• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 351
  • 125
  • 60
  • 59
  • 8
  • 7
  • 5
  • 4
  • 4
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 742
  • 439
  • 105
  • 98
  • 89
  • 87
  • 79
  • 76
  • 52
  • 49
  • 49
  • 48
  • 48
  • 47
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
411

Clumping in hot-star winds : proceedings of an international workshop held in Potsdam, Germany, 18. - 22. June 2007

January 2007 (has links)
Stellar winds play an important role for the evolution of massive stars and their cosmic environment. Multiple lines of evidence, coming from spectroscopy, polarimetry, variability, stellar ejecta, and hydrodynamic modeling, suggest that stellar winds are non-stationary and inhomogeneous. This is referred to as 'wind clumping'. The urgent need to understand this phenomenon is boosted by its far-reaching implications. Most importantly, all techniques to derive empirical mass-loss rates are more or less corrupted by wind clumping. Consequently, mass-loss rates are extremely uncertain. Within their range of uncertainty, completely different scenarios for the evolution of massive stars are obtained. Settling these questions for Galactic OB, LBV and Wolf-Rayet stars is prerequisite to understanding stellar clusters and galaxies, or predicting the properties of first-generation stars. In order to develop a consistent picture and understanding of clumped stellar winds, an international workshop on 'Clumping in Hot Star Winds' was held in Potsdam, Germany, from 18. - 22. June 2007. About 60 participants, comprising almost all leading experts in the field, gathered for one week of extensive exchange and discussion. The Scientific Organizing Committee (SOC) included John Brown (Glasgow), Joseph Cassinelli (Madison), Paul Crowther (Sheffield), Alex Fullerton (Baltimore), Wolf-Rainer Hamann (Potsdam, chair), Anthony Moffat (Montreal), Stan Owocki (Newark), and Joachim Puls (Munich). These proceedings contain the invited and contributed talks presented at the workshop, and document the extensive discussions.
412

An Observational Study of Accretion Processes in T Tauri Stars

Stempels, Henricus Cornelis January 2003 (has links)
This thesis is a detailed observational study of the accretion processes in T Tauri stars (TTS). The interaction between the central star, the circumstellar disk and the magnetic field gives rise to a wide range of features in the spectra of TTS. The current picture of TTS is based on rather simple models assuming that accretion is a homogeneous and axisymmetric process. Although these models have been successful in explaining some observational signatures of TTS such as the shape of emission lines, the static nature of these models makes them unsuitable for describing the strong variability of the veiling spectrum and emission lines of TTS. An improved understanding of this variability is of key importance to study the dynamic processes related to the accretion flow and the winds. This study is based on a set of high-quality spectroscopic observations with the UVES spectrograph at the 8-m VLT in 2000 and 2002. These spectra, with exposure times as short as 10-15 minutes, have high spectral resolution and high signal-to-noise ratios and cover a large part of the optical wavelength range. From this dataset we determine the basic physical parameters of several TTS and model their photospheres. These models then serve as a basis for a detailed investigation of variations of the veiling continuum and line emission. We confirm that the level of veiling correlates with some of the strongest emission lines and that coherent changes in accretion occur on a timescale of a few hours, comparable to the free-fall time from the disk to the star. From the properties of the emission lines formed close to the central star and in the stellar wind we derive restrictions on the geometry of the observed systems. Because the intrinsic axial symmetry of a single star makes it almost impossible to disentangle rotational modulation from inhomogeneity and axial asymmetry of the accretion flow, we study a series of spectra of a close spectroscopic binary at different orbital phases and derive the 3D structure of flows between the disk and the star. Finally, we calculate the profiles of hydrogen emission lines by iteratively solving 3D NLTE radiative transfer in a state-of-the-art magnetospheric model.
413

Whiteness and Fluorescence in Layered Paper and Board : Perception and Optical Modelling

