• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 51
  • 9
  • 8
  • 3
  • 2
  • 2
  • Tagged with
  • 85
  • 26
  • 25
  • 21
  • 16
  • 14
  • 13
  • 13
  • 13
  • 13
  • 11
  • 11
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Structural and biochemical investigation of the regulation of Rab11a by the guanine nucleotide exchange factors SH3BP5 and TRAPPII

Jenkins, Meredith L. 29 November 2019 (has links)
Rab11 is a critical GTPase involved in the regulation of membrane trafficking in the endocytic pathway, and it’s misregulation is involved in a variety of human diseases including Huntington’s disease and Alzheimer’s disease. Additionally, de novo mutations (DNMs) of Rab11 have been identified in patients with developmental disorders, and interestingly several parasites, viruses, and bacteria can subvert membrane trafficking through Rab11 positive vesicles to allow for replication and evasion from the immune system. Although Rab11 is one of the best characterized Rab GTPases, hindering the capability to completely understand Rab11 regulation and its role in human disease is the lack of detail describing how Rab11 proteins are activated by their cognate guanine nucleotide exchange factors (GEFs). This thesis is therefore focused on revealing the molecular mechanisms of the GEFs responsible for the activation of Rab11: SH3BP5 and TRAPPII. To investigate the recently discovered GEF SH3BP5, we solved the 3.1Å structure of Rab11 bound to SH3BP5 and revealed a coiled coil architecture of SH3BP5 that mediates exchange through a unique Rab-GEF interaction. The structure revealed a unique rearrangement of the switch-I region of Rab11 compared to other solved Rab-GEF structures, with a constrained conformation when bound to SH3BP5. Mutational analysis of switch-I revealed the molecular determinants that allow for Rab11 selectivity over evolutionarily similar Rab GTPases, and GEF deficient mutants of SH3BP5 show greatly decreased Rab11 activation in cellular assays of active Rab11. To interrogate the highly controversial GEF TRAPPII, we recombinantly expressed and purified the 9 subunit, 427 kDa complex in Spodoptera frugiperda 9(Sf9) cells. We found that the TRAPPII complex is a GEF for both Rab1 and Rab11, and we discovered novel activity for another Rab GTPase. To interrogate the role of these GEFs in human disease, we used HDX-MS and nucleotide exchange assays to show that some DNMs destabilize Rab11 either through a complete or partial disruption of nucleotide binding. Importantly, we discovered that one of these DNMs, K13N, completely prevented SH3BP5 and TRAPPII mediated nucleotide exchange, revealing a putative mechanism of disease. Overall the work completed in this thesis leads to a greater understanding of the molecular mechanisms underlying the activation of Rab11 by its cognate GEFs. / Graduate / 2020-11-25
32

Adenovirus RIDalpha Regulates Endosome Maturation by Mimicking GTP-Rab7

Shah, Ankur H. 06 June 2007 (has links)
No description available.
33

Rab-Vesicle Trafficking is Required for Ras-Mediated Proliferation

Gaisford, Esme Ann January 2015 (has links)
The Ras superfamily consists of over 150 members including the well-known: H-Ras, K-Ras and N-Ras. We propose to target Ras related proliferation in cancer cells by inhibiting Rab vesicle formation. H-Ras, K-Ras and N-Ras are carcinogenic; activating mutations in Ras signaling are generally associated with increased proliferation and survival in cancer cells. Ras is mutated in up to 30% of all human cancers and represents an early survival mutation in cancer cells. Vesicle-bound Ras is trafficked to the plasma membrane, which facilitates interaction between Raf, and effector proteins. Previously, farnsesylation inhibitors, (FTIs) and GTP binding agonists of Ras have been tested as potential pharmacological inhibitors of Ras signaling. However, both drug types have proven ineffective in-vivo. Therefore, there are currently no effective pharmacological treatments to target Ras signaling. However, unpublished data from our lab has identified co-localization of Ras and Rab proteins, in vesicles. Rab proteins are associated with vesicle budding, and endosome development. Rab activity is driven by GTP binding and geranylgeranylation. Non-geranylgeranylated Rab is cytosolic, and does not facilitate endosome formation or vesicle trafficking. We propose that by targeting the Rab specific geranylgeranylation via Rab-specific geranylgeranyl transferase II, we will inhibit Ras associated proliferation. We will pursue this hypothesis by testing three objectives. First, we will produce and test Rab-geranylgeranyl transferase (RGGT)-shRNA to target Rab specific geranylgeranyl transferase. Second, we will illustrate the effect of RGGT knockdown on a downstream signaling target of Ras, specifically pERK levels. Finally, we will measure the direct effect of RGGT knockdown on Ras mediated cellular proliferation. Our results conclude that RGGT-shRNA is a potential target of Ras mediated tumor proliferation. / Biomedical Sciences
34

