• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 8
  • 2
  • Tagged with
  • 17
  • 15
  • 11
  • 11
  • 11
  • 9
  • 8
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Methode zur Eigenschaftsdarstellung von Laserstrahlschweißnähten im Karosseriebau

Mickel, Paul-Michael 21 January 2013 (has links) (PDF)
Das Laserstrahlschweißen im Karosseriebau ist zu einem konventionellen Fügeverfahren geworden. Dies gilt unabhängig von der Art der Strahlquelle, der Strahlführung und für die gesamte Sicherheits-, Steuerungs-, Automatisierungs- und Vorrichtungstechnik. Mehr und mehr Baugruppen sind speziell für die Laserverfahren konstruiert, nutzen deren spezifischen Eigenschaften gezielt aus und können nicht mehr mit anderen Fügeverfahren hergestellt werden. Unterschiedliche Schweißnaht-Merkmale sind nicht durch die Lasertechnik verursacht, sondern zumeist in ungünstigen Spannbedingungen oder Bauteil-, Werkstoff- oder Beschichtungsabweichungen begründet. Trotz der hohen Präzision aller Fertigungskomponenten treten durch die Sensibilität des Fügeprozesses bedingte systematische und stochastische Nahtunregelmäßigkeiten auf. Systematisch erkennbare Ursachen sind die wenigen hundertstel bis zehntel Millimeter Bauteilgeometrie-, Positions- oder Beschichtungsabweichungen bzw. Toleranzen, deren umfassende Beherrschung noch aussteht. Unabhängig davon treten scheinbar zufällige Unregelmäßig-keiten trotz allseits optimaler Bedingungen auf. Im Ergebnis dieser Arbeit wurde eine Methode entwickelt, um aus Prozesssignalen mit einer erstaunlich einfachen Vorgehensweise entstandene Schweißnahtmerkmale zu prognostizieren. Die Merkmalseinteilung lehnt sich an der maßgeblichen Prüfvorschrift an und erreicht schon in dieser frühen Entwicklungsphase einen guten bis sehr guten Bewertungsgrad. Begründet und untermauert wird diese Methode mit der Erweiterung der bestehenden Modellvorstellung zur Laserstrahl-(Stahl)Werkstoff-Wechselwirkung vom Einschweißen zum Ver-schweißen der Nahtform I-Naht am 2-Blech Überlappstoß verzinkter Bleche. Die Vorgänge im Schweißprozess für jedes prognostizierbare Nahtmerkmal sind skizziert, begründet und mit den Prozessemissionen in Zusammenhang gebracht. / The laser welding in the car body shop has become a conventional joining process. This is independent from the type of the laser beam source, the course of the radiation and for the complete safety-, control-, automation- and equipment-technology. More and more modules are especially designed for the laser procedure, use their specific characteristics and cannot be produced by any other joining processes. Different characteristics of welds are not caused by the laser technique, but mostly due to unfavourable clamping conditions or because of tolerances of parts, material or coating. Despite the big precision of all production components, systematic and stochastic welding imperfections appear due to the sensibility of the joining process. Systematically identifiable causes are the deviations or tolerances of a few hundredths to tenths of a millimetre concerning the component’s geometry, positions and coatings, whose complete control is still due. Independent from that appear seemingly random irregularities, despite the well-optimal conditions. In result to this work, a method for pre-calculating welding characteristics through an amazingly simple approach was developed. The classification is based on the test specification and achieved even at this early stage of development a good or very good rating level. This method is justified and supported through the addition of the already existing image of the model to the laser/material interaction; from weld-in to the weld-together of square butt form- seams on 2 zinc coated sheets lap joint. The transactions within the welding process for each pre-calculated seam-characteristic are outlined, justified and related to the process emissions in context.
