• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 4
  • Tagged with
  • 10
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Développement d'un télescope à protons de recul pour la spectrométrie neutron : applications à l'instrumentation de précision et à la protonthérapie / Conception of a recoil protons telescope for neutron spectrometry : application to precision measurement and protontherapy

Combe, Rodolphe 13 September 2018 (has links)
Les neutrons sont étudiés dans des domaines divers en tant, par exemple, que particules d’intérêt pour la physique fondamentale, outil pour la biologie ou l'analyse élémentaire, ou encore danger pour l'Homme en radioprotection. La mesure de l'énergie des neutrons est indispensable pour l'ensemble de ces domaines, mais les caractéristiques des spectromètres peuvent varier grandement d'une application à l'autre. Dans le cadre de cette thèse, nous avons développé un télescope à protons de recul doté de capteurs à pixels CMOS ultra-rapides. Ce détecteur compact permet une reconstruction en temps-réel du spectre neutron jusqu'à de très hauts flux. Les applications développées au cours de ce thèse sont la mesure de précision auprès de l'accélérateur AMANDE entre 4 et 20 MeV, dans le cadre d’une collaboration avec l’IRSN-Cadarache, et la caractérisation des neutrons secondaires produits en salle de traitement de protonthérapie. / Neutrons are studied in various domains as, for example, particles of interest in fundamental physics, tool in biology and elemental analysis, or danger for human in radioprotection. The measurement of the neutron energy is necessary in all these domains, but the characteristics of the spectrometers can vary greatly from an application to another. In the field of this thesis, we conceived a recoil proton telescope using ultra-fast CMOS pixels sensors. This compact detector allows a real-time reconstruction of the neutron spectrum up to very high flux. The applications developed during this thesis are precision measurement at the AMANDE accelerator between 4 and 20 MeV, as part of a collaboration with IRSN-Cadarache, and the characterization of secondary neutrons produced in protontherapy treatment rooms.
2

Monte Carlo simulation of active scanning proton therapy system with Gate/Geant4 : Towards a better patient dose quality assurance

Grevillot, Loïc 14 October 2011 (has links) (PDF)
Hadron Therapy is an advanced radiotherapy technique for cancer treatment. It offers a better irradiation ballistic than conventional techniques and therefore requires appropriate quality assurance procedures. In this work, we upgraded the GEANT4-based GATE Monte Carlo platform in order to recalculate the TPS dose distributions in view of further benchmarking. In a first step, we selected an appropriate simulation environment (physics models and parameters) in order to produce accurate and efficient simulations. GATE simulations were validated using measurements and other Monte Carlo codes for depth-dose and transverse profiles. While a good agreement was found for depth-dose profiles, larger discrepancies were pointed out for transverse profiles. In a second step, we developed a modeling method to simulate active scanning beam delivery systems, which does not require to simulate the components of the treatment nozzle. The method has been successfully applied to an IBA proton therapy system and validated against measurements for complex treatment plans. Interfaces have also been developed in order to link DICOM RT ION PLAN and DICOM RT DOSE with GATE. Finally, we compared in a third step the TPS and Monte Carlo dose distributions in homogeneous and heterogeneous configurations. The beam models of both dose engines were in satisfactory agreement, allowing further evaluation of clinical treatment plans. A two-field prostate plan has been evaluated, showing a satisfactory agreement between the TPS and Monte Carlo, and demonstrating the novel capabilities of the platform for the evaluation of the TPS. To summarize, we selected an appropriate simulation environment for proton therapy, proposed a modeling method for active scanning systems and presented a method to compare the TPS and Monte Carlo dose distributions. All tools developed in GATE were or will be publicly released. A detailed validation stage of the system including absolute dosimetry is still necessary, in order to quantitatively evaluate its accuracy in various homogeneous and heterogeneous configurations. In this thesis, we have demonstrated that the GATE Monte Carlo platform is a good candidate for the simulation of active scanning delivery systems, allowing further TPS benchmarking. Moreover, the GATE platform also handles imaging applications, such as PET or prompt-gamma imaging towards online treatment monitoring and paves the way of interdisciplinary research advances.
3

Co-manipulation sûre d’un robot de protonthérapie / Safe physical human-robot interaction for a protontherapy robotic system