Gustafsson Coppel, Ludovic January 2012 (has links)
This thesis is about modelling and predicting the perceived whiteness of plain paper from the paper composition, including fluorescent whitening agents. This involves psychophysical modelling of perceived whiteness from measurable light reflectance properties, and physical modelling of light scattering and fluorescence from the paper composition. Existing models are first tested and improvements are suggested and evaluated. A colour appearance model including simultaneous contrast effects (CIECAM02-m2), earlier tested on coloured surfaces, is successfully applied to perceived whiteness. An extension of the Kubelka-Munk light scattering model including fluorescence for turbid media of finite thickness is successfully tested for the first time on real papers. It is extended to layered constructions with different layer optical properties and modified to enable parameter estimation with conventional d/0° spectrophotometers used in the paper industry. Lateral light scattering is studied to enable simulating the spatially resolved radiance factor from layered constructions, and angle-resolved radiance factor simulations are performed to study angular variation of whiteness. It is shown that the linear CIE whiteness equation fails to predict the perceived whiteness of highly white papers with distinct bluish tint. This equation is applicable only in a defined region of the colour space, a condition that is shown to be not fulfilled by many commercial office papers, although they appear white to most observers. The proposed non-linear whiteness equations give to these papers a whiteness value that correlates with their perceived whiteness, while application of the CIE whiteness equation outside its region of validity overestimates perceived whiteness. It is shown that the fluorescence efficiency of FWA is essentially dependent only on the ability of the FWA to absorb light in its absorption band. Increased FWA concentration leads accordingly to increased whiteness. However, since FWA absorbs light in the violet-blue region of the electromagnetic spectrum, the reflectance factor decreases in that region with increasing FWA amount. This violet-blue absorption tends to give a greener shade to the paper and explains most of the observed greening and whiteness saturation at larger FWA concentrations. A red-ward shift of the quantum efficiency is observed with increasing FWA concentration, but this is shown to have a negligible effect on the whiteness value. The results are directly applicable to industrial applications for better instrumental measurement of whiteness and thereby optimising the use of FWA with the goal to improve the perceived whiteness. / PaperOpt
414

Thermophysical Modelling and Mechanical Stability of Cometary Nuclei

Davidsson, Björn January 2003 (has links)
Comets are the most primordial and least evolved bodies in the Solar System. As such, they are unique sources of information regarding the early history of the Solar System. However, little is known about cometary nuclei since they are very difficult to observe due to the obscuring coma. Indirect methods are therefore often used to extract knowledge about nucleus parameters such as size, shape, density, material strength, and rotational properties. For example, tidal and non-tidal splitting of cometary nuclei can provide important information about nuclear densities and material strengths, but only if the criteria for mechanical stability are well known. Masses and densities of cometary nuclei can also be obtained by studying orbital modifications due to non-gravitational forces, but only if the thermophysics of comets can be modelled accurately. A detailed investigation is made regarding the mechanical stability of small Solar System bodies. New expressions for the Roche distance are derived, as functions of the size, shape, density, material strength, rotational period, and spin axis orientation of a body. The critical rotational period for centrifugal breakup in free space is also considered, and the resulting formulae are applied to comets for which the size, shape and rotational period have been estimated observationally, in order to place constraints on their densities and material strengths. A new thermophysical model of cometary nuclei is developed, focusing on two rarely studied features - layer absorption of solar energy, and parallel modelling of the nucleus and innermost coma. Sophisticated modelling of radiative transfer processes and the kinetics of gas in thermodynamic non-equilibrium form the basis for this work. The new model is applied to Comet 19P/Borrelly, and its density is estimated by reproducing the non-gravitational changes of its orbit.
415

Optical Response From Paper : Angle-dependent Light Scattering Measurements, Modelling, and Analysis

Granberg, Hjalmar January 2003 (has links)
No description available.
416

The Charm of Excited Glue : Charmonium in e+e– and ppbar collisions

Lundborg, Agnes January 2007 (has links)
This thesis treats the mass range of charmonium states and excited gluonic fields in two experiments, BESII and PANDA, and outlines a phenomenological model that connects them. In BESII, e+e– form a charmonium initial state, which is utilised as a source for secondary particles. The analysed channels, ψ´→ γK+K– and ψ´→ γπ+π–, give access to intermediate scalar states such as the two glueball candidates: f0(1500) and f0(1710). The f0(1710) is indeed observed in decay into both π+π– and K+K– and the f0(1500) is accepted as a necessary part of the π+π– signal at the moderate 5% level. In addition, we observe the two tensor states f2(1270) (in both channels) and f2´(1525) (in K+K–), but the need for the f2´(1525) is not firmly established. The region around 2 GeV/c2 is fitted with an f4(2050) and an f0(2200) in π+π–. This region is fairly flat in K+K– with a slight peak at the f0(2200). Branching ratios for all eight channels are given. A fit to the angular distribution of ψ´→ γ f2(1270) → γ π+π–gave two possible solutions for the relative importance of helicity projections zero, one and two. The future ppbar experiment PANDA is still in the development phase; important physics goals have been defined and we are now taking on the laborious task of constructing a detector that is able to fulfil them. A simulation investigation of a theoretically preferred JPC=1–+ charmonium hybrid (Hc) is presented: ppbar → Hcπ0/η, Hc → χc1 (π0π0)S–wave, χc1 → J/ψπ0, with a final state of seven photons and a lepton pair. To detect this channel next to full coverage of CM phase space is needed and as little material as possible before the electromagnetic calorimeter. A second simulation study of ppbar → ηc → γγ at PANDA, suggests that the channel should be possible to detect with a signal-to-background ratio of 5±1 and a detection efficiency of at least 10%. By assuming a constant matrix element we obtain a relation between the decay width for ψ → ppbar+m, which has been measured at BES for several cases, and the cross section for ppbar charmonium production in association with the same light meson, m (at for example PANDA). Cross sections of ~300–3000 pb were predicted for J/ψ production and ~30 pb for ψ' production. Isoscalars seem to be preferred to isovectors in J/ψ production, this might however be an artefact of simplifications within the model. A comparison with the only measured cross section, ppbar → J/ψπ0, suggests that the model is useful as a first estimate.
417