12

FC³ - 1st Fuel Cell Conference Chemnitz 2019 - Saubere Antriebe. Effizient Produziert.: Wissenschaftliche Beiträge und Präsentationen der ersten Brennstoffzellenkonferenz am 26. und 27. November 2019 in Chemnitz

von Unwerth, Thomas, Drossel, Welf-Guntram 25 November 2019 (has links)
Die erste Chemnitzer Brennstoffzellenkonferenz wurde vom Innovationscluster HZwo und dem Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU durchgeführt. Ausgewählte Fachbeiträge und Präsentationen werden in Form eines Tagungsbandes veröffentlicht. / The first fuel cell conference was initiated by the innovation cluster HZwo and the Fraunhofer Institute for Machine Tools and Forming Technology. Selected lectures and presentations are published in the conference proceedings.
13

Werkstoffeinflüsse auf den Spritzgussprozess von hochgefüllten Phenol-Formaldehydharz­-Formmassen

Scheffler, Thomas 11 January 2019 (has links)
Im Rahmen der vorliegenden Arbeit wurden verschiedene duroplastische Formmassen laboranalytisch hinsichtlich der rheologischen und thermischen Eigenschaften untersucht. Es wurde u.a. gezielt die absolute Materialfeuchte gesteigert, um den Einfluss dieser auf das Fließ­ Härtungsverhalten zu charakterisieren. Anschließend wurden die Materialien auf einer hochinstrumentierten Spritzgussmaschine mit einem Fließspiralenwerkzeug untersucht. Dabei konnte ein direkter Zusammenhang zwischen dem Rückfluss und dem Plastifizierdrehmoment in Abhängigkeit der Materialfeuchte und der Prozessparameter detektiert werden . Des Weiteren wurden über die Differenzdruckmessung im Fließspiralenwerkzeug die scheinbaren Viskositäten über den Fließweg ermittelt. Hierbei konnten unterschiedliche Aufschmelzeffekte über die Fließweglänge in Abhängigke it der duroplastischen Formmasse, der absoluten Materialfeuchte und der Prozessparameter detektiert werden . Durch Schererwärmung konnte die Formmassentemperatur teilweise die Werkzeugtemperatur übersteigen. Hinsichtlich der mechanischen Eigenschaften (Schlagzähigkeit, Biegefestigkeit) konnten keine signifikanten Einflussgrößen detektiert werden. Hinsichtlich des Tg konnten systematischen Unterschiede detektiert und begründet werden. Die beste Möglichkeit zur Ermittlung des Tg lieferte die TMA. Die thermischen Glasübergänge korrelieren mit den in der DSC ermittelten Aushärtegraden , wobei mit steigender Materialfeuchte ein geringer Aushärtegrad detektiert wird. / Within this paper, the rheologieal and thermie eharaeteristies of different thermosetting molding eompounds were investigated using lab analysis methods. Among others, the absolute moisture eontent was inereased purposefully to investigate its influenee on the flow-euring behavior. Subsequently, the materials were analyzed using a highly instrumented injeetion-molding maehine and a flow spiral tool. A direet link between the baekflow and the plastifieation torque dependent on the moisture eontent and proeess parameters was deteeted . Furthermore, a measurement of the differential pressure was eondueted within the flow spiral to deteet the apparent viseosity over the flow path. Within this proeess, different melting effeets over the flow eurve length depending on the molding eompound, the absolute moisture eontent and proeess parameters were deteeted. The shear heating lead to a material temperature inerease of the molding eompound, whieh was partly higher than the tool temperature . Coneerning the meehanieal eharaeteristies (impaet strength, flexural strength), no signifieant influeneing faetors eould be deteeted. In eontrast, systematie differenees of the glass transition temperature were deteeted and their eause eould be explained. The best way to determine the glass transition is the TMA. The glass transition temperatures eorrelate with the degree of eure determined with the DSC, whereas an inereasing moisture eontent is assoeiated with a lower degree of eure.