Elucidating the molecular machinery of an evolutionary novelty: Single-cell transcriptomics of Arcella intermedia and characterization of gene expression during shell formation / Elucidando a maquinaria molecular de uma novidade evolutiva: transcriptomica single-cell de Arcella intermedia e caracterização da expressão gênica durante a formação de teca

Sousa, Alfredo Leonardo Porfirio de 14 February 2019 (has links)
The present dissertation aims to shed light on the molecular machinery involved in the process of shell formation (thecagenesis) in Arcella (Arcellinida : Amoebozoa). Arcellinida are single-celled testate amoebae organisms, characterized by the presence of an outer shell (test or carapace); it is a monophyletic lineage of Amoebozoa, sister group to a naked amoeboid lineage. No homologous structure to shell is present in the sister group of Arcellinida, thus it is considered an evolutionary novelty. The origin and evolution of the shell in Arcellinida are currently open questions; deciphering its formation process is a key step to address these questions. During each reproductive process by budding division, these organisms build a new shell. In the span of more than a century, several authors have described the thecagenesis process on Arcellinida, primarily focusing on the genus \\textit, based on cyto-morphological evidence. Conversely, the absence of molecular data has impaired advances on describing the molecular aspects of shell formation. In this study, we designed and applied a molecular framework to identify candidate genes and develop a molecular model for the shell formation process in Arcella; we based this framework on single-cell RNA-sequencing, gene expression profiling, Gene Ontology analysis, and comparative analysis of cyto-morphological with newly generated molecular data. We identify and propose a set of 539 genes as the candidate genes for shell formation, based on expression profiling and biological process assignment. We propose a model for the the shell formation process, which describes the mechanistic aspect of this process, hypothetically based on a molecular machinery conserved in Eukaryotes. Additionally, we identified a massive expansion of the Rab GTPase family, a protein likely to be involved on the process of shell formation. In the lights of the present study, we briefly discuss possible evolutionary scenarios involved on the origin and evolution of the shell and present future perspectives; we propose the shell of Arcellinida as a prosperous model to study the origin and evolution of evolutionary novelties, as well as other evolutionary questions / A presente dissertação tem como objetivo lançar luz sobre a maquinaria molecular envolvida no processo de formação de teca (tecagênese) em \\textit (Arcellinida: Amoebozoa). Arcellinida são amebas tecadas unicelulares, caracterizadas pela presença de uma teca (carapaça ou concha) externa; é uma linhagem monofilética de Amoebozoa, grupo irmão de alguns organismos amebóides nus. Nenhuma estrutura homóloga à carapaça está presente no grupo irmão de Arcellinida, sendo considerada como uma novidade evolutiva. A origem e evolução da carapaça em Arcellinida são questões em aberto; Decifrar seu processo de formação é um passo fundamental para abordar essas questões. Durante todo processo reprodutivo, por divisão por brotamento, estes organismo constroem uma nova concha. No decorrer de mais de um século, vários autores descreveram o processo de tecagênese nestes organismos, focando principalmente no gênero \\textit, baseados em evidências cito-morfológicas. Enquanto isso, a ausência de dados moleculares impede avanços na descrição dos aspectos moleculares da formação de conchas. Neste estudo, projetamos e aplicamos uma \\textit molecular para identificar genes candidatos e desenvolver um modelo molecular para o processo de formação de teca em \\textit; Baseamos este \\textit em sequenciamento de RNA \\textit, perfil de expressão gênica, análise de \\textit{Gene Ontology} e análise comparativa de dados cito-morfológicos e moleculares. Nós identificamos e propomos um conjunto de 539 genes como genes candidatos para a formação de carapaça, com base no perfil de expressão e na atribuição de processos biológica. Propomos um modelo para o processo de formação de carapaça, que descreve o aspecto mecanicista deste processo, hipoteticamente baseado em um mecanismo molecular conservado em Eucariotos. Além disso, identificamos uma expansão maciça da família gênica das Rab GTPase, gene provavelmente envolvida no processo de formação de carapaça. À luz do presente estudo, discutimos brevemente possíveis cenários evolutivos envolvidos na origem e evolução da teca e apresentamos perspectivas futuras; propomos a teca dos Arcellinida como próspero modelo para estudar a origem e evolução das novidades evolutivas, bem como outras questões evolutivas
35