Baumeyer, Julien 28 June 2017 (has links)
Cette thèse se place dans un contexte médical de traitements oncologiques, plus particulièrement en protonthérapie robotisée. L’objectif de cette thèse, réalisée sous contrat Cifre avec la société LEONI CIA Cable Systems, est le développement d’une commande en co-manipulation sûre dédiée à un robot médical sériel. Cette commande doit permettre à un opérateur de manipuler intuitivement et précisément un robot de grande inertie positionneur de patients. Les contributions portent sur deux axes, d’une part le développement et l’implémentation sur le robot Orion de l’entreprise LEONI CIA Cable Systems d’une commande en admittance ainsi que la comparaison de trois dispositifs haptiques, et d’autre part le développement d’un mécanisme de détection de collisions proprioceptif permettant l’amélioration de la sécurité de fonctionnement. À partir d’une revue de la littérature concernant les commandes compliantes, nous avons développé et implémenté une commande en admittance dédiée au robot Orion en tenant compte de la discrétisation de la commande par le contrôleur spécifique de ce robot. Une expérience de comparaison sur le robot nous a permis d’identifier le dispositif haptique le mieux adapté au cas clinique considéré. Après une étude de l’état de l’art des mécanismes de détection de collisions, une approche fréquentielle de la modélisation du couple axial prenant en compte les rapports de réduction élevés et de technologie différente du robot a été proposée. Elle permet de modéliser finement le couple théoriquement fourni par les moteurs ; celui-ci est ensuite comparé avec la mesure du couple réellement produit afin de détecter une éventuelle collision. / This PhD thesis takes place in a medical context of oncological treatments, more particularly in robotised protontherapy. The objective of this thesis, carried out under a CIFRE contract with LEONI CIA Cable Systems, is the development of a safe comanipulation control dedicated to a serial medical robot. This control law should allow an operator to intuitively and precisely manipulate a robot of high inertia for accurate patients positioning. The contributions of this thesis focus on the development and implementation of an admittance-controlled Orion robot from LEONI CIA Cable Systems and the comparison of three haptic devices, and on the other hand, on the development of a proprioceptive collision detection mechanism allowing the improvement of operational safety. Based on a review of the literature on compliant controls, we have developed and implemented an admittance control approach dedicated to the Orion robot, taking into account the discretization of the control by the controller specific to this robot. A comparison experiment on the robot allowed us to identify the haptic device best suited to the clinical case considered. Based on a state of the art of collision detection mechanisms analysis, a frequency approach of the modeling of the axial torque taking into account the high reduction ratios and different robot technology has been proposed. It allows us to finely model the torque theoretically provided by the motors ; The latter is then compared with the measurement of the torque actually produced in order to detect a possible collision.
4

Evolution des modèles de calcul pour le logiciel de planification de la dose en protonthérapie / Evolution of dose calculation models for protontherapy treatment planning