14

Methode zur Eigenschaftsdarstellung von Laserstrahlschweißnähten im Karosseriebau

Mickel, Paul-Michael 15 November 2012 (has links)
Das Laserstrahlschweißen im Karosseriebau ist zu einem konventionellen Fügeverfahren geworden. Dies gilt unabhängig von der Art der Strahlquelle, der Strahlführung und für die gesamte Sicherheits-, Steuerungs-, Automatisierungs- und Vorrichtungstechnik. Mehr und mehr Baugruppen sind speziell für die Laserverfahren konstruiert, nutzen deren spezifischen Eigenschaften gezielt aus und können nicht mehr mit anderen Fügeverfahren hergestellt werden. Unterschiedliche Schweißnaht-Merkmale sind nicht durch die Lasertechnik verursacht, sondern zumeist in ungünstigen Spannbedingungen oder Bauteil-, Werkstoff- oder Beschichtungsabweichungen begründet. Trotz der hohen Präzision aller Fertigungskomponenten treten durch die Sensibilität des Fügeprozesses bedingte systematische und stochastische Nahtunregelmäßigkeiten auf. Systematisch erkennbare Ursachen sind die wenigen hundertstel bis zehntel Millimeter Bauteilgeometrie-, Positions- oder Beschichtungsabweichungen bzw. Toleranzen, deren umfassende Beherrschung noch aussteht. Unabhängig davon treten scheinbar zufällige Unregelmäßig-keiten trotz allseits optimaler Bedingungen auf. Im Ergebnis dieser Arbeit wurde eine Methode entwickelt, um aus Prozesssignalen mit einer erstaunlich einfachen Vorgehensweise entstandene Schweißnahtmerkmale zu prognostizieren. Die Merkmalseinteilung lehnt sich an der maßgeblichen Prüfvorschrift an und erreicht schon in dieser frühen Entwicklungsphase einen guten bis sehr guten Bewertungsgrad. Begründet und untermauert wird diese Methode mit der Erweiterung der bestehenden Modellvorstellung zur Laserstrahl-(Stahl)Werkstoff-Wechselwirkung vom Einschweißen zum Ver-schweißen der Nahtform I-Naht am 2-Blech Überlappstoß verzinkter Bleche. Die Vorgänge im Schweißprozess für jedes prognostizierbare Nahtmerkmal sind skizziert, begründet und mit den Prozessemissionen in Zusammenhang gebracht.:1 Einleitung .............................................................................................................................. 1 2 Stand der Technik .................................................................................................................. 3 2.1 Laserstrahlen im Karosseriebau...........................................................................................3 2.1.1 Laseranwendungen im Karosseriebau bei Volkswagen ................................................... 5 2.1.2 Golf, Passat, Phaeton und Bentley Fertigung bei Volkswagen Sachsen ........................... 6 2.1.3 Prozessbesonderheiten beim Laserstrahlschweißen im Karosseriebau ........................... 9 2.1.4 Entwicklungstendenzen der Laseranwendung im Karosseriebau ................................... 11 2.2 Qualitätssicherungsmethoden für Laserfügeverbindungen im Karosseriebau ................. 14 2.2.1 Offline Prüfung .............................................................................................................. 14 2.2.2 Inline Prüfung................................................................................................................ 19 2.2.3 Prozessüberwachung beim Laserstrahlschweißen ....................................................... 23 3 Nahteigenschaften ............................................................................................................. 27 3.1 Übersicht der Nahtunregelmäßigkeiten ........................................................................... 27 3.2 Einflüsse auf Nahteigenschaften ......................................................................................27 3.3 Thermische Verformung, Schrumpfung, Eigenspannungen, Verzug ................................. 30 4 Problemstellung, Zielsetzung und Systematik zur Lösungsfindung .................................. 32 4.1 Problemstellung............................................................................................................... 32 4.2 Zielsetzung ..................................................................................................................... 33 4.3 Systematik zur Lösungsfindung ........................................................................................33 5 Durchgeführte Untersuchungen ......................................................................................... 34 5.1 Basistechnik .....................................................................................................................34 5.1.1 Laserstrahlquelle .......................................................................................................... 34 5.1.2 Bearbeitungswerkzeug und Sensoren ...........................................................................34 5.1.3 Kamera ...........................................................................................................................36 5.1.4 Spektrale Einordnung und Sichtbereiche der Sensoren ..................................................38 5.1.5 Laserzelle und Roboter.....................................................................................................40 5.2 Inprozess Untersuchungen – Schwerpunkt Photodetektoren ........................................... 40 5.2.1 Analyse Toleranzbandmethode ........................................................................................ 40 5.2.2 Statistische Analyse von Einflussgrößen............................................................................................. 43 5.2.3 Einzelanalyse der Einflussgröße Spalt ................................................................................................ 49 5.2.4 Spaltverträglichkeit dünner Strukturbleche ......................................................................................... 