Papel da RAB2A, RAB5A, RAB17 e RAB18 na função efetora de células citotóxicas. / Role of RAB2A, RAB5A, RAB17 andRAB18 in effector functions of cytotoxic cells.

Vieira, Narciso Junior 24 November 2016 (has links)
Linfócitos T CD8 e células NK atuam no combate à infecções por bactérias intracelulares, vírus e células tumorais, provocando a morte dessas células por meio da secreção de grânulos citotóxicos. Proteínas RAB GTPase têm se destacado em estudos de tráfego intracelular, porém, são escassos dados sobre o papel destas proteínas em células citóxicas. Um estudo prospectivo de proteômica realizado por nosso grupo identificou a RAB2A, RAB5A, RAB17 e RAB18 em grânulos citotóxicos. Análises mais aprofundadas revelaram que a RAB2A está associada a proteínas como LAMP-1 e LAMP-2, enquanto que RAB5A, RAB17 e RAB18 estavam presentes na mesma linhagem em um contexto não contemplado neste estudo. Desenvolvemos ainda uma abordagem de silenciamento gênico da RAB2A, e por fim, adaptamos uma série de protocolos de simples execução e baixo custo para avaliar funções efetoras de células NK. O conhecimento da maquinaria secretória é fundamental, uma vez que defeitos nas vias de tráfego intracelular constituem a base de um grande número de doenças que desencadeiam quadros fatais. / CD8 T lymphocytes and NK cells fight against infections by intracellular bacteria, viruses and tumor cells by killing those cells through the secretion of cytotoxic granules. RAB GTPase has been highlighted in studies of intracellular trafficking, however there are scarce reports regarding the role of these proteins in cytotoxic cells. A proteomic study performed by our group identified RAB2A, RAB5A, RAB17 and RAB18 in cytotoxic granules. Further analysis revealed that RAB2A is associated with LAMP-1 and LAMP-2, while RAB5A, RAB17 and RAB18 were present in the same cell line, but in a context not included in this study. We also have developed a gene silencing approach for RAB2A and adapted a number of protocols, simple and low-cost, that can be used to evaluate effector functions of natural killer cells The knowledge of secretory machinery involved in the movement cytotoxic granules of cytotoxic cells is critical, since defects in intracellular trafficking pathways constitute the basis for a large number of diseases which trigger death.
36

Caractérisation de nouveaux régulateurs du transport intracellulaire du cholestérol : mise en évidence du rôle de la dynamine et des GTPases Rab7 et Rab9 / Characterization of new regulators of intracellular cholesterol trafficking : role of dynamin and Rab7 and Rab9 GTPases