Vidal, Marie 07 October 2011 (has links)
Ce travail a été mené dans un contexte de collaboration étroite entre le Centre de Protonthérapie d’Orsay de l’Institut Curie (ICPO), Dosisoft et le laboratoire Creatis afin de mettre en place un nouveau modèle de calcul de dose pour la nouvelle salle de traitement de l’ICPO. Le projet de rénovation et d’agrandissement de ce dernier a permis l’installation d’un nouvel accélérateur ainsi que d’une nouvelle salle de traitement équipée d’un bras isocentrique de la société IBA, dans le but de diversifier les localisations des cancers traités à l’ICPO. Le premier objectif de cette thèse est de développer un ensemble de méthodologies et de nouveaux algorithmes liés au calcul de dose pour les adapter aux caractéristiques spécifiques des faisceaux délivrés par la nouvelle machine IBA, avec comme finalité de les inclure dans le logiciel Isogray de DOSIsoft. Dans un premier temps, la technique de la double diffusion est abordée en tenant compte des différences avec le système passif des lignes fixes de l’ICPO. Dans un deuxième temps, une modélisation est envisagée pour les modalités de faisceaux balayés. Le deuxième objectif est d’améliorer les modèles de calcul de dose Ray-Tracing et Pencil-Beam existants. En effet, le collimateur personnalisé du patient en fin de banc de mise en forme du faisceau pour les techniques de double diffusion et de balayage uniforme provoque une contamination de la dose délivrée au patient. Une méthodologie de réduction de cet effet a été mise en place pour le système passif de délivrance du faisceau, ainsi qu’un modèle analytique décrivant la fonction de contamination, dont les paramètres ont été validés grâce à des simulations Monte Carlo sur la plateforme GATE. Il est aussi possible d’appliquer ces méthodes aux systèmes actifs. / This work was achieved in collaboration between the Institut Curie Protontherapy Center of Orsay (ICPO), the DOSIsoft company and the CREATIS laboratory, in order to develop a new dose calculation model for the new ICPO treatment room. A new accelerator and gantry room from the IBA company were installed during the up-grade project of the protontherapy center, with the intention of enlarging the cancer localizations treated at ICPO. Developing a package of methods and new dose calculation algorithms to adapt them to the new specific characteristics of the delivered beams by the IBA system is the first goal of this PhD work. They all aim to be implemented in the DOSIsoft treatment planning software, Isogray. First, the double scattering technique is treated in taking into account major differences between the IBA system and the ICPO fixed beam lines passive system. Secondly, a model is explored for the scanned beams modality. The second objective of this work is improving the Ray-Tracing and Pencil-Beam dose calculation models already in use. For the double scattering and uniform scanning techniques, the patient personalized collimator at the end of the beam line causes indeed a patient dose distribution contamination. A reduction method of that phenomenon was set up for the passive beam system. An analytical model was developed which describes the contamination function with parameters validated through Monte-Carlo simulations on the GATE platform. It allows us to apply those methods to active scanned beams.
5

Modélisation et analyse des étapes de simulation des émetteurs de positons générés lors des traitements en protonthérapie - du faisceau à la caméra TEP - pour le suivi des irradiations / Modeling and analysis of all the positron emitters simulation steps generated during the treatment phase in protontherapy - from the beam to the PET camera - for the follow-up of the irradiations