52 5.2.5 Einführung der MILLIMETERPEGEL ..................................................................................................... 54 5.3 Inprozess Untersuchungen – Schwerpunkt Prozessbildbewertung .................................... 58 5.3.1 Analyse LWM-C ................................................................................................................................. 58 5.3.2 Messung der Dampfkapillare und der Schmelzbadlänge ..................................................................... 70 5.3.3 Off-axis Prozessbeobachtung ............................................................................................................... 71 5.3.4 Charakterisierung der Durchschweißung ............................................................................................. 72 5.3.5 Auslegung geeigneter Schweißprozessbeleuchtung ............................................................................. 75 5.3.6 Koaxiale und off-axis Beobachtungen ................................................................................................. 79 6 Nahteigenschafts-Bewertungsmethode ............................................................................... 86 6.1 Vorgehensweise ........................................................................................................................86 6.2 Durchgangslöcher, Poren, Endkrater ....................................................................................95 6.3 Aussagesicherheit .....................................................................................................................95 7 Modellbildung ...................................................................................................................... 97 7.1 Anfang und Ende der Schweißnaht ........................................................................................98 7.2 Nahtmerkmal „Spritzer“ (0-Spaltschweißen) .......................................................................99 7.3 Nahtmerkmal „In Ordnung“ ................................................................................................102 7.4 Nahtmerkmal „Geringer Nahtein- bzw. Wurzelrückfall“ .................................................104 7.5 Nahtmerkmal „Starker Nahtein- bzw. Wurzelrückfall“ ....................................................106 7.6 Nahtmerkmal „Oben geschnitten“ .......................................................................................108 7.7 Nahtmerkmal „Falscher Freund“ (nicht verschweißt) .......................................................110 8 Zusammenfassung und Ausblick ...................................................................................... 112 9 Verzeichnisse ...................................................................................................................... 115 9.1 Literatur .................................................................................................................................115 9.2 Normen ...................................................................................................................................124 9.3 Abkürzungen ..........................................................................................................................125 9.4 Formelzeichen .........................................................................................................................127 9.5 Abbildungen ...........................................................................................................................127 10 Anlagen ............................................................................................................................... 132 10.1 Nahtunregelmäßigkeiten an Laserschweißnähten ..............................................................132 10.2 Sensor-Fehler-Übersicht ........................................................................................................137 10.3 Fehler-Ursachen-Parameter ..................................................................................................139 10.4 Arbeitsplan – Versuchsabfolge und Resultate .....................................................................141 / The laser welding in the car body shop has become a conventional joining process. This is independent from the type of the laser beam source, the course of the radiation and for the complete safety-, control-, automation- and equipment-technology. More and more modules are especially designed for the laser procedure, use their specific characteristics and cannot be produced by any other joining processes. Different characteristics of welds are not caused by the laser technique, but mostly due to unfavourable clamping conditions or because of tolerances of parts, material or coating. Despite the big precision of all production components, systematic and stochastic welding imperfections appear due to the sensibility of the joining process. Systematically identifiable causes are the deviations or tolerances of a few hundredths to tenths of a millimetre concerning the component’s geometry, positions and coatings, whose complete control is still due. Independent from that appear seemingly random irregularities, despite the well-optimal conditions. In result to this work, a method for pre-calculating welding characteristics through an amazingly simple approach was developed. The classification is based on the test specification and achieved even at this early stage of development a good or very good rating level. This method is justified and supported through the addition of the already existing image of the model to the laser/material interaction; from weld-in to the weld-together of square butt form- seams on 2 zinc coated sheets lap joint. The transactions within the welding process for each pre-calculated seam-characteristic are outlined, justified and related to the process emissions in context.:1 Einleitung .............................................................................................................................. 