Girard, Emmanuelle 07 May 2013 (has links)
Le transport intracellulaire du cholestérol et sa distribution correcte au niveau des différentes membranes sont essentiels pour assurer de nombreuses fonctions cellulaires. Malgré l’importance de ce transport les mécanismes de sa régulation restent encore mal connus. L’objectif de cette thèse était de mieux caractériser les acteurs du transport intracellulaire du cholestérol. Dans ce contexte, nous nous sommes intéressés à deux acteurs de ce transport : la dynamine et les Rab GTPases. Dans la première partie de la thèse nous avons utilisé le dynasore, un inhibiteur pharmacologique de la dynamine pour étudier le rôle de la dynamine dans le contrôle du transport endolysosomal dans les cellules HeLa et les macrophages humains. Nous avons ainsi confirmé le rôle de la dynamine dans la sortie du compartiment endolysosomal et la régulation de l’homéostasie du cholestérol. Dans la deuxième partie de la thèse, nous avons étudié le rôle de Rab7 et de Rab9 dans le transport du cholestérol en utilisant la technique d’ARN interférence ainsi que l’expression de mutants dominant négatifs. Nous avons montré qu’en plus de son rôle classique dans les étapes tardives du transport du cholestérol, Rab7 contrôle les étapes précoces du transport endosomal. Enfin, nous avons évalué le rôle de Rab7 dans notre modèle de macrophages humains surchargés. Nous avons mis en évidence un effet limité de l’inactivation de Rab7 sur le contrôle de l’homéostasie du cholestérol mais à l’inverse un effet majeur pour l’efflux du cholestérol vers l’apo AI. En conclusion, notre étude a permis de mieux caractériser le transport vésiculaire du cholestérol et de démontrer son importance dans la régulation de l’homéostasie intracellulaire en cholestérol. Nos résultats permettent également d’établir le rôle critique de Rab7 dans le trafic des LDL au niveau des endosomes précoces. / Intracellular transport of cholesterol and its distribution within cellular membranes are essential to maintain correct cellular functions. Despite the importance of this transport, mechanisms that regulate cholesterol transport still poorly defined. The objectives of this thesis were to better characterize the actors of intracellular cholesterol trafficking. In this context, we focused our interest on two known actors of intracellular transport : dynamin and Rab GTPases. In the first part of this thesis, we used dynasore, a pharmacological dynamin inhibitor, to study the role of dynamin in the control of endolysosomal transport in HeLa cells and human macrophages. We confirmed the role of dynamin in endolysosomal sorting and cholesterol homeostasis regulation. In the second part of this thesis, we studied the role of Rab7 and Rab9 in the regulation of cholesterol transport using RNA interference and dominant negative mutants. We showed that in addition to it classical role in late steps of cholesterol transport, Rab7 controls also early steps of endosomal trafficking. Finally, we evaluated the role of Rab7 in our model of loaded human macrophages. We showed a weak impact of Rab7 inactivation on cholesterol homeostasis but a major effect on cholesterol efflux to apo AI. In conclusion, in this study we have better characterized the vesicular transport of cholesterol and demonstrated its importance in cholesterol intracellular homeostasis. Our results also establish that Rab7 plays a critical role in the sorting of LDL at the early endosome.
37

Analises estruturais de GTPases da familia RAB e mecanismo de regulção de MAFB pela proteina TIPRL / Structural analyses of rab family GTPases and mechanism of Mafb regulation by the protein TIPRL

