• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 7
  • 1
  • Tagged with
  • 30
  • 30
  • 30
  • 15
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Étude transcriptionnelle d'une souche pathogène aviaire de Escherichia coli (APEC) et son mutant Pst (phosphate specific transport)

Crépin, Sébastien January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.
22

TDP-43 régule la dynamique et la fonction des Granules de Stress via G3BP1

Aulas, Anaïs 12 1900 (has links)
Les Granule de Stress (GS) sont des inclusions cytoplasmiques contenant des protéines et des ARNm qui s’assemblent en réponse à l’exposition à un stress. Leur formation fait partie intégrante de la réponse cellulaire au stress et est considérée comme une étape déterminante pour la résistance au stress et la survie cellulaire. Actuellement, les GS sont reliés à divers pathologies allant des infections virales aux maladies neurovégétatives. L’une d’entre elle, la Sclérose Latérale Amyotrophique (SLA) est particulièrement agressive, caractérisée par une perte des neurones moteurs aboutissant à la paralysie et à la mort du patient en cinq ans en moyenne. Les mécanismes de déclenchement de la pathologie restent encore à déterminer. TDP-43 (TAR DNA binding protein 43) et FUS (Fused in liposarcoma) sont deux protéines reliées à la pathologie qui présentent des similarités de structure et de fonction, suggérant un mécanisme commun de toxicité. TDP-43 et FUS sont toutes les deux recrutées au niveau des GS en condition de stress. Nous avons démontré pour la première fois que la fonction des GS est de protéger les ARNm de la dégradation induite par l’exposition au stress. Cette fonction n’était que suspectée jusqu’alors. De plus nous avons mis en évidence que G3BP1 (Ras GTPase-activating protein-binding protein 1) est l’effectrice de cette fonction via son implication dans la dynamique de formation des GS. TDP-43 étant un régulateur de G3BP1, nous prouvons ainsi que la perte de fonction de TDP-43/G3BP1 aboutit à un défaut de réponse au stress aboutissant à une vulnérabilisation cellulaire. Le mécanisme de toxicité emprunter par FUS diffère de celui de TDP-43 et ne semble pas passer par une perte de fonction dans le cadre de la réponse au stress. / Stress Granule (SGs) are cytoplasmic inclusions sequestering proteins and mRNAs following a stress exposure. Their assembly is part of the cell stress response and is considered an important step for stress resistance and cell survival. SG are currently linked to different pathogenesis from viral infection to neurodegenerative diseases such as amyotrophic lateral sclerosis (ALS).ALS is an aggressive disease, characterized by neuronal death leading to paralysis and death within five years. Pathogenesis mechanisms are still not fully understood. TDP-43 (TAR DNA binding protein 43) and FUS (Fused in liposarcoma) are two proteins linked to the disease that share many structural features and functions suggesting a common toxicity mechanism. TDP-43 and FUS are both recruited to SGs in stress conditions. We demonstrate for the first time that SGs function to protect mRNA from degradation induced after stress exposure, a function that was only suspected until now. We also prove that G3BP1 (Ras GTPase-activating protein-binding protein 1) is the effector of this function via it’s implication in the dynamics of SG formation. As TDP-43 is a regulator of G3BP1, we prove that loss of TDP-43/G3BP1 function leads to a stress response defect yielding increased cellular vulnerability. Furthermore, we have discovered that the mechanism of toxicity for FUS is different from TDP-43, and does not implicate a loss of function mechanism during the cell stress response.
23

Étude transcriptionnelle d'une souche pathogène aviaire de Escherichia coli (APEC) et son mutant Pst (phosphate specific transport)

Crépin, Sébastien January 2008 (has links)
Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal
24

Stochasticité dans la réponse d'individus bactériens à une perturbation : étude dynamique