1 2 Stand der Technik .................................................................................................................. 3 2.1 Laserstrahlen im Karosseriebau...........................................................................................3 2.1.1 Laseranwendungen im Karosseriebau bei Volkswagen ................................................... 5 2.1.2 Golf, Passat, Phaeton und Bentley Fertigung bei Volkswagen Sachsen ........................... 6 2.1.3 Prozessbesonderheiten beim Laserstrahlschweißen im Karosseriebau ........................... 9 2.1.4 Entwicklungstendenzen der Laseranwendung im Karosseriebau ................................... 11 2.2 Qualitätssicherungsmethoden für Laserfügeverbindungen im Karosseriebau ................. 14 2.2.1 Offline Prüfung .............................................................................................................. 14 2.2.2 Inline Prüfung................................................................................................................ 19 2.2.3 Prozessüberwachung beim Laserstrahlschweißen ....................................................... 23 3 Nahteigenschaften ............................................................................................................. 27 3.1 Übersicht der Nahtunregelmäßigkeiten ........................................................................... 27 3.2 Einflüsse auf Nahteigenschaften ......................................................................................27 3.3 Thermische Verformung, Schrumpfung, Eigenspannungen, Verzug ................................. 30 4 Problemstellung, Zielsetzung und Systematik zur Lösungsfindung .................................. 32 4.1 Problemstellung............................................................................................................... 32 4.2 Zielsetzung ..................................................................................................................... 33 4.3 Systematik zur Lösungsfindung ........................................................................................33 5 Durchgeführte Untersuchungen ......................................................................................... 34 5.1 Basistechnik .....................................................................................................................34 5.1.1 Laserstrahlquelle .......................................................................................................... 34 5.1.2 Bearbeitungswerkzeug und Sensoren ...........................................................................34 5.1.3 Kamera ...........................................................................................................................36 5.1.4 Spektrale Einordnung und Sichtbereiche der Sensoren ..................................................38 5.1.5 Laserzelle und Roboter.....................................................................................................40 5.2 Inprozess Untersuchungen – Schwerpunkt Photodetektoren ........................................... 40 5.2.1 Analyse Toleranzbandmethode ........................................................................................ 40 5.2.2 Statistische Analyse von Einflussgrößen............................................................................................. 43 5.2.3 Einzelanalyse der Einflussgröße Spalt ................................................................................................ 49 5.2.4 Spaltverträglichkeit dünner Strukturbleche ......................................................................................... 52 5.2.5 Einführung der MILLIMETERPEGEL ..................................................................................................... 54 5.3 Inprozess Untersuchungen – Schwerpunkt Prozessbildbewertung .................................... 58 5.3.1 Analyse LWM-C ................................................................................................................................. 58 5.3.2 Messung der Dampfkapillare und der Schmelzbadlänge ..................................................................... 70 5.3.3 Off-axis Prozessbeobachtung ............................................................................................................... 71 5.3.4 Charakterisierung der Durchschweißung ............................................................................................. 72 5.3.5 Auslegung geeigneter Schweißprozessbeleuchtung ............................................................................. 75 5.3.6 Koaxiale und off-axis Beobachtungen ................................................................................................. 79 6 Nahteigenschafts-Bewertungsmethode ............................................................................... 86 6.1 Vorgehensweise ........................................................................................................................86 6.2 Durchgangslöcher, Poren, Endkrater ....................................................................................95 6.3 Aussagesicherheit .....................................................................................................................95 7 Modellbildung ...................................................................................................................... 