Van Ngoc Ty, Claire 19 December 2012 (has links)
La protonthérapie est une technique innovante de traitement des cancers dans les zones critiques, telles que les yeux ou la base du crâne. Même si le phénomène physique d’interactions des protons dans les tissus est bien connu et présente des avantages pour la protonthérapie, il existe des incertitudes sur le parcours des protons liées aux hétérogénéités des tissus traversés en situation clinique et liées au calcul des paramètres du faisceau dans le planning de traitement qui contrebalancent les avantages théoriques des protons pour la délivrance de la dose. Des méthodes de contrôle de qualité de l’irradiation ont donc été proposées. La plupart reposent sur l’exploitation de la cartographie des émetteurs de positons générés lors de l’irradiation. Ceux-ci peuvent être détectés et quantifiés à l’aide de la tomographie par émission de positons (TEP), une technique d’imagerie médicale utilisée principalement pour établir le bilan d’extension des cancers par imagerie. Des acquisitions TEP ont donc été proposées et validées sur des fantômes et chez des patients après protonthérapie pour le contrôle du parcours des protons. Le contrôle s’effectue en comparant la distribution radioactive mesurée en TEP et la distribution β+ simulée. La simulation de l’activité positronique générée par les protons dans le milieu traversé peut être décomposée en plusieurs étapes : une étape de simulation du faisceau de protons, une étape de modélisation des interactions des protons dans l’objet irradié et une étape d’acquisition TEP. Différentes modélisations de ces étapes sont possibles. Au cours de cette thèse, nous avons proposé plusieurs modélisations pour les 3 étapes et nous avons évalué l’apport pour la qualité du contrôle de l’irradiation. Nous avons restreint notre évaluation à la vérification du parcours des protons. Ce travail de thèse s’appuie sur des irradiations en milieu homogène et inhomogène (dans un modèle de tête) réalisé au centre de protonthérapie d’Orsay. Les objets irradiés ont été transportés dans le Service Hospitalier Frédéric Joliot pour l’acquisition TEP. Nous avons comparé l’incertitude sur le parcours des protons à partir des modélisations de la distribution β+ obtenues : 1) En modélisant l’irradiation par un faisceau de protons sous une forme simplifiée et par simulation Monte Carlo. En modélisant la production des émetteurs β+ dans les tissus par simulation Monte Carlo avec le logiciel GEANT4 en incluant les modèles de physiques des versions 9.2 et 9.4 et en utilisant des sections efficaces ; 2) En modélisant l’acquisition TEP avec une modélisation simplifiée et une modélisation Monte Carlo de l’acquisition par la caméra TEP ; 3) Les résultats montrent qu’une modélisation simplifiée du faisceau n’affecte pas l’estimation du parcours des protons. La modélisation Monte-Carlo de la caméra permet de mieux modéliser le bruit présent dans le signal TEP mesuré en milieu homogène. Des résultats préliminaires de la modélisation de la caméra TEP sont présentés dans un modèle de tête (inhomogène). En conclusion, une modélisation simplifiée de la caméra TEP permet d’évaluer le parcours des protons en milieu homogène à 1 mm près, qui est équivalent à la reproductibilité de la mesure TEP post-irradiation telle qu’elle est mesurée par Knopf et al. (2008). / The protontherapy is an innovative technique for cancer treatment in critical areas, such as the eye or the head. Even though the interaction of protons with human tissues is a well-known physical phenomenon which gives rise to the protontherapy, there are uncertainties on the proton trajectory due to heterogeneities in the irradiated tissue, the calculation of the beam parameters in the planning treatment affects the theoretical benefits of the protons and the chosen dose delivery process. Thus, methods for irradiation quality control have been suggested. Most of them rely on utilizing the mapping of the positron emitters generated during the irradiation. They are detectable and quantifiable thanks to the use of the PET (positron emitter tomography), a medical imaging technique mainly used for the cancer expansion assessment. PET acquisitions were proposed and then realized on phantoms and patients after protontherapy. The quality control relies on comparing the measured radioactive distribution to the simulated β+ distribution. The modeling of the positronic activity generated by protons in the irradiated area can be divided into three steps: the simulation of the proton beam, the modeling of the proton interactions in the irradiated object and the modeling of the PET acquisition. Different ways of simulating these steps are possible. This PhD work suggests different ways of modeling the three steps and evaluates theirs benefits for the irradiation quality control. We have restrained our evaluation to the verification of the proton range and to the uncertainties related to the proton range. This research work utilizes on irradiations in homogenous and inhomogeneous areas in a head model. We have compared the uncertainties on the proton range measured thanks to the following β+ distributions: 1) A β+ distribution obtained by modeling the irradiation with a proton beam simulated analytically and simulated using the complete Monte Carlo method; 2) A Monte Carlo modeling of the proton range using the GEANT4 software (versions 9.2 and 9.4) relying and using cross-sections; 3) A simulation of the PET acquisition using a simplified modeling and a Monte Carlo modeling. Our results show that a simplified modeling of the beam does not affect the estimation of the proton range. Besides, the Monte Carlo modeling of the PET camera enables modeling the noise present in the PET signal measured in a homogeneous area. Preliminary results of the PET camera modeling are presented in a head model (inhomogeneous). Finally, a simplified modeling of the PET camera enables evaluate the proton range in a homogeneous area with a 1mm-precision, which is equivalent to the reproducibility of the PET offline measure as described in (Knopf et al., 2008).
6

Monte Carlo simulation of active scanning proton therapy system with Gate/Geant4 : Towards a better patient dose quality assurance / Simulation Monte Carlo d’un système de protonthérapie à balayage actif avec Gate/Geant4 : Vers une meilleure assurance qualité de la dose délivrée au patient