Scapin, Sandra Mara Naressi 17 May 2007 (has links)
Orientadores: Nilson Ivo Tonin Zanchin, Beatriz Gomes Guimaraes / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Biologia / Made available in DSpace on 2018-08-09T09:39:45Z (GMT). No. of bitstreams: 1 Scapin_SandraMaraNaressi_D.pdf: 11335048 bytes, checksum: 153f9eea9142fb7f3cb17de59a608da6 (MD5) Previous issue date: 2007 / Resumo: As GTPases da família Rab regulam o transporte intracelular de vesículas em eucariotos. Cada Rab atua em uma via de transporte específica e seu mecanismo de ação se dá através da realização de um ciclo de ligação e hidrólise de GTP. Neste trabalho, foi determinada a estrutura cristalográfica das formas inativa (ligada a GDP) e ativa (ligada a GppNHp) da GTPase Rab11b, um membro da subfamília Rab11 que está envolvida na reciclagem de proteínas dos endossomos para a membrana plasmática, no tráfego de vesículas da rede trans-Golgi para a membrana plasmática e na fagocitose. Os resultados foram confrontados com os dados estruturais da Rab11a descritos anteriormente. A Rab11b inativa cristalizou como um monômero, o que gera conflitos a respeito da formação de dímeros funcionais pela Rab11a. A Rab11b e a Rab11a ativas divergiram em relação à posição e à interação da serina 20, que é importante na hidrólise de GTP, mas apresentaram taxas hidrolíticas semelhantes in vitro. Visando uma investigação mais ampla da família Rab, a GTPase Rab21 também foi cristalizada, mas os cristais difrataram até 2.90 Å de resolução. Ensaios de desnaturação térmica revelaram que a Rab21 é estruturalmente mais instável do que a Rab11, talvez pela presença de cisteínas que estão susceptíveis à oxidação, contribuindo para a agregação e precipitação da proteína. A Rab11 é bastante estável, e possivelmente forma estruturas do tipo beta-amilóide em altas temperaturas. Este trabalho envolveu também o estudo funcional da interação entre a proteína TIP41 humana (TIPRL) e o fator de transcrição MafB. A TIPRL é uma proteína conservada que foi identificada como uma ativadora de MAP quinases enquanto sua homóloga em levedura foi caracterizada como um antagonista da via de sinalização da quinase TOR que regula o crescimento celular. A MafB está envolvida no controle transcricional em diversos processos de desenvolvimento, mas seus reguladores ainda não estão bem estabelecidos. A interação direta entre a TIPRL e a MafB inteira, ou seu domínio bZIP isolado, foi confirmada através de ensaios de ligação in vitro. As proteínas co-localizaram no núcleo de células HEK293 e nossos resultados preliminares mostram que a TIPRL inibe a atividade transcricional da MafB in vivo, embora apenas interfira na ligação in vitro do domínio bZIP da MafB ao seu DNA-alvo mediante a estabilização do complexo TIPRL-bZIP. A TIPRL pode, portanto, constituir um novo regulador da atividade de MafB / Abstract: GTPases of the Rab family are responsible for the intracellular transport of vesicles. Each family member acts on a specific transport pathway and their function is regulated by GTP binding and hydrolysis, cycling between inactive (GDP-bound) and active (GTP-bound) forms. In this work, we describe the crystal structure of inactive and active forms of the GTPase Rab11b, a member of the Rab11 subfamily which is involved in recycling of proteins from endosomes to the plasma membrane, in polarized transport in epithelial cells, in the transport of molecules of the trans-Golgi network to the plasma membrane and in phagocytosis. The Rab11b structure showed several differences from the Rab11a isoform previously described. Inactive Rab11b crystallized as a monomer, contradicting the hypothesis about functional dimers formed by Rab11a. Active Rab11b differ from Rab11a relative to the position of the serine 20 sidechain, which is involved in GTP hydrolysis, although both GTPases show similar GTP hydrolysis rates in vitro. In order to obtain structural information on Rab GTPases, Rab21 was also crystallized, but the crystals diffracted to a relatively low resolution (2.90 Å). Rab21 is a cysteine rich protein, showing a higher instability relative to Rab11b. Thermal unfolding followed by circular dicroism confirmed this hypothesis. Both Rab11b and Rab11a show a relatively high thermal stability and circular dicroism analysis indicate that they undergo conversion to structures rich in beta-strands upon thermal denaturation. This work includes also studies on the function of TIPRL in regard to its interaction with the transcription factor MafB. TIPRL is a conserved human protein identified as an activator of MAP kinases whereas its yeast counterpart Tip41 functions as an antagonist of the TOR kinase pathway. MafB is a large member of the Maf family of bZIP transcription factors controlling developmental processes in vertebrates. Regulation of MafB is critical, for example, during erythroid differentiation. A direct interaction between TIPRL and full length MafB and the bZIP domain of MafB was confirmed by in vitro interaction assays. TIPRL is localized throughout the whole cell and overlaps with MafB in the nucleus of HEK293 cells. Preliminary assays showed that TIPRL inhibits transcriptional activation mediated by MafB in HEK293 cells, although MafB shows a higher binding affinity to its target DNA relative to TIPRL in vitro. This evidence indicates that TIPRL may control MafB activity in vivo / Doutorado / Genetica Animal e Evolução / Doutor em Genetica e Biologia Molecular
38

Papel da RAB2A, RAB5A, RAB17 e RAB18 na função efetora de células citotóxicas. / Role of RAB2A, RAB5A, RAB17 andRAB18 in effector functions of cytotoxic cells.