97 7.1 Anfang und Ende der Schweißnaht ........................................................................................98 7.2 Nahtmerkmal „Spritzer“ (0-Spaltschweißen) .......................................................................99 7.3 Nahtmerkmal „In Ordnung“ ................................................................................................102 7.4 Nahtmerkmal „Geringer Nahtein- bzw. Wurzelrückfall“ .................................................104 7.5 Nahtmerkmal „Starker Nahtein- bzw. Wurzelrückfall“ ....................................................106 7.6 Nahtmerkmal „Oben geschnitten“ .......................................................................................108 7.7 Nahtmerkmal „Falscher Freund“ (nicht verschweißt) .......................................................110 8 Zusammenfassung und Ausblick ...................................................................................... 112 9 Verzeichnisse ...................................................................................................................... 115 9.1 Literatur .................................................................................................................................115 9.2 Normen ...................................................................................................................................124 9.3 Abkürzungen ..........................................................................................................................125 9.4 Formelzeichen .........................................................................................................................127 9.5 Abbildungen ...........................................................................................................................127 10 Anlagen ............................................................................................................................... 132 10.1 Nahtunregelmäßigkeiten an Laserschweißnähten ..............................................................132 10.2 Sensor-Fehler-Übersicht ........................................................................................................137 10.3 Fehler-Ursachen-Parameter ..................................................................................................139 10.4 Arbeitsplan – Versuchsabfolge und Resultate .....................................................................141
15

Influence of the Active Screen Plasma Power during Afterglow Nitrocarburizing on the Surface Modification of AISI 316L

Böcker, Jan, Puth, Alexander, Dalke, Anke, Röpcke, Jürgen, van Helden, Jean-Pierre, Biermann, Horst 16 April 2024 (has links)
Active screen plasma nitrocarburizing (ASPNC) increases the surface hardness and lifetime of austenitic stainless steel without deteriorating its corrosion resistance. Using an active screen made of carbon opens up new technological possibilities that have not been exploited to date. In this study, the effect of screen power variation without bias application on resulting concentrations of process gas species and surface modification of AISI 316L steel was studied. The concentrations of gas species (e.g., HCN, NH3, CH4, C2H2) were measured as functions of the active screen power and the feed gas composition at constant temperature using in situ infrared laser absorption spectroscopy. At constant precursor gas composition, the decrease in active screen power led to a decrease in both the concentrations of the detected molecules and the diffusion depths of nitrogen and carbon. Depending on the gas mixture, a threshold of the active screen power was found above which no changes in the expanded austenite layer thickness were measured. The use of a heating independent of the screen power offers an additional parameter for optimizing the ASPNC process in addition to changes in the feed gas composition and the bias power. In this way, an advanced process control can be established.
16

Dünne Siliziumschichten für photovoltaische Anwendungen hergestellt durch ein Ultraschall-Sprühverfahren

Seidel, Falko 26 January 2015 (has links) (PDF)
Der hauptsächliche Bestandteil dieser Arbeit ist die Entwicklung einer kostengünstigen Methode zur Produktion von auf Silizium basierenden Dünnschicht-Solarzellen durch Sprühbeschichtung. Hier wird untersucht inwiefern sich diese Methode für die Herstellung großflächiger photovoltaische Anlagen eignet. Als Grundsubstanz für entsprechende Lacke werden Mischungen aus Organosilizium und nanokristallines Silizium verwendet. Eine Idee ist das Verwenden von Silizium-Kohlenstoff-Verbindungen als Si-Precursor (Cyclo-, Poly-, Oligo- und Monosilane). In jedem Fall, Organosilizium und Silizium- Nanopartikel, ist eine Umwandlung durch äußere Energiezufuhr nötig, um die Precursor-Substanz in photovoltaisch nutzbares Silizium umzuwandeln. Die Versuchsreihen werden mithilfe photothermischer Umwandlung (FLA-„flash lamp annealing“, einige 1 J/cm² bei Pulslängen von einigen 100 μs) unter N2-Atmosphäre durchgeführt. Zur Bereitstellung eines auf Laborgröße skalierten Produktionsprozesses wurden ein Spraycoater, eine Heizplatte, ein Blitzlampensystem und ein In-Line Ellipsometer in einem Aufbau innerhalb einer Glovebox unter N2-Atmosphäre kombiniert. Die Gewinnung von Proben und deren Charakterisierung fand in enger Zusammenarbeit mit den beiden Arbeitsgruppen der anorganischen Chemie und der Koordinationschemie an der TU-Chemnitz statt. Die eingesetzten Charakterisierungsmethoden sind Raman-Spektroskopie, Infrarotspektroskopie, Rasterelektronenmikroskopie, Transmissionselektronenmikroskopie, Elektronenbeugung, Röntgenbeugung, energiedispersive Röntgenspektroskopie, Rasterkraftmikroskopie und elektrische Charakterisierung wie die Aufnahme von Strom- Spannungs-Kennlinien und Widerstandsmessung per Vierpunktkontaktierung.
