build approach and NMR to study two modular protein systems. Chapter 2 details the NMR solution structure of the weak-lysine-binding kringle IV type 8 (KIV8) module from the apolipoprotein(a) (apo(a)) component of lipoprotein(a) was determined and its ligand-binding properties assessed. In vitro studies have demonstrated the importance of the apo(a) KIV7 and KIV8 modules in mediating specific lysine-dependent interactions with the apolipoproteinB-100 (apoB-100) component of LDL in the initial non-covalent step of lipoprotein assembly. Notable differences identified in the lysine binding site (LBS) of the KIV8 were deemed responsible for the differential modes of apoB-100 recognition by KIV7 and KIV8. In addition, the KIV8 structure has brought to light the importance of an RGD sequence at the N-terminus of the apo(a) KIV8 module, which may mediate important apo(a)-integrin interactions. In Chapters 3-6, structure-function studies of the CpGH84C X82 and the CpGH84A dockerin-containing modular pair were conducted to understand how the varying modularity unique to the C-terminal regions of the secreted multi-modular family 84 glycoside hydrolases influences the spreading of Clostridium perfringens. Identification of a CpGH84C cohesin module (X82), and the structural characterization of a dockerin-containing modular pair provides the first evidence for multi-enzyme complex formation mediated by non-cellulosomal cohesin-dockerin interactions. The formation of large hydrolytic enzyme complexes introduces a novel mechanism by which C. perfringens may enhance its role in pathogenesis. / Thesis (Ph.D, Biochemistry) -- Queen's University, 2007-09-27 11:46:38.753
295

Protein fold evolution on completed genomes : distinguishing between young and old folds

Abeln, Sanne January 2007 (has links)
We review fold usage on completed genomes in order to explore protein structure evolution and assess the evolutionary relevance of current structural classification systems (SCOP and CATH). We assign folds on a set of 150 completed genomes using fold recognition methods (PSI-BLAST, SUPERFAMILY and Gene3D). The patterns of presence or absence of folds on genomes gives us insights into the relationships between folds and how we have arrived at the set of folds we see today. In particular, we develop a technique to estimate the relative ages of a protein fold based on genomic occurrence patterns in a phylogeny. We find that SCOP's `alpha/beta' class has relatively fewer distinct folds on large genomes, and that folds of this class tend to be older; folds of SCOP's `small protein' class follow opposite trends. Usage patterns show that folds with many copies on a genome are generally old, but that old folds do not necessarily have many copies. In addition, longer domains tend to be older and hydrophobic amino acids have high propensities for older folds whereas, polar - but non-charged - amino acids are associated with younger folds. Generally domains with stabilising features tend to be older. We also show that the reliability of fold recognition methods may be assessed using occurrence patterns. We develop a method, that detects false positives by identifying isolated occurrences in a phylogeny of species, and is able to improve genome wide fold recognition assignment sets. We use a structural fragment library to investigate evolutionary links between protein folds. We show that 'older' folds have relatively more such links than 'younger' folds. This correlation becomes stronger for longer fragment lengths suggesting that such links may reflect evolutionary relatedness.
296

