Spelling suggestions: "subject:"réduction tridimensionnelle"" "subject:"réduction multidimensionnelle""
1 |
Modélisation de la microstructuration dans les polymères chargés. Application à la mise en forme.Pruliere, Etienne 14 November 2007 (has links) (PDF)
Cette thèse étudie la possibilité de simuler des écoulements complexes (polymères chargés, suspensions de fibres courtes, polymères) en prenant en compte la structure à l'échelle microscopique dans le cadre de la théorie cinétique. Il y a un couplage fort entre la structure microscopique et la cinématique à l'échelle macroscopique. Le caractère multidimensionnel de l'équation de Fokker-Planck décrivant la microstructure du fluide rend la simulation difficile avec des approches déterministes classiques. Pour palier ce problème, plusieurs méthodes visant à réduire les dimensions sont développées et testées. <br /><br />Ces méthodes sont appliquées en particulier dans le cas des écoulements recirculants. Le cas d'une recirculation ajoute une difficulté supplémentaire car nous ne connaissons ni les conditions initiales, ni les conditions aux limites. Or les recirculations se trouvent dans beaucoup d'écoulements industriels, lors de la mise en forme des matériaux. Pour cette raison nous avons développé des méthodes numériques spécifiques à ce type d'écoulement.<br /><br />Finalement, une partie de la thèse est dédiée à une étude expérimentale permettant de valider les résultats numériques obtenus et d'étudier les phénomènes physiques entrant en jeu dans la mise en forme des polymères chargés.
|
2 |
Contributions à la modélisation numérique de la théorie cinétique des suspensionsMaitrejean, Guillaume 30 November 2011 (has links) (PDF)
Ce travail présente une contribution à la modélisation numérique des systèmes de suspensions dans le cadre de la théorie cinétique. Cette description continue des systèmes de suspensions permet de prendre en compte l'influence de la structure à l'échelle microscopique sur la cinétique de l'écoulement macroscopique. Cependant elle présente l'inconvénient majeur d'être définie sur un espace à haute dimension et rend alors difficile la résolution de ces modèles avec des approches déterministes classiques. Afin de s'affranchir, ou du moins d'alléger, le poids du caractère micro-macro des approches en théorie cinétique, plusieurs techniques de réduction dimensionnelle s'appuyant sur l'utilisation de la Décomposition Généralisée en modes Propres (PGD) sont présentées. Une étude de différents algorithmes PGD est conduite, et dont l'efficacité en termes de vitesse de convergence et d'optimalité de la solution est illustrée. La simulation de mélanges de fluides immiscibles est conduite à l'aide du Tenseur d'aire qui est un puissant outil de caractérisation du mélange. Cependant celui-ci nécessite l'introduction d'une relation de fermeture dont l'impact est évalué avec le modèle de théorie cinétique équivalent et exact. Finalement, la simulation de systèmes de suspensions colloïdales décrits par l'équation de Smoluchowski présente une approche originale de la modélisation des suspensions solides. Cette approche permet de s'affranchir avantageusement du bruit statistique inhérent aux simulations stochastiques traditionnellement mises en œuvre.
|
3 |
Symétries nonrelativistes et gravitation de Newton-Cartan / Nonrelativistic symetries and Newton-Cartan gravityMorand, Kevin 02 October 2014 (has links)
Bien qu’ayant vu le jour dans un cadre dit relativiste avec l’avènement de la théorie de la relativité générale, le lien intime existant entre géométrie de l’espace-temps d’une part, et gravitation d’autre part, peut se voir étendu aux théories dites nonrelativistes, l’exemple paradigmatique en étant la reformulation géométrique de la gravitation Newtonienne initiée par E. Cartan. De tels espace-temps nonrelativistes diffèrent structurellement de leurs homologues relativistes, ces disparités étant le plus naturellement expliquées en réinterprétant ces premiers comme réduction dimensionnelle d’espace-temps relativistes privilégiés. L’ambition de cette thèse est double : Dans une première partie, nous nous intéressons à une généralisation de la classe d’espace-temps relativistes permettant le formalisme ambiant, étudions leur interprétation géométrique ainsi que la classe élargie de structures nonrelativistes pouvant y être plongées. La seconde partie de ce manuscrit concerne le point de vue, informé par la théorie des groupes, que porte E. Cartan sur la géométrie différentielle et plus précisément l’éclairage que projettent les géométries de Cartan sur les structures nonrelativistes, à la fois dans leur définition intrinsèque et dans leur relation avec des structures relativistes au travers du formalisme ambiant. / With the advent of general relativity, the profound interaction between the geometry of spacetime and gravitational phenomena became a truism of modern physics. However, the intimate relationship between spacetime geometry and gravitation is by no means restricted to relativistic physics but can in fact be successfully applied to nonrelativistic physics, the paradigmatic example being E. Cartan geometrisation of Newtonian gravity. This geometrisation of nonrelativistic gravitation involves some nonrelativistic structures whose discrepancies in comparison with their relativistic peers are better understood when embedded inside specific classes of relativistic gravitational waves. The ambition of this Doctoral Thesis is twofold: In a first part, we discuss a generalisation of the class of gravitational waves allowing the embedding of nonrelativistic features, explore their geometric properties and the new nonrelativistic structures emerging from this study. In a second part, we advocate how the group-theoretically oriented approach of Cartan to differential geometry can shed new light on nonrelativistic structures, both in an intrinsic and ambient fashion.