Grac, Edith 16 February 2012 (has links) (PDF)
Nous nous proposons d'étudier la gestion du bruit stochastique d'expression génique. On s'intéresse plus particulièrement à la dynamique du bruit lors de la réponse cellulaire. Comment évolue le bruit? Quels sont les mécanismes en jeux? Quelle est l'importance du bruit dans le fonctionnement cellulaire? Pour répondre à ces questions, nous nous appuyons sur le réseau de régulation génétique qui gère la réponse au stress nutritionnel chez E. Coli. L'étude du comportement dynamique de ce réseau, au niveau d'une population de bactéries, a été initiée et est portée par la forte collaboration de deux équipes de la région : une de bio-informaticiens (l'équipe de Hidde de Jong de l'INRIA Rhône-Alpes) et la deuxième de biologistes (l'équipe de Hans Geiselmann, Laboratoire d'Adaptation et Pathogénie des Micro-organismes). En profitant donc de l'expérience et de la compréhension acquise par ces équipes, nous étudions les réponses individuelles de chaque bactérie lors de la transition entre état de stress nutritionnel, et état de croissance exponentielle. Le bruit d'expression génique est quantifié dans des nœuds clés du réseau de régulation. Pour ce faire, les bactéries sont suivies individuellement par microscopie de fluorescence sur plusieurs générations. Les données de fluorescence collectées sur cellules uniques permettent d'étudier la variabilité inter-cellulaire. Cette variabilité est quantifiée tout le long de la réponse: à chaque instant, on connaît la distribution des densités de fluorescence cellulaire dans la population de cellules. Et le suivi des lignées individuelles permet de travailler sur une population de cellules saines: les individus malades ou morts qui ne se divisent pas, sont écartés. En réduisant ainsi les phénomènes cellulaires en jeux, on réduit le nombre de paramètres. Les sources de bruit sont moins nombreuses, et il est plus facile de comprendre les mécanismes en jeux. Les informations de lignage cellulaire permettent aussi d'étudier la variabilité introduite par la phase du cycle cellulaire: les événements de division cellulaire peut être artificiellement synchronisés. Le bruit est alors étudié sur une population en phase lors de la division. Cette étude montre que le bruit sondé n'est pas dominé par les différences dans la phase du cycle cellulaire. On peut donc modéliser nos cellules sans tenir compte des différences introduites par le cycle cellulaire. Le modèle testé est simplifié aux étapes de transcription-traduction-maturation. Les paramètres du modèle sont inférés de nos données expérimentales, et le modèle est testé à travers des simulations.
25

Portage animal des Escherichia coli entérohémorragiques : colonisation et interaction avec le microbiote digestif animal / Animal carriage of enterohaemorrhagic Escherichia coli : colonization and interaction with the animal digestive microbiota

Segura, Audrey 09 March 2018 (has links)
Les Escherichia coli entérohémorragiques (EHEC) sont des E. coli producteurs de Shiga-toxines (STEC) représentant le quatrième agent responsable de toxi-infections alimentaires en Europe. La contamination par ces pathogènes résulte principalement de l’ingestion de produits alimentaires contaminés par les fèces de bovins, dont le tube digestif apparait comme le principal réservoir naturel des EHEC. Ces pathogènes survivent dans le tractus digestif du ruminant, qui est porteur sain, et semblent bien adaptés à l’ensemble de cet écosystème complexe. Réduire le portage animal est une stratégie de choix afin de limiter les toxi-infections humaines à EHEC. L’objectif de cette thèse était d’approfondir les connaissances sur la physiologie et l’écologie des EHEC dans le tube digestif du bovin, une étape primordiale pour proposer, à terme, différentes stratégies visant à limiter le portage. L’analyse du transcriptome de la souche EHEC O157:H7 de référence EDL933 a permis l’identification de voies métaboliques utilisées par les EHEC dans différents compartiments du tube digestif de l’animal. Certains sucres, dont ceux issus de la couche de mucus intestinal, et acides aminés ainsi que l’éthanolamine semblent représenter des substrats importants pour la survie des EHEC tout au long du tube digestif du bovin. Cette étude transcriptomique a également mis en évidence l’activation, par la souche EHEC, de nombreux systèmes de résistance à différents stress rencontrés dans le tube digestif bovin, dont les systèmes toxines/anti-toxines. L’activation de ces systèmes et la capacité à former des biofilms ont également été observées chez une souche STEC O157:H7 d’origine bovine, la souche MC2, dans des conditions mimant une persistance dans l’environnement. La caractérisation génomique et phénotypique permet de considérer cette souche comme pathogène et des études réalisées in vitro et in vivo ont indiqué que la souche MC2 était capable de persister dans le tube digestif du bovin mais aussi dans l’environnement de l’élevage. L’inoculation expérimentale de bovins par la souche MC2 a permis de mettre au point le premier modèle animal reproductible de portage et d’excrétion des STEC O157:H7 décrit en France. Ce modèle pourra être utilisé pour tester in vivo l’effet d’additifs alimentaires, tels que les probiotiques, afin de réduire le portage et l’excrétion de souches EHEC par les bovins, et donc limiter la contamination de l’Homme. / Enterohaemorrhagic Escherichia coli (EHEC) are Shiga-toxin producing E. coli (STEC) which represent the fourth pathogen leading to foodborne illness in Europe. Contamination by these pathogens results mainly from the ingestion of food contaminated by feces of bovine, for which the digestive tract appears as the main natural reservoir of EHEC. These pathogens survive in the digestive tract of ruminants, which is healthy carriers, and seem well-adapted to this complex ecosystem. Reducing animal carriage is a strategy of choice to limit EHEC human infections. The aim of this thesis was to increase our knowledge on the physiology and ecology of EHEC in the digestive tract of bovine, a key step to propose, ultimately, different strategies to limit the carriage. Transcriptome analysis of the EHEC O157:H7 reference strain EDL933 allowed the identification of metabolic pathways used by EHEC in different compartments of the digestive tract of the animal. Some carbohydrates, including those from the intestinal mucus layer, and amino acids as well as ethanolamine appear to be important substrates for the survival of EHEC throughout the bovine digestive tract. This transcriptomic study also revealed the activation, by the EHEC strain, of several stress resistance systems encountered in the bovine digestive tract, including toxin/anti-toxin systems. The activation of these systems and the ability to form biofilms have also been observed in a bovine STEC O157:H7 strain, MC2 strain, under conditions mimicking persistence in the environment. Genomic and phenotypic characterization allows this strain to be considered as pathogenic and in vitro and in vivo studies indicated that the MC2 strain was able to persist in the bovine digestive tract but also in the farm environment. The experimental inoculation of bovines with the MC2 strain led to the development, for the first time in France, of a reproducible animal model of carriage and excretion of STEC O157:H7. This model could be used to test in vivo the effect of food additives, such as probiotics, in order to reduce the carriage and excretion of EHEC strains by bovines, and thus limit the contamination of humans.
26