Narciso Junior Vieira 24 November 2016 (has links)
Linfócitos T CD8 e células NK atuam no combate à infecções por bactérias intracelulares, vírus e células tumorais, provocando a morte dessas células por meio da secreção de grânulos citotóxicos. Proteínas RAB GTPase têm se destacado em estudos de tráfego intracelular, porém, são escassos dados sobre o papel destas proteínas em células citóxicas. Um estudo prospectivo de proteômica realizado por nosso grupo identificou a RAB2A, RAB5A, RAB17 e RAB18 em grânulos citotóxicos. Análises mais aprofundadas revelaram que a RAB2A está associada a proteínas como LAMP-1 e LAMP-2, enquanto que RAB5A, RAB17 e RAB18 estavam presentes na mesma linhagem em um contexto não contemplado neste estudo. Desenvolvemos ainda uma abordagem de silenciamento gênico da RAB2A, e por fim, adaptamos uma série de protocolos de simples execução e baixo custo para avaliar funções efetoras de células NK. O conhecimento da maquinaria secretória é fundamental, uma vez que defeitos nas vias de tráfego intracelular constituem a base de um grande número de doenças que desencadeiam quadros fatais. / CD8 T lymphocytes and NK cells fight against infections by intracellular bacteria, viruses and tumor cells by killing those cells through the secretion of cytotoxic granules. RAB GTPase has been highlighted in studies of intracellular trafficking, however there are scarce reports regarding the role of these proteins in cytotoxic cells. A proteomic study performed by our group identified RAB2A, RAB5A, RAB17 and RAB18 in cytotoxic granules. Further analysis revealed that RAB2A is associated with LAMP-1 and LAMP-2, while RAB5A, RAB17 and RAB18 were present in the same cell line, but in a context not included in this study. We also have developed a gene silencing approach for RAB2A and adapted a number of protocols, simple and low-cost, that can be used to evaluate effector functions of natural killer cells The knowledge of secretory machinery involved in the movement cytotoxic granules of cytotoxic cells is critical, since defects in intracellular trafficking pathways constitute the basis for a large number of diseases which trigger death.
39

Systematic characterization of Rab GTPase cell type expression and subcellular localization in Drosophila melanogaster

Dunst, Sebastian 14 April 2015 (has links)
The Rab family of small GTPases orchestrates intracellular endomembrane transport through the recruitment of diverse effector proteins. Since its first discovery in 1987, almost 70 Rab proteins have been identified in humans to date and their perturbed function is implicated in several hereditary and acquired diseases. In this Ph.D. thesis, I systematically characterize cell type expression and subcellular localization of all Rab proteins present in Drosophila melanogaster utilizing a genetic resource that represents a major advance for studying membrane trafficking in vivo: the ’Drosophila YRab library’. This collection comprises 27 different D. melanogaster knock-in lines that harbor YFPMyc fusions to each Rab protein, referred to as YRab. For each YRab, I present a comprehensive data set of quantitative and qualitative expression profiles across six larval and adult tissues that include 23 annotated cell types. The whole image data set, along with its annotations, is publicly accessible through the FLYtRAB database that links to CATMAID for online browsing of tissues. I exploit this data set to address basic cell biological questions. i) How do differentiating cells reorganize their transport machinery to perform cell type-specific functions? My data indicates that qualitative and quantitative changes in YRab protein expression facilitate the functional specialization of differentiated cells. I show that about half of the YRab complement is ubiquitously expressed across D. melanogaster tissues, while others are missing from some cell types or reflect strongly restricted cell type expression, e.g. in the nervous system. I also depict that relative YRab expression levels change as cells differentiate. ii) Are specific Rab proteins dedicated to apical or basolateral protein transport in all epithelia? My data suggests that the endomembrane architecture reflects specific tasks performed by particular epithelial tissues, rather than a generalized apicobasal organization. I demonstrate that there is no single YRab that is similarly polarized in all epithelia. Rather, different epithelial tissues dynamically polarize the subcellular localization of many YRab compartments, producing membrane trafficking architectures that are tissue- and stage-specific. I further discuss YRab cell type expression and subcellular localization in the context of Rab family evolution. I report that the conservation of YRab protein expression across D. melanogaster cell types reflects their evolutionary conservation in eukaryotes. In addition, my data supports the assumption that the flexible deployment of an expanded Rab family triggered cell differentiation in metazoans. The FLYtRAB database and the ’Drosophila Rab Library’ are complementary resources that facilitate functional predictions based on YRab cell type expression and subcellular localization, and to subsequently test them by genetic loss-of-function experiments. I demonstrate the power of this approach by revealing new and redundant functions for Rab23 and Rab35 in wing vein patterning. My data collectively highlight that in vivo studies of endomembrane transport pathways in different D. melanogaster cell types is a valuable approach to elucidate functions of Rab family proteins and their potential implications for human disease.
40