Structure, Function and Dynamics of G-Protein coupled Receptors

Eichler, Stefanie 09 February 2012 (has links) (PDF)
Understanding the function of membrane proteins is crucial to elucidate the molecular mechanisms by which transmembrane signaling based physiological processes,i. e., the interactions of extracellular ligands with membrane-bound receptors, are regulated. In this work, synthetic transmembrane segments derived from the visual photoreceptor rhodopsin, the full length system rhodopsin and mutants of opsin are used to study physical processes that underlie the function of this prototypical class-A G-protein coupled Receptor. The dependency of membrane protein hydration and protein-lipid interactions on side chain charge neutralization is addressed by fluorescence spectroscopy on synthetic transmembrane segments in detergent and lipidic environment constituting transmembrane segments of rhodopsin in the membrane. Results from spectroscopic studies allow us to construct a structural and thermodynamical model of coupled protonation of the conserved ERY motif in transmembrane helix 3 of rhodopsin and of helix restructuring in the micro-domain formed at the protein/lipid water phase boundary. Furthermore, synthesized peptides and full length systems were studied by time resolved FTIR-Fluorescence Cross Correlation Hydration Modulation, a technique specifically developed for the purpose of this study, to achieve a full prospect of time-resolved hydration effects on lipidic and proteinogenic groups, as well as their interactions. Multi-spectral experiments and time-dependent analyses based on 2D correlation where established to analyze large data sets obtained from time-resolved FTIR difference spectra and simultaneous static fluorescence recordings. The data reveal that lipids play a mediating role in transmitting hydration to the subsequent membrane protein response followed by water penetration into the receptor structure or into the sub-headgroup region in single membrane-spanning peptides carrying the conserved proton uptake site (monitored by the fluorescence emission of hydrophobic buried tryptophan). Our results support the assumption of the critical role of the lipid/water interface in membrane protein function and they prove in particular the important influence of electrostatics, i. e., side chain charges at the phase boundary, and hydration on that function. / Für die Aufklärung der molekularen Wirkungsweise von physiologischen, auf Signaltransduktion, d. h. dem Zusammenspiel von extrazellulären Reizen und membrangebundenen Rezeptoren, beruhenden Prozessen ist das Verständnis der Funktion von Membranproteinen unerlässlich. In dieser Arbeit werden von Rhodopsin abgleitete, synthetische transmembrane Segmentpeptide, Opsin-Mutanten und der vollständige Photorezeptor Rhodopsin untersucht, um die physikalischen Prozesse zu beleuchten, die der Funktionen dieses prototypischen Klasse-A G-Protein gekoppelten Rezeptors zugrunde liegen. Die Abhängigkeit der Membranprotein-Hydratation und der Lipid-Protein-Wechselwirkung von der Ladung einer Aminosäuren-Seitenkette wird erforscht. Hierzu werden synthetische, transmembrane Segmentpeptide in Lipid und Detergenz, als Modell transmembraner Segmente von Rhodopsin in der Membran mittels Fluoreszenzspektroskopie untersucht. Aus den erhaltenen Ergebnissen wird ein thermodynamisches und strukturelles Modell hergeleitet, welches die Kopplung der Protonierung des hochkonservierten ERY-Motivs in Transmembranhelix 3 von Rhodopsin an die Restrukturierung der Helix in der Mikroumgebung der Lipid-Wasser-Phasengrenze erklärt. Des Weiteren werden sowohl die Segementpeptide als auch die vollständigen Systeme Opsin und Rhodopsin mittels zeitaufgelöster FTIR-Fluoreszenz-Kreuzkorrelations-Hydratations-Modulation untersucht. Diese Technik wurde eigens zur Aufklärung von zeitabhängigen Hydratationseffekten auf Lipide und Proteine oder Peptide entwickelt. Dabei werden zeitaufgelöste FTIR Differenz-Spektren und gleichzeitig statische Fluoreszenzsignale aufgenommen und diese zeitabhängigen multispektralen Datensätze mittels 2D Korrelation analysiert. Die Auswertung der Experimente enthüllt einen sequentiellen Hydratationsprozess. Dieser beginnt mit der Bildung von Wasserstoffbrückenbindungen an der Carbonylgruppe des Lipids, gefolgt von Strukturänderungen der Transmembranproteine und abgeschlossen durch das Eindringen von Wasser in das Proteininnere. Letzteres wird nachgewiesen durch die Fluoreszenz von Tryptophan im hydrophoben Peptid- oder Proteininneren. Die Ergebnisse dieser Arbeit unterstreichen die Annahme, dass Lipid-Protein-Wechselwirkungen eine entscheidende Rolle in der Funktion von Membranproteinen spielen und das insbesondere Elektrostatik, in Form von Ladungen an der Phasengrenze, und die Hydratisierung einen kritischen Einfluss auf diese Funktion haben.
297

Structure determination and thermodynamic stabilization of an engineered protein-protein complex