Stochasticité dans la réponse d'individus bactériens à une perturbation : étude dynamique / Stochasticity in individual bacterial response : dynamic study of gene expression noise.

Grac, Edith 16 February 2012 (has links)
Nous nous proposons d'étudier la gestion du bruit stochastique d'expression génique. On s'intéresse plus particulièrement à la dynamique du bruit lors de la réponse cellulaire. Comment évolue le bruit? Quels sont les mécanismes en jeux? Quelle est l'importance du bruit dans le fonctionnement cellulaire? Pour répondre à ces questions, nous nous appuyons sur le réseau de régulation génétique qui gère la réponse au stress nutritionnel chez E. Coli. L'étude du comportement dynamique de ce réseau, au niveau d'une population de bactéries, a été initiée et est portée par la forte collaboration de deux équipes de la région : une de bio-informaticiens (l'équipe de Hidde de Jong de l'INRIA Rhône-Alpes) et la deuxième de biologistes (l'équipe de Hans Geiselmann, Laboratoire d'Adaptation et Pathogénie des Micro-organismes). En profitant donc de l'expérience et de la compréhension acquise par ces équipes, nous étudions les réponses individuelles de chaque bactérie lors de la transition entre état de stress nutritionnel, et état de croissance exponentielle. Le bruit d'expression génique est quantifié dans des nœuds clés du réseau de régulation. Pour ce faire, les bactéries sont suivies individuellement par microscopie de fluorescence sur plusieurs générations. Les données de fluorescence collectées sur cellules uniques permettent d'étudier la variabilité inter-cellulaire. Cette variabilité est quantifiée tout le long de la réponse: à chaque instant, on connaît la distribution des densités de fluorescence cellulaire dans la population de cellules. Et le suivi des lignées individuelles permet de travailler sur une population de cellules saines: les individus malades ou morts qui ne se divisent pas, sont écartés. En réduisant ainsi les phénomènes cellulaires en jeux, on réduit le nombre de paramètres. Les sources de bruit sont moins nombreuses, et il est plus facile de comprendre les mécanismes en jeux. Les informations de lignage cellulaire permettent aussi d'étudier la variabilité introduite par la phase du cycle cellulaire: les événements de division cellulaire peut être artificiellement synchronisés. Le bruit est alors étudié sur une population en phase lors de la division. Cette étude montre que le bruit sondé n'est pas dominé par les différences dans la phase du cycle cellulaire. On peut donc modéliser nos cellules sans tenir compte des différences introduites par le cycle cellulaire. Le modèle testé est simplifié aux étapes de transcription-traduction-maturation. Les paramètres du modèle sont inférés de nos données expérimentales, et le modèle est testé à travers des simulations. / We aim to investigate the management of the stochastic noise in gene expression and more precisely the study of noise in dynamical cellular responses. How the noise varies following a perturbation? What mechanisms are at play? How important is noise in the cellular function? To answer these questions, we are interested in the genetic regulatory network that handles the nutritional stress response in E. Coli. The noise of gene expression is quantified in a key node of the network control. For that bacteria are followed individually by fluorescence and phase contrast microscopy over several generations. This variability between cells is quantified throughout the response to the nutritional perturbation: at every moment, we know the density distribution of cellular fluorescence in the cell population. And monitoring of individual lines allows us to take into account only the population of healthy cells: individuals that do not divide neither grow, are discarded. Thereby reducing other sources of variability (e.g. cellular phenomena) we reduce the number of parameters. Noise sources are less numerous, and it is easier to understand the mechanisms at play. Also the information on cell lineage allow to study the variability introduced by the phase of the cell cycle: the events of cell division can be artificially synchronized. This study shows that the noise sounded is not dominated by differences in the phase of the cell cycle. We can therefore model our cells regardless of the differences introduced by the cell cycle. The tested model is simplified to the steps of transcription-translation-maturation. The model parameters are inferred from our experimental data and the model is tested through simulations.
27