In vitro reconstitution of the molecular mechanisms of vesicle tethering and membrane fusion

Perini, Enrico Daniele 21 March 2013 (has links)
Eukaryotic cells are populated by membrane-enclosed organelles possessing discrete molecular and biochemical properties. Communication between organelles is established by shuttling vesicles that transport proteins and other molecules. Vesicles bud from a donor organelle, travel in the cytosol, and are delivered to a target organelle. All these steps are regulated to ensure that cargoes are transported in a specific and directed manner. The focus of this thesis is on the last part of the journey of a vesicle: the process of vesicle targeting. Two phases can be distinguished in this process: vesicle tethering, defined as the first interaction between the shuttling vesicle and the target membrane, and membrane fusion, which is the mixing of the lipid bilayers and of lumen content. Both phases are mediated by a minimal set of molecular components that include one member of the family of Rab GTPases, a vesicle tethering factor, a phosphoinositide lipid, and four SNAREs together with their regulatory proteins. While many studies have investigated the molecular details of how SNAREs mediate membrane fusion, the process of vesicle tethering is less well understood. The overall scope of my study is to describe the molecular details of vesicle tethering and how they can contribute to the general process of vesicle targeting. To address this question I developed an in vitro assay where I reconstitute in vitro the process of vesicle tethering. This bottom-up approach allows the molecular dissection of cellular processes outside of the complex context of the cell. With this assay I have characterized the vesicle tethering abilities of individual proteins involved in vesicle tethering on early endosomes. I show that a minimal vesicle tethering machinery can be formed by the concomitant interaction between one vesicle tethering factor and a phosphoinositide on the membrane of one vesicle, and by a vesicle tethering factor and a Rab GTPase on the membrane of another vesicle. These results provide an explanation for how vesicle tethering contributes to the specificity of vesicle targeting and to the directionality of cargo transport. In particular, specificity of vesicle targeting can arise from the specific interaction between a Rab and a vesicle tethering factor that is an effector of the Rab. I show that the asymmetric distribution of binding sites in the structure of a vesicle tethering factor can generate a heterotypic vesicle tethering reaction that can account for the directionality of cargo transport. The outcome of this thesis emphasizes the role that vesicle tethering factors have in the self-organized system of vesicle trafficking of eukaryotic cells. To identify novel Rab5 effectors implicated in vesicle tethering, I carried out a Rab5-chromatography on mouse liver. Amongst other novel Rab5 effectors, I identify a multi-subunit vesicle tethering complex that was not previously characterized in mammalian cells. The complex, named CORVET, is conserved from yeast to humans and plays a major role in cell physiology since its removal causes embryonic death in mice. I define its subunits composition, determine its subcellular localization, and elucidate its role in cargo transport. This finding reconciles a disharmony between findings in mammals and yeast regarding the molecular machinery responsible for the conversion from early to late endosomes. I also show that the newly identified subunit of the mammalian CORVET complex is the only Rab5 effector to localize to autophagosomes. I hypothesise that it is through the CORVET complex that Rab5 is involved in the formation and maturation of autophagosomes.

Page generated in 0.0275 seconds