Wahlberg, Elisabet January 2006 (has links)
The interaction between two 6 kDa proteins has been investigated. The studied complex of micromolar affinity (Kd) consists of the Z domain derived from staphylococcal protein A and the related protein ZSPA-1, belonging to a group of binding proteins denoted affibody molecules generated via combinatorial engineering of the Z domain. Affibody-target protein complexes are good model systems for structural and thermodynamic studies of protein-protein interactions. With the Z:ZSPA-1 pair as a starting point, we determined the solution structure of the complex and carried out a preliminary characterization of ZSPA-1. We found that the complex contains a rather large (ca. 1600 Å2) interaction interface with tight steric and polar/nonpolar complementarity. The structure of ZSPA-1 in the complex is well-ordered in a conformation that is very similar to that of the Z domain. However, the conformation of the free ZSPA-1 is best characterized by comparisons with protein molten globules. It shows a reduced secondary structure content, aggregation propensity, poor thermal stability, and binds the hydrophobic dye ANS. This molten globule state of ZSPA-1 is the native state in the absence of the Z domain, and the ordered state is only adopted following a stabilization that occurs upon binding. A more extensive characterization of ZSPA-1 suggested that the average topology of the Z domain is retained in the molten globule state but that it is represented by a multitude of conformations. Furthermore, the molten globule state is only marginally stable, and a significant fraction of ZSPA-1 exists in a completely unfolded state at room temperature. A complete thermodynamic characterization of the Z:ZSPA-1 pair suggests that the stabilization of the molten globule state to an ordered three helix structure in the complex is associated with a significant conformational entropy penalty that might influence the binding affinity negatively and result in an intermediate-affinity (µM) binding protein. This can be compared to a dissociation constant of 20-70 nM for the complex Z:Fc of IgG where Z uses the same binding surface as in Z:ZSPA-1. Structure analyses of Z in the free and bound state reveal an induced fit response upon complex formation with ZSPA-1 where a conformational change of several side chains in the binding surface increases the accessible surface area with almost 400 Å2 i.e. almost half of the total interaction surface in the complex. Two cysteine residues were introduced at specific positions in ZSPA-1 for five mutants in order to stabilize the conformation of ZSPA-1 by disulfide bridge formation. The mutants were thermodynamically characterized and the binding affinity of one mutant showed an improvement by more than a factor of ten. The improvement of the introduced cysteine bridge correlates with an increase in binding enthalpy rather than with entropy. Further analysis of the binding entropy suggests that the conformational entropy change in fact is reduced but its favorable contribution is opposed by a less favorable desolvation enthalpy change. These studies illustrate the structural and thermodynamic complexity of protein-protein interactions, but also that this complexity can be dissected and understood. In this study, a comprehensive characterization of the ZSPA-1 affibody has gained insight into the intricate mechanisms involved in complex formation. These theories were supported by the design of a ZSPA-1 mutant with improved binding affinity. / QC 20100924
298