Etude des mécanismes moléculaires de la réponse au stress chez Oenococcus oeni et mise en oeuvre d'outils pour l'exploration fonctionnelle de gènes d'intérêt oenologique / Study of molecular mechanisms of stress response in Oenococcus oeni and implementation of tools for the functional exploration of enological genes

Darsonval, Maud 09 December 2015 (has links)
O. oeni est responsable de la fermentation malolactique des vins. Elle doit en permanence s’adapter aux fluctuations physico-chimiques de son environnement. La production de protéines Hsp constitue un mécanisme majeur d’adaptation de la bactérie à son environnement. Chez O. oeni, la protéine CtsR est l’unique régulateur identifié à ce jour des gènes hsp. Ce manuscrit aborde la caractérisation des mécanismes de régulation de la réponse au stress chez O. oeni. Une partie de ce travail a consisté à développer un nouvel outil d’expression de gènes chez O. oeni. Cet outil a permis l’étude de la fonction in vivo du gène hsp18 par une technique de modulation de l’expression de gènes par synthèse d’ARN antisens (ARNas). La production d’ARNas ciblant l’ARN messager du gène hsp18 entraîne une diminution du taux protéique de Lo18 et induit une perte de cultivabilité en conditions de stress. Ces résultats montrent, pour la 1ère fois in vivo, l’implication de Lo18 dans la thermotolérance et l’acidotolérance de O. oeni. Cette même approche appliquée au gène ctsR a induit une perte de cultivabilité en conditions de stress confirmant le rôle clef du locus ctsR dans la réponse au stress de O. oeni. Les mécanismes de régulation de l’activité de CtsR ont été appréhendés par complémentation d’un mutant ctsR déficient de B. subtilis via l’expression de ctsR de O. oeni. Des tests de thermoinduction mettent en évidence la thermosensibilité du CtsR de O. oeni dont l’activité est levée à une température inférieure à 33°C. Le pSIPSYN est un outil prometteur valorisé au cours de ce travail par une étude évaluant l’impact de deux estérases de O. oeni, EstA2 et EstA7 sur le profil aromatique du vin. / O. oeni is responsible for wine malolactic fermentation. As any organism, O. oeni tries to adapt its physiology to environmental fluctuations by producing Hsp proteins encoded by the hsp genes. In O. oeni, CtsR is currently the only regulator of hsp genes. As an alternative to the lack of genetic tool, with the goal of understanding the mechanisms of O. oeni stress response, we developed a new expression vector, the pSIPSYN, to produce antisense RNA targeting of hsp18 mRNA. The synthesis of hsp18 asRNA leads to the decrease in the protein level of Lo18 and induced a loss of cultivability after heat or acid shock showing for the first time in vivo involvement of Lo18 in thermotolerance and acidotolerance in O. oeni. The O. oeni ability of the membrane fluidity restoration of after ethanol stress was strongly affected in the presence of asRNAof hsp18 gene. Then, the ctsR function in O. oeni was investigated with this new genetic tool. Inhibition of the ctsR expression by asRNA approach induced a loss of cultivability after heat or acid shock confirming the key role of ctsR locus in the O. oeni stress response. B. subtilis was used to characterize the regulation of CtsR activity. The ctsR gene of O. oeni was expressed to complement a B. subtilis ctsR-deficient strain and restore the wild-type phenotype. Thermoinduction tests performed to understand the thermosensibility of CtsR showed that O. oeni CtsR is a specific thermosensor inactivated at a temperature threshold below 33°C. The pSIPSYN is a promising tool valorized in this work through an oenological study by evaluating of the impact of O. oeni two esterases, and EstA2 EstA7 on wine ester profile.
28