|
4 |
Couplages moléculaire- théorie cinétique pour la simulation du comportement des matériaux complexes / Contributions to numerical modeling of the kinetic theory of suspensions.Maitrejean, Guillaume 30 November 2011 (has links)
Ce travail présente une contribution à la modélisation numérique des systèmes de suspensions dans le cadre de la théorie cinétique. Cette description continue des systèmes de suspensions permet de prendre en compte l'influence de la structure à l'échelle microscopique sur la cinétique de l'écoulement macroscopique. Cependant elle présente l'inconvénient majeur d'être définie sur un espace à haute dimension et rend alors difficile la résolution de ces modèles avec des approches déterministes classiques. Afin de s'affranchir, ou du moins d'alléger, le poids du caractère micro-macro des approches en théorie cinétique, plusieurs techniques de réduction dimensionnelle s'appuyant sur l'utilisation de la Décomposition Généralisée en modes Propres (PGD) sont présentées. Une étude de différents algorithmes PGD est conduite, et dont l'efficacité en termes de vitesse de convergence et d'optimalité de la solution est illustrée. La simulation de mélanges de fluides immiscibles est conduite à l'aide du Tenseur d'aire qui est un puissant outil de caractérisation du mélange. Cependant celui-ci nécessite l'introduction d'une relation de fermeture dont l'impact est évalué avec le modèle de théorie cinétique équivalent et exact. Finalement, la simulation de systèmes de suspensions colloïdales décrits par l'équation de Smoluchowski présente une approche originale de la modélisation des suspensions solides. Cette approche permet de s'affranchir avantageusement du bruit statistique inhérent aux simulations stochastiques traditionnellement mises en œuvre. / This work is a contribution to the numerical modeling of suspension system in the kinetic theory framework. This continuum description of suspension system allows to account for the microstructure impact on the kinetic of the macroscopic flow. However, its main drawback is related to the high dimensional spaces in which kinetic theory models are defined and makes difficult for classical deterministic approaches to solve such systems. One possibility for circumventing, or at least alleviate, the weight of the micro-macro kinetic theory approaches lies in the use of separated representations strategies based on the Proper Generalized Decomposition (PGD). A study of different PGD algorithms is driven, illustrating the efficiency of these algorithms in terms of convergence speed and optimality of the solution obtained. The immiscible fluids blends modeling is driven using the area tensor which is a powerful numerical tool for characterizing blends. However it needs the introduction of closure relation of which impact is measured using equivalent and exact kinetic theory model. Finally, the numerical modeling of colloidal suspension system described by the Smoluchowski equation presents an original approach of the modeling of solid suspension system. This description allows to circumvent the statistical noise inherent to the stochastic approaches commonly used.
|
5 |
Espaces dynamiques réduits en physique de la matière condensée :<br />Systèmes à effet Hall bicouches, réduction dimensionnelle et systèmes de spins magnétiquesMöller, Gunnar 21 September 2006 (has links) (PDF)
Pour la description des propriétés de basse température des systèmes en physique de la matière condensée, il est souvent utile de travailler avec un espace dynamique réduit. Cette philosophie s'applique aux systèmes bicouches à effet Hall quantique comme aux systèmes d'anyons et aux systèmes magnétiques frustrés qui représentent les exemples discutés dans cette thèse. <br /><br />On introduit une classe générale d'états appariés de fermions composites. Ces fonctions d'onde sont exploitées pour analyser l'état fondamental des systèmes bicouches à effet Hall au facteur de remplissage total un. A partir d'une étude de Monte Carlo variationnel nous concluons que la transition de phase compressible à incompressible observée dans ce système est du deuxième ordre. Nous étudions également la question de l'existence d'un état apparié à demi-remplissage dans les simples couches. Ensuite nous considérons des schémas de réduction dimensionnelle de systèmes bidimensionnels sur la sphère vers des systèmes unidimensionnels sur le cercle. Un tel mapping est établi pour des systèmes libres et un candidat pour un système d'anyons généralisé est proposé. Finalement, nous analysons les systèmes de spins magnétiques sur réseaux bidimensionnels et discutons si un état de glace de spins peut exister en présence d'interactions dipolaires à longue portée.