17

Dünne Siliziumschichten für photovoltaische Anwendungen hergestellt durch ein Ultraschall-Sprühverfahren

Seidel, Falko 19 December 2014 (has links)
Der hauptsächliche Bestandteil dieser Arbeit ist die Entwicklung einer kostengünstigen Methode zur Produktion von auf Silizium basierenden Dünnschicht-Solarzellen durch Sprühbeschichtung. Hier wird untersucht inwiefern sich diese Methode für die Herstellung großflächiger photovoltaische Anlagen eignet. Als Grundsubstanz für entsprechende Lacke werden Mischungen aus Organosilizium und nanokristallines Silizium verwendet. Eine Idee ist das Verwenden von Silizium-Kohlenstoff-Verbindungen als Si-Precursor (Cyclo-, Poly-, Oligo- und Monosilane). In jedem Fall, Organosilizium und Silizium- Nanopartikel, ist eine Umwandlung durch äußere Energiezufuhr nötig, um die Precursor-Substanz in photovoltaisch nutzbares Silizium umzuwandeln. Die Versuchsreihen werden mithilfe photothermischer Umwandlung (FLA-„flash lamp annealing“, einige 1 J/cm² bei Pulslängen von einigen 100 μs) unter N2-Atmosphäre durchgeführt. Zur Bereitstellung eines auf Laborgröße skalierten Produktionsprozesses wurden ein Spraycoater, eine Heizplatte, ein Blitzlampensystem und ein In-Line Ellipsometer in einem Aufbau innerhalb einer Glovebox unter N2-Atmosphäre kombiniert. Die Gewinnung von Proben und deren Charakterisierung fand in enger Zusammenarbeit mit den beiden Arbeitsgruppen der anorganischen Chemie und der Koordinationschemie an der TU-Chemnitz statt. Die eingesetzten Charakterisierungsmethoden sind Raman-Spektroskopie, Infrarotspektroskopie, Rasterelektronenmikroskopie, Transmissionselektronenmikroskopie, Elektronenbeugung, Röntgenbeugung, energiedispersive Röntgenspektroskopie, Rasterkraftmikroskopie und elektrische Charakterisierung wie die Aufnahme von Strom- Spannungs-Kennlinien und Widerstandsmessung per Vierpunktkontaktierung.:I Bibliographische Beschreibung II Abkürzungsverzeichnis III Abbildungsverzeichnis IV Tabellenverzeichnis 1 Einleitung 1 2 Grundlagen 3 2.1 Dioden und Photodioden 3 2.1.1 Schottky-Dioden 3 2.1.1.1 Schottky-Kontakt oder Ohmscher Kontakt 3 2.1.1.2 Schottky-Barriere 3 2.1.1.3 Arbeitsweise der Schottky-Diode 5 2.1.1.4 Ladungstransport durch eine Schottky-Diode 6 2.1.2 Schottky-Photodioden 8 2.2 Solarzellen 9 2.2.1 Aufbau einer Solarzelle 10 2.2.2 Charakterisierung einer Solarzelle 10 2.3 Moderne Photovoltaik 12 2.4 Transparente leitfähige Oxide (TCO) 13 2.5 Ultraschalldüse und Sprühnebel 14 2.6 Blitzlampenbehandlung (FLA) 17 3 Methoden zur Charakterisierung 18 3.1 Fourier-Transformations-Infrarotspektroskopie (FTIRS) 18 