Rôle de la néoglucogenèse intestinale dans les comportements émotionnels / Intestinal gluconeogenesis controls emotional behavior by targeting hypothalamus

Sinet, Flore 13 October 2016 (has links)
Le diabète de type 2 et la dépression sont des problèmes majeurs de santé publique associés par un lien bidirectionnel. La dérégulation de l'axe hypothalamo-hypophyso-surrénalien (HPA), accompagnée par un taux élevé de glucocorticoïdes circulants, pourrait constituer un mécanisme commun à ces pathologies. L'axe HPA est régulé principalement au niveau de l'hypothalamus, siège de régulations nutritionnelles et émotionnelles. En ciblant les noyaux hypothalamiques, la néoglucogenèse intestinale (NGI) a des effets bénéfiques contre le développement du diabète de type 2 via la stimulation des nerfs vagal et spinal. Nous avons donc testé si la NGI, par sa communication avec l'hypothalamus, pourrait également réguler les comportements émotionnels et ainsi exercer des effets bénéfiques sur les maladies métaboliques et émotionnelles.L'absence de NGI provoque un dysfonctionnement de l'axe HPA et de son rétrocontrôle négatif (via des modifications moléculaires), caractérisés par une hypersécrétion de glucocorticoïdes et le développement d'une résistance aux glucocorticoïdes. Grâce à des études comportementales et moléculaires, nous montrons que les souris dépourvues de NGI développent des altérations phénotypiques et neurobiologiques caractéristiques d'un état anxio-dépressif. La restauration de la NGI par une perfusion de glucose portale rétablit les altérations neurobiologiques de l'axe HPA. L'induction de la NGI par un régime riche en protéines exerce des effets anxiolytiques et antidépresseurs. Ces données suggèrent que la NGI en ciblant l'hypothalamus, contrôle le métabolisme et, via l'axe HPA, les comportements émotionnels / Type 2 diabetes and major depressive disorder are major health concerns, which are highly comorbid. Hypothalamic-pituitary-adrenal (HPA) axis dysfunction, associated with elevated circulating levels of glucocorticoids, was suggested to be a common mechanism for those pathologies. The hypothalamus, which mainly regulates the HPA axis, is a key integrative center, playing a role in both metabolic and emotional processes. By targeting hypothalamic nuclei, intestinal gluconeogenesis (IGN) exerts beneficial effects against the development of type 2 diabetes through the stimulation of the vagal and spinal nerves. We therefore evaluated whether IGN, via the hypothalamus, may represent a putative common regulator of metabolic and emotional disorders.In the absence of IGN, mice exhibited HPA axis dysregulation along with decreased glucocorticoid-mediated negative feedback (due to molecular modifications), highlighted by hypercortisolism and glucocorticoid resistance. Using behavioral and molecular studies, we demonstrated that mice lacking IGN displayed phenotypic and neurobiological hallmarks of anxiety/depression-like state. Rescuing IGN by portal glucose infusion reversed neurobiological alterations of the HPA axis. Induction of IGN by a protein-enriched diet had anxiolytic and antidepressant effects. Together, these data raise the possibility that IGN by targeting hypothalamus, controls metabolism and, via the HPA axis, emotional behavior
29

Implication de l'expression et localisation de TDP-43 dans le mécanisme des granules de stress dans la sclérose latérale amyotrophique

Khalfallah, Yousra 08 1900 (has links)
No description available.
30

The Effects of Lactate Receptor G Protein-Coupled Receptor 81 (GPR81) on the Integrity of the Choroidal Vasculature

Yang, Xiaojuan 02 1900 (has links)
No description available.

Page generated in 0.124 seconds