|
6 |
Modèles cinétiques, de Kuramoto à Vlasov : bifurcations et analyse expérimentale d'un piège magnéto-optique / Kinetic models, from Kuramoto to Vlasov : bifurcations and experimental analysis of a magneto-optical trapMétivier, David 22 September 2017 (has links)
Les systèmes en interaction à longue portée sont connus pour avoir des propriétés statistiques et dynamiques particulières. Pour décrire leur évolution dynamique, on utilise des équations cinétiques décrivant leur densité dans l'espace des phases. Ce manuscrit est divisé en deux parties indépendantes. La première traite de notre collaboration avec une équipe expérimentale sur un Piège Magnéto-Optique. Ce dispositif à grand nombre d'atomes présente des interactions coulombiennes effectives provenant de la rediffusion des photons. Nous avons proposé des tests expérimentaux pour mettre en évidence l'analogue d'une longueur de Debye, et son influence sur la réponse du système. Les expériences réalisées ne permettent pour l'instant pas de conclure de façon définitive. Dans la deuxième partie, nous avons analysé les modèles cinétiques de Vlasov et de Kuramoto. Pour étudier leur dynamique de dimension infinie, nous avons examiné les bifurcations autour des états stationnaires instables, l'objectif étant d'obtenir des équations réduites décrivant la dynamique de ces états. Nous avons réalisé des développements en variété instable sur cinq systèmes différents. Ces réductions sont parsemées de singularités, mais prédisent correctement la nature de la bifurcation, que nous avons testée numériquement. Nous avons conjecturé une réduction exacte (obtenue via la forme normale Triple Zero) autour des états inhomogènes de l'équation de Vlasov. Ces résultats génériques pourraient être pertinents dans un contexte astrophysique. Les autres résultats s'appliquent aux phénomènes de synchronisation du modèle de Kuramoto pour les oscillateurs avec inertie et/ou interactions retardées. / Long-range interacting systems are known to display particular statistical and dynamical properties.To describe their dynamical evolution, we can use kinetic equations describing their density in the phase space. This PhD thesis is divided into two distinct parts. The first part concerns our collaboration with an experimental team on a Magneto-Optical Trap. The physics of this widely-used device, operating with a large number of atoms, is supposed to display effective Coulomb interactions coming from photon rescattering. We have proposed experimental tests to highlight the analog of a Debye length, and its influence on the system response. The experimental realizations do not allow yet a definitive conclusion. In the second part, we analyzed the Vlasov and Kuramoto kinetic models. To study their infinite dimensional dynamics, we looked at bifurcations around unstable steady states. The goal was to obtain reduced equations describing the dynamical evolution. We performed unstable manifold expansions on five different kinetic systems. These reductions are in general not exact and plagued by singularities, yet they predict correctly the nature and scaling of the bifurcation, which we tested numerically. We conjectured an exact dimensional reduction (obtained using the Triple Zero normal form) around the inhomogeneous states of the Vlasov equation. These results are expected to be very generic and could be relevant in an astrophysical context. Other results apply to synchronization phenomena through the Kuramoto model for oscillators with inertia and/or delayed interactions.