Grevillot, Loïc 14 October 2011 (has links)
L’hadronthérapie est une technique avancée de traitement du cancer par radiothérapie. Elle offre une ballistique d’irradiation bien supérieure à la radiothérapie conventionnelle, mais nécessite également un contrôle qualité plus poussé. Dans ce travail, nous avons implémenté de nouveaux outils dans la plateforme Monte Carlo GATE, afin de pouvoir recalculer des plans de traitements issus d’un Système de Plannification de Traitement (TPS). Tout d’abord, nous avons défini un environnement de simulation permettant de réaliser des calculs précis et éfficaces. Les simulations ont été validées avec des mesures et d’autres codes Monte Carlo, pour des profils de dose en profondeur et transverses. Un bon accord a été obtenu pour les profils de dose en profondeur, mais des écarts plus marqués ont été observés pour les profils transverses. Ensuite, une méthode de modélisation pour des systèmes de traitement à balayage actif de faisceau étroit (PBS) a été proposée. Elle a été appliquée à un système de protonthérapie IBA et validée par comparaison à des mesures pour des champs complexes. Une interface permettant de faire le lien entre GATE et des fichiers DICOM RT ION PLAN et DICOM RT DOSE a également été réalisée. Enfin, nous avons comparé des distributions de dose TPS et Monte Carlo en milieux homogènes et hétérogènes. Les modèles de faisceau implémentés dans ces deux outils dosimétriques ont montré un accord satisfaisant en milieu homogène, mais les limites du TPS ont été mises en évidence dans des milieux hétérogènes. Un plan de prostate composé de deux champs latéraux opposés a été simulé et comparé avec le TPS, démontrant les nouvelles capacités de la plateforme. Dans cette thèse de doctorat, nous avons montré que la plateforme Monte Carlo GATE est un bon candidat pour la simulation de plans de traitements PBS et peut permettre l’évaluation des algorithmes de calcul de dose implémentés dans les TPSs. Cette plateforme supporte également des applications d’imagerie, telles que l’imagerie PET ou gamma-prompt et ouvre la porte à des recherches multidisciplinaires innovantes. / Hadron Therapy is an advanced radiotherapy technique for cancer treatment. It offers a better irradiation ballistic than conventional techniques and therefore requires appropriate quality assurance procedures. In this work, we upgraded the GEANT4-based GATE Monte Carlo platform in order to recalculate the TPS dose distributions in view of further benchmarking. In a first step, we selected an appropriate simulation environment (physics models and parameters) in order to produce accurate and efficient simulations. GATE simulations were validated using measurements and other Monte Carlo codes for depth-dose and transverse profiles. While a good agreement was found for depth-dose profiles, larger discrepancies were pointed out for transverse profiles. In a second step, we developed a modeling method to simulate active scanning beam delivery systems, which does not require to simulate the components of the treatment nozzle. The method has been successfully applied to an IBA proton therapy system and validated against measurements for complex treatment plans. Interfaces have also been developed in order to link DICOM RT ION PLAN and DICOM RT DOSE with GATE. Finally, we compared in a third step the TPS and Monte Carlo dose distributions in homogeneous and heterogeneous configurations. The beam models of both dose engines were in satisfactory agreement, allowing further evaluation of clinical treatment plans. A two-field prostate plan has been evaluated, showing a satisfactory agreement between the TPS and Monte Carlo, and demonstrating the novel capabilities of the platform for the evaluation of the TPS. To summarize, we selected an appropriate simulation environment for proton therapy, proposed a modeling method for active scanning systems and presented a method to compare the TPS and Monte Carlo dose distributions. All tools developed in GATE were or will be publicly released. A detailed validation stage of the system including absolute dosimetry is still necessary, in order to quantitatively evaluate its accuracy in various homogeneous and heterogeneous configurations. In this thesis, we have demonstrated that the GATE Monte Carlo platform is a good candidate for the simulation of active scanning delivery systems, allowing further TPS benchmarking. Moreover, the GATE platform also handles imaging applications, such as PET or prompt-gamma imaging towards online treatment monitoring and paves the way of interdisciplinary research advances.
7

Étude des performances d'un système d'imageur proton dans le cadre de l'approche faisceau à faisceau / Performance study of a spot beam approach to proton imaging