Molecular principles of protein stability and protein-protein interactions

Lendel, Christofer January 2005 (has links)
Proteins with highly specific binding properties constitute the basis for many important applications in biotechnology and medicine. Immunoglobulins have so far been the obvious choice but recent advances in protein engineering have provided several novel constructs that indeed challenge antibodies. One class of such binding proteins is based on the 58 residues three-helix bundle Z domain from staphylococcal protein A (SPA). These so-called affibodies are selected from libraries containing Z domain variants with 13 randomised positions at the immunoglobulin Fc-binding surface. This thesis aims to describe the principles for molecular recognition in two protein-protein complexes involving affibody proteins. The first complex is formed by the ZSPA-1 affibody binding to its own ancestor, the Z domain (Kd ~1 μM). The second complex consists of two affibodies: ZTaq, originally selected to bind Taq DNA polymerase, and anti-ZTaq, an anti-idiotypic binder to ZTaq with a Kd ~0.1 μM. The basis for the study is the determination of the three-dimensional structures using NMR spectroscopy supported by biophysical characterization of the uncomplexed proteins and investigation of binding thermodynamics using isothermal titration calorimetry. The free ZSPA-1 affibody is a molten globule-like protein with reduced stability compared to the original scaffold. However, upon target binding it folds into a well-defined structure with an interface topology resembling that displayed by the immunoglobulin Fc fragment when bound to the Z domain. At the same time, structural rearrangements occur in the Z domain in a similar way as in the Fc-binding process. The complex interface buries 1632 Å2 total surface area and 10 out of 13 varied residues in ZSPA-1 are directly involved in inter-molecular contacts. Further characterization of the molten globule state of ZSPA-1 revealed a native-like overall structure with increased dynamics in the randomised regions (helices 1 and 2). These features were reduced when replacing some of the mutated residues with the corresponding wild-type Z domain residues. The nature of the free ZSPA-1 affects the thermodynamics of the complex formation. The contribution from the unfolding equilibrium of the molten globule was successfully separated from the binding thermodynamics. Further decomposition of the binding entropy suggests that the conformational entropy penalty associated with stabilizing the molten globule state of ZSPA-1 upon binding seriously reduces the binding affinity. The ZTaq:anti-ZTaq complex buries in total 1672 Å2 surface area and all varied positions in anti-ZTaq are directly involved in binding. The main differences between the Z:ZSPA-1 and the ZTaq:anti-ZTaq complexes are the relative subunit orientation and certain specific interactions. However, there are also similarities, such as the hydrophobic interface character and the role of certain key residues, which are also found in the SPA:Fc interaction. Structural rearrangements upon binding are also common features of these complexes. Even though neither ZTaq nor anti-ZTaq shows the molten globule behaviour seen for ZSPA-1, there are indications of dynamic events that might affect the binding affinity. This study provides not only a molecular basis for affibody-target recognition, but also contributions to the understanding of the mechanisms regulating protein stability and protein-protein interactions in general. / QC 20101025
299

The structure and function of Biotin Protein Ligase: a focus on Staphylococcus aureus, Saccharomyces cerevisiae, Candida albicans and Homo sapiens.

Pendini, Nicole Renee January 2009 (has links)
Biotin Protein Ligase (BPL) is an essential enzyme responsible for the covalent attachment of biotin to a specific lysine residue of biotin-dependent carboxylases, transcarboxylases and decarboxylases. Due to the fundamental processes that these enzymes are involved in such as lipogenesis, amino acid catabolism and gluconeogenesis, much research has been conducted on these enzymes. Studies encompassing structural, mutational and catalytic functions of these enzymes have lead to novel drug developments for the treatment of obesity, diabetes, metabolic syndrome, bacterial and fungal infections. As BPL is required for activation of these enzymes by biotinylation, it is believed that it too could be targeted in a similar way to produce novel therapeutics. To date, the most characterised BPLs are from the Gramnegative bacteria Escherichia coli and the archea Pyrococcus hirokoshii. However minimal information is known about other forms of clinically important bacterial species or eukaryotic forms of this important enzyme. Through my candidature I have compiled a thorough literature review summarised as chapter 1: Introduction. Furthering this literature analysis, a human BPL model was generated with aid of BPL structural co-ordinates already deposited in the protein data bank (PDB), thus allowing focus on human BPL mutations that cause multiple carboxylase deficiency (chapter 2). I have solved the structure of BPL from the clinically important pathogenic bacteria Staphylococcus aureus. This was performed in several ligand-bound and non-bound states (chapters 3 and 4). A novel high-throughput assay was developed to test BPL activity. This assay allow testing of compounds that could potentially inhibit the BPL from Candida albicans (a species responsible for invasive fungal infections) (chapter 5). Large amounts of highly purified BPL from Saccharomyces cerevisiae allowed for the first structural analysis of a eukaryotic BPL (Chapter 6). The work has been summarised by a general discussion and future directions for the project (Chapter 7). / Thesis (Ph.D.) -- University of Adelaide, School of Molecular and Biomedical Science, 2009
300

Processing, stability and interactions of lung surfactant protein C /

Li, Jing, January 2005 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2005. / Härtill 4 uppsatser.

Page generated in 0.0523 seconds