3.2 Lichtstreuung an Materie 20 3.2.1 Raman-Spektroskopie 20 3.2.1.1 Klassische Deutung des Raman-Effektes 21 3.2.1.2 Quantenmechanische Deutung des Raman-Effektes 22 3.2.1.3 Räumlich eingeschränkte Phononen 23 3.3 Änderung der Lichtpolarisation an Materie 26 3.3.1 Fresnel-Formeln 26 3.3.2 Jones-Formalismus 27 3.3.3 Spektroskopische Ellipsometrie (SE) 27 3.4 Röntgenbeugung (XRD) 29 3.4.1 Kalibrierung des Einfallswinkels 31 3.4.2 Kristallitgröße 31 3.5 Elektronenmikroskopie (EM) 31 3.5.1 Transmissionselektronmikroskopie (TEM) 32 3.5.2 Rasterelektronenmikroskopie (SEM und EDX) 33 3.6 Rasterkraftmikroskopie (AFM) 34 4 Experimentelles 37 4.1 Prozessaufbauten 37 4.2 Messgeräte 39 4.3 Probenherstellung 40 4.3.1 Lösungen und Dispersionen 41 4.3.2 Sprühlack 41 4.3.3 Substratreinigung 42 4.3.4 Drop- und Spraycoating 42 4.3.4.1 Dropcoating und Rohrofenprozess 43 4.3.4.2 Sprühen und Blitzlampenbehandlung 43 4.4 Infrarotspektroskopie 46 4.4.1 DRIFT-Spektroskopie an Silizium-Nanopartikeln im MIR 47 4.4.2 DRIFT-Spektroskopie an Silizium-Precursoren im MIR 48 4.4.3 Transmissions- und Reflexionsspektroskopie an Si-Schichten im FIR 49 4.5 Lichtstreuung 49 4.5.1 Mie-Streuung an Silizium-Nanopartikeln 49 4.5.2 Raman-Streuung an Silizium-Precursoren und –Schichten 50 4.6 AFM an Silizium-Schichten 51 4.7 Elektronenmikroskopie 51 4.7.1 SEM und EDX an Silizium-Schichten und –Folien 52 4.7.2 TEM an Silizium-Nanopartikeln und –Folien 53 4.8 XRD an Silizium-Folien 54 4.9 Elektrische Messungen an Silizium-Schichten und –Folien 55 5 Ergebnisse und Diskussion 56 5.1 Silizium-Nanopartikel als Pulver 56 5.1.1 Dispersionen von Silizium-Nanopartikeln 56 5.1.2 Oxidationsgrad von Silizium-Nanopartikeln 58 5.1.3 Verteilung von Silizium-Nanopartikeln in getrocknetem Ethanol 61 5.2 Gesprühte Silizium-Nanopartikel 64 5.2.1 Ellipsmetrie als In-Line Prozessmethode im Spraycoating 64 5.2.2 Oberflächenrauheit von Schichten von Silizium-Nanopartikeln 66 5.2.3 Effekt des FLA auf Schichten von Silizium-Nanopartikeln 69 5.2.4 Simulationen zum Phonon-Confinement 74 5.3 Organosilizium als Silizium-Precursoren 80 5.3.1 Vorversuche: Zersetzung von Phenylsilanen im Rohrofen 80 5.3.2 Photothermische Zersetzung von Monosilanen durch FLA 82 5.4 Monosilane als Haftmittel zwischen Silizium-Nanopartikeln 89 5.4.1 Bestandteile des verwendeten Lacks 90 5.4.2 Filme hergestellt von Si-Nanopartikeln gemischt mit Si-Precursor 92 5.4.3 Folien hergestellt von Si-Nanopartikeln gemischt mit Si-Precursor 106 5.5 Realisierung von Diodenstrukturen 120 6 Zusammenfassung 124 Literaturverzeichnis Anhang

Page generated in 0.1251 seconds