Karakaya, Yusuf 11 July 2018 (has links)
L'étalonnage de l’image tomodensitométrique X en pouvoirs d’arrêt relatif est source d'incertitudes pour la planification du traitement en protontherapie. L’imagerie proton permettrait d’obtenir directement les pouvoirs d’arrêt ou les épaisseurs équivalent-eau tout en maîtrisant les incertitudes sur la planification du traitement. Ce travail vise à caractériser et optimiser les performances du système de tomographie proton proposé dans le cadre d’une nouvelle approche faisceau à faisceau, composé d’un trajectographe et d’un range meter. La position et la largeur du faisceau obtenues avec le trajectographe ainsi que la modélisation matricielle de la réponse du range meter par simulation Monte Carlo combinée à la déconvolution de la courbe de Bragg résiduelle ont permis de reconstruire l’épaisseur équivalent-eau traversée pour chaque faisceau. L’évaluation de la qualité des images a permis de montrer que la méthode de déconvolution permettait d’obtenir des images dépourvues d’artefacts et d’estimer le parcours du proton avec une précision de l’ordre de 0,7%. Le travail présenté dans cette thèse démontre la faisabilité d’un tel système d’imagerie. / Calibration of computed tomography image in relative stopping power is a source of uncertainties for the proton therapy treatment planning. Proton imaging could directly obtain stopping powers or equivalent water thicknesses and control uncertainties in the treatment planning. In the context of a new pencil beam approach, this work aims to characterize and optimize the performances of a proton tomography system consisting of a tracker and a range meter. Beam position and width obtained with the tracker and the range meter response matrix modelling by Monte Carlo simulation combined with the unfolding method of the residual Bragg curve enable to reconstruct the water equivalent thickness for each beam. The evaluation of the reconstructed images quality shows that images are artefact free and the proton range is estimated with 0.7% of accurancy by using the unfolding method. This thesis demonstrates the feasibility of such an imaging system.
8

Design and implementation of a prompt-gamma camera for real-time monitoring of ion beam therapy / Conception et mise en oeuvre d'une caméra Prompt-Gamma pour la surveillance en temps réel de thérapie par faisceau d'ions

Roellinghoff, Frauke 19 March 2014 (has links)
La protonthérapie est une technique prometteuse pour le traitement du cancer, qui se répend de plus en plus. Le pic prononcé de son profil de dose ainsi que la longueur finie du parcours des particules rendent possible un traitement plus ciblé et permettent de mieux éviter d’endommager des tissus sains. Cependant, la précision de l’irradiation s’avère également être le risque principal lors de l’utilisation de cette technique. En effet, une erreur dans la profondeur de pénétration des particules pourrait engendrer des dégâts considérables. A l’heure actuelle, aucune méthode de contrôle n’est systématiquement utilisée pour s’assurer de la qualité du traitement. Dans ce manuscrit, une méthode indirecte de mesure de la distribution de dose, basé sur la détection de gammas prompts émis le long du parcours du faisceau, est étudiée. Deux concepts de caméra collimatée uni-dimensionnelle sont comparés à l’aune de leur utilisation potentielle : une caméra à fentes parallèles et une caméra “knife-edge”. Les deux systèmes sont optimisés par simulations de Monte Carlo et des mesures sont présentés pour valider ces simulations. La comparaison se base sur la précision avec laquelle un décalage dans la chute du profil prompt gamma peut être détecté, la résolution spatiale, le coût et la taille du système. Des recommandations sont émises pour le choix de la meilleure configuration, selon différentes exigeances. Des résultats similaires sont obtenus pour les deux concepts, atteignant une précision de environ 2 mm pour un seul point de “pencil beam” correspondant à 5e7 protons. L’étude se conclue par un tour d’horizon des pistes de recherche futures qui permettraient d’utiliser un système de détection de gammas prompts dans un contexte clinique futur. / Protontherapy is a promising technique for tumor treatment that is becoming more and more widespread. The sharply peaked profile of the dose and the finite particle range allow for very conformal treatment and better sparing of healthy tissue beyond the tumor, but he precise delivery also proves to be the biggest challenge of the technique. Errors in range are a considerable risk in proton therapy and no range monitoring method is currently systematically used for quality control. In this manuscript, an indirect method of measuring the dose distribution, via the detection of secondary prompt gamma radiation emitted along the beam path, is explored. Two different one-dimensional collimated camera concepts, a multi-parallel-slit camera and a knife-edge slit camera are compared with regards to their potential use. Both systems are optimized via Monte Carlo simulation and measurements are presented for validation. The comparison is made on the basis of the precision with which a shift in the prompt gamma profile falloff edge can be retrieved by comparison with a reference profile as well as the spatial resolution, the cost, weight and bulkiness of the system and guidelines are given for choosing the best configuration for different requirements. Similar values can be obtained for both concepts, reaching a precision for the retrieval of the falloff edge of around 2 mm for a single pencil beam spot of 5×107 protons. This study concludes with an outlook on future developments and areas of investigation with the goal of reaching clinical applicability of a prompt gamma detection system.
9