|
7 |
Nouvelles perspectives sur les algèbres de type Askey–WilsonGaboriaud, Julien 08 1900 (has links)
Cette thèse se divise en trois parties qui peuvent être toutes regroupées autour d'une même bannière : l'étude de structures algébriques reliées aux algèbres de type Askey–Wilson. Alors que dans la première partie on s'efforce d'obtenir des interprétations duales (au sens de Howe) de ces algèbres, dans les autres parties on étudie des généralisations de ces algèbres. Des dégénérations de l'algèbre de Sklyanin, générées par des blocs plus fondamentaux que ceux générant les algèbres de type Askey–Wilson, sont étudiées dans la deuxième partie et des généralisations de plus haut rang des algèbres de type Askey–Wilson sont étudiées dans la troisième partie. Dans la première partie, en invoquant la dualité de Howe, deux interprétations duales sont obtenues pour les algèbres de Racah, Bannai–Ito, Askey–Wilson, Higgs, Hahn, \(q\)-Hahn et dual \(-1\) Hahn. La façon dont la dualité de Howe opère est rendue explicite par l'examen de processus de réduction dimensionnelle. Un modèle superintégrable 2D de mécanique quantique superconforme dont l'algèbre de symétrie est celle de type dual \(-1\) Hahn est également introduit et solutionné. Dans la deuxième partie, des algèbres générées par des opérateurs de contiguïté et d'échelle encodant des propriétés de familles de polynômes sont étudiées. Ces opérateurs appartiennent à la classe des opérateurs de Sklyanin–Heun, qui peuvent être définis sur plusieurs grilles diverses. On découvre qu'ils génèrent des dégénérations de l'algèbre de Sklyanin. On démontre que les représentations irréductibles de dimension finie de ces algèbres ont pour base des familles de para-polynômes. Les grilles linéaires, quadratiques, exponentielles et d'Askey–Wilson sont étudiées et mènent respectivement aux polynômes orthogonaux des familles de para-Krawtchouk, para-Racah, \(q\)-para-Krawtchouk et \(q\)-para-Racah. Enfin, la façon dont les polynômes de para-Krawtchouk et d'autres familles de polynômes orthogonaux sont reliées aux représentations tridiagonales du plan de Jordan déformé est présentée. Dans la dernière partie, on explore des généralisations à plus haut rang pour les algèbres de Racah et Askey–Wilson. Pour ce faire, on étudie les réalisations de ces algèbres en termes de Casimirs intermédiaires. Le rôle de la matrice \(R\) tressée est élucidé : celle-ci permet de relier divers Casimirs intermédiaires entre eux par conjugaison. Un isomorphisme entre l'algèbre de skein du crochet de Kauffman de la sphère à 4 trous et l'algèbre engendrée par les Casimir intermédiaires dans \(U_q(\mathfrak{sl}_2)^{\otimes 3}\) est présenté et permet d'interpréter de façon diagrammatique la conjugaison par la matrice \(R\) tressée mentionnée ci-haut. Finalement, une présentation du centralisateur \(Z_n(\mathfrak{sl}_2)\) de \(U(\mathfrak{sl}_2)\) dans \(U(\mathfrak{sl}_2)^{\otimes n}\) par générateurs et relations est obtenue et on montre que ce centralisateur est isomorphe à un quotient (obtenu explicitement) de l'algèbre de Racah de plus haut rang \(R(n)\). / This thesis is divided in three parts which all orbit around the same theme: the study of algebraic structures related to the algebras of Askey–Wilson type. In the first part we obtain two interpretations that are dual in the sense of Howe for the algebras of Askey–Wilson type. Meanwhile, the other two parts are concerned with generalizations of these algebras. In the second part, we study degenerations of the Sklyanin algebra, which are built out of generators that are more fundamental than those of the Askey–Wilson algebra. In the last part, generalizations of the Askey–Wilson type algebras to higher rank are studied. In the first part, dual interpretations are obtained for the Racah, Bannai–Ito, Askey–Wilson, Higgs, Hahn, \(q\)-Higgs and dual \(-1\) Hahn algebras by invoking Howe duality. The way that this Howe duality operates is made explicit through the examination of a dimensional reduction procedure. A 2D superintegrable superconformal quantum mechanics model, whose symmetry algebra is the one of dual \(-1\) Hahn type, is also introduced and solved. In the second part, we study algebras that are generated by contiguity and ladder operators that encode properties of families of orthogonal polynomials. We show that these operators belong to the Sklyanin–Heun class of operators, which can be defined for various grids. We also show how their algebraic relations correspond to those of degenerations of the Sklyanin algebra. Then, we show how various families of para-polynomials support finite-dimensional irreducible representations of these degenerate algebras. From the linear, quadratic, exponential and Askey–Wilson grids, we are respectively led to the para-Krawtchouk, para-Racah, \(q\)-para-Krawtchouk and \(q\)-para-Racah polynomials. Later, we connect the para-Krawtchouk polynomials (and other families of orthogonal polynomials) to tridiagonal representations of the deformed Jordan plane. In the final part, we explore higher rank generalizations of the Racah and Askey–Wilson algebras. To that end, their realizations in terms of intermediate Casimir elements are studied. The role of the braided \(R\)-matrix is understood as follows: it connects various intermediate Casimir elements through conjugation. We obtain an isomorphism between the Kauffman bracket skein algebra of the four-punctured sphere and the algebra generated by the intermediate Casimir elements in \(U_q(\mathfrak{sl}_2)^{\otimes3}\). This leads to a diagrammatic interpretation of the conjugation by the braided \(R\)-matrix mentioned in the above. Lastly, a presentation of the centralizer \(Z_n(\mathfrak{sl}_2)\) of \(U(\mathfrak{sl}_2)\) in \(U(\mathfrak{sl}_2)^{\otimes n}\) by generators and relations is obtained and we show that this centralizer is isomorphic to a quotient (which we provide explicitly) of the higher rank Racah algebra \(R(n)\).
|
Page generated in 0.1349 seconds