Dual-energy cone-beam CT for proton therapy / Tomodensitométrie conique bi-énergie pour la proton thérapie

Vilches Freixas, Gloria 27 October 2017 (has links)
La proton thérapie est une modalité de traitement du cancer qu’utilise des faisceaux de protons. Les systèmes de planification de traitement actuels se basent sur une image de l’anatomie du patient acquise par tomodensitométrie. Le pouvoir d’arrêt des protons relatif à l’eau (Stopping Power Ratio en Anglais, SPR) est déterminé à partir des unités Hounsfield (Hounsfield Units en Anglais, HU) pour calculer la dose absorbée au patient. Les protons sont plus vulnérables que les photons aux modifications du SPR du tissu dans la direction du faisceau dues au mouvement, désalignement ou changements anatomiques. De plus, les inexactitudes survenues de la CT de planification et intrinsèques à la conversion HU-SPR contribuent énormément à l’incertitude de la portée des protons. Dans la pratique clinique, au volume de traitement s’ajoutent des marges de sécurité pour tenir en compte ces incertitudes en détriment de perdre la capacité d’épargner les tissus autour de la tumeur. L’usage de l’imagerie bi-énergie en proton thérapie a été proposé pour la première fois en 2009 pour mieux estimer le SPR du patient par rapport à l’imagerie mono-énergie. Le but de cette thèse est d’étudier la potentielle amélioration de l’estimation du SPR des protons en utilisant l’imagerie bi-énergie, pour ainsi réduire l’incertitude dans la prédiction de la portée des protons dans le patient. Cette thèse est appliquée à un nouveau système d’imagerie, l’Imaging Ring (IR), un scanner de tomodensitométrie conique (Cone-Beam CT en Anglais, CBCT) développé pour la radiothérapie guidée par l’image. L’IR est équipé d’une source de rayons X avec un système d’alternance rapide du voltage, synchronisé avec une roue contenant des filtres de différents matériaux que permet des acquisitions CBCT multi-énergie. La première contribution est une méthode pour calibrer les modèles de source et la réponse du détecteur pour être utilisés en simulations d’imagerie X. Deuxièmement, les recherches ont évalué les facteurs que peuvent avoir un impact sur les résultats du procès de décomposition bi-énergie, dès paramètres d’acquisition au post-traitement. Les deux domaines, image et basée en la projection, ont été minutieusement étudiés, avec un spéciale accent aux approches basés en la projection. Deux nouvelles bases de décomposition ont été proposées pour estimer le SPR, sans avoir besoin d’une variable intermédiaire comme le nombre atomique effectif. La dernière partie propose une estimation du SPR des fantômes de caractérisation tissulaire et d’un fantôme anthropomorphique à partir d’acquisitions avec l’IR. Il a été implémentée une correction du diffusé, et il a été proposée une routine pour interpoler linéairement les sinogrammes de basse et haute énergie des acquisitions bi-énergie pour pouvoir réaliser des décompositions en matériaux avec données réelles. Les valeurs réconstruits du SPR ont été comparées aux valeurs du SPR expérimentales déterminés avec un faisceau d’ions de carbone. / Proton therapy is a promising radiation treatment modality that uses proton beams to treat cancer. Current treatment planning systems rely on an X-ray computed tomography (CT) image of the patient's anatomy to design the treatment plan. The proton stopping-power ratio relative to water (SPR) is derived from CT numbers (HU) to compute the absorbed dose in the patient. Protons are more vulnerable than photons to changes in tissue SPR in the beam direction caused by movement, misalignment or anatomical changes. In addition, inaccuracies arising from the planning CT and intrinsic to the HU-SPR conversion greatly contribute to the proton range uncertainty. In clinical practice, safety margins are added to the treatment volume to account for these uncertainties at the expense of losing organ-sparing capabilities. The use of dual-energy (DE) in proton therapy was first suggested in 2009 to better estimate the SPR with respect to single-energy X-ray imaging. The aim of this thesis work is to investigate the potential improvement in determining proton SPR using DE to reduce the uncertainty in predicting the proton range in the patient. This PhD work is applied to a new imaging device, the Imaging Ring (IR), which is a cone-beam CT (CBCT) scanner developed for image-guided radiotherapy (IGRT). The IR is equipped with a fast kV switching X-ray source, synchronized with a filter wheel, allowing for multi-energy CBCT imaging. The first contribution of this thesis is a method to calibrate a model for the X-ray source and the detector response to be used in X-ray image simulations. It has been validated experimentally on three CBCT scanners. Secondly, the investigations have evaluated the factors that have an impact on the outcome of the DE decomposition process, from the acquisition parameters to the post-processing. Both image- and projection-based decomposition domains have been thoroughly investigated, with special emphasis on projection-based approaches. Two novel DE decomposition bases have been proposed to estimate proton SPRs, without the need for an intermediate variable such as the effective atomic number. The last part of the thesis proposes an estimation of proton SPR maps of tissue characterization and anthropomorphic phantoms through DE-CBCT acquisitions with the IR. A correction for X-ray scattering has been implemented off-line, and a routine to linearly interpolate low-energy and high-energy sinograms from sequential and fast-switching DE acquisitions has been proposed to perform DE material decomposition in the projection domain with real data. DECT-derived SPR values have been compared with experimentally-determined SPR values in a carbon-ion beam.
10

Simulation et reconstruction 3D à partir de caméra Compton pour l’hadronthérapie : Influence des paramètres d’acquisition / Simulation and reconstruction from Compton caméra for hadrontherapy : Influence of the acquisition parameters

Hilaire, Estelle 18 November 2015 (has links)
L'hadronthérapie est une méthode de traitement du cancer qui emploie des ions (carbone ou proton) au lieu des rayons X. Les interactions entre le faisceau et le patient produisent des radiations secondaires. Il existe une corrélation entre la position d'émission de certaines de ces particules et la position du pic de Bragg. Parmi ces particules, des gamma-prompt sont produits par les fragments nucléaires excités et des travaux actuels ont pour but de concevoir des systèmes de tomographie par émission mono-photonique capable d'imager la position d'émission ces radiations en temps réel, avec une précision millimétrique, malgré le faible nombre de données acquises. Bien que ce ne soit pas actuellement possible, le but in fine est de surveiller le dépôt de dose. La caméra Compton est un des système TEMP qui a été proposé pour imager ce type de particules, car elle offre une meilleure résolution énergétique et la possibilité d'avoir une image 3D. Cependant, en pratique l'acquisition est affectée par le bruit provenant d'autres particules secondaires, et les algorithmes de reconstruction des images Compton sont plus compliqués et encore peu aboutis, mais sur une bonne voie de développement. Dans le cadre de cette thèse, nous avons développé une chaîne complète allant de la simulation de l'irradiation d'un fantôme par un faisceau de protons allant jusqu'à la reconstruction tomographique des images obtenues à partir de données acquises par la caméra Compton. Nous avons étudié différentes méthodes de reconstruction analytiques et itératives, et nous avons développé une méthode de reconstruction itérative capable de prendre en compte les incertitudes de mesure sur l'énergie. Enfin nous avons développé des méthodes pour la détection de la fin du parcours des distributions gamma-prompt reconstruites. / Hadrontherapy is a cancer treatment method which uses ions (proton or carbon) instead of X-rays. Interactions between the beam and the patient produce secondary radiation. It has been shown that there is a correlation between the emission position of some of these particles and the Bragg peak position. Among these particles, prompt-gamma are produced by excited nuclear fragments and current work aims to design SPECT systems able to image the emission position the radiation in real time, with a millimetric precision, despite the low data statistic. Although it is not currently possible, the goal is to monitor the deposited dose. The Compton camera is a SPECT system that proposed for imaging such particles, because it offers a good energy resolution and the possibility of a 3D imaging. However, in practice the acquisition is affected by noise from other secondary particles and the reconstruction algorithms are more complex and not totally completed, but the developments are well advanced. In this thesis, we developed a complete process from the simulation of irradiation of a phantom by a proton beam up to the tomographic reconstruction of images obtained from data acquired by the Compton camera. We studied different reconstruction methods (analytical and iterative), and we have developed an iterative method able to consider the measurement uncertainties on energy. Finally we developed methods to detect the end-of-range of the reconstructed prompt-gamma distributions.

Page generated in 0.0521 seconds