An Evaluation of Shadow Shielding for Lunar System Waste Heat Rejection

Worn, Cheyn 2012 May 1900 (has links)
Shadow shielding is a novel and practical concept for waste heat rejection from lunar surface spacecraft systems. A shadow shield is a light shield that shades the radiator from parasitic thermal radiation emanating from the sun or lunar surface. Radiator size and mass can reduce if the radiator is not required to account for parasitic heat loads in addition to system energy rejection requirements. The lunar thermal environment can be very harsh towards radiative heat rejection. Parasitic heat loads force the radiator to expand in size and mass to compensate. On the Moon, there are three types: surface infrared, solar insulation, and albedo. This thesis tests shadow shielding geometry and its effect on the radiator and nuclear reactor in a reactor-powered Carnot heat engine. Due to the nature of cooling by radiative heat transfer, the maximum shaft work a Carnot system can produce and the minimal required radiator area occurs when the Carnot efficiency is 25%. First, a case for shadow shielding is made using an isothermal, control radiator model in Thermal Desktop. Six radiator temperatures and three latitudes are considered in the tests. Test variables in this section include radiator shapes and shade geometry. The simulations found that shadow shielding is best suited for a low-temperature radiator at the lunar equator. Optimized parabolic shade geometry includes a focus right above or at the top of the radiator and full to three-quarters shade height. The most useful rectangular radiator shape for shadow shielding is that which has a low height and long width. All simulations were conducted using a shade with a 10 kg/m2 area mass. A sensitivity study was conducted for different shade area masses using high and low values found in the literature. The shade is the most useful when the shade's area mass is less than or equal to that of the radiator. If the shade mass is below this threshold, the shade would be applicable to all radiator temperatures tested. Optimized shade and radiator geometry results were then factored into a second model where the radiator is comprised of heat pipes which is similar to radiators from actual system designs. Further simulations were conducted implementing the SAFE-4001 fast fission nuclear reactor design. The study found that shadow shielding allowed the system to use a low-temperature radiator where other configurations were not viable because shadow shielding drastically improves radiative heat transfer from the radiator, but at the consequence of raising radiator mass.
418

Light absorption of atmospheric soot particles over Central Europe / Lichtabsorption von atmosphärischen Rußpartikeln über Mitteleuropa

Nordmann, Stephan 09 April 2013 (has links) (PDF)
Soot particles are a major absorber of shortwave radiation in the atmosphere. They exert a rather uncertain direct and semi-direct radiative effect, which causes a heating or in some cases a cooling of the atmosphere. The mass absorption coefficient is an essential quantity to describe this light absorption process. This work presents new experimental data on the mass absorption coefficient of soot particles in the troposphere over Central Europe. Mass absorption coefficients were derived as the ratio between the light absorption coefficient determined by multi angle absorption photometry (MAAP), and the soot mass concentration determined by Raman spectroscopy. The Raman method is sensitive to graphitic structures present in the particle samples, and was calibrated in the laboratory using Printex90 model particles. The mass absorption coefficients were determined for a number of seven observation sites, ranging between 3.9 and 7.4 m²/g depending on measurement site and observational period. The highest values were found in an continentally aged air mass in winter, where we presumed soot particles to be present mainly in internal mixture. The regional model WRF-Chem was used in conjunction with a high resolution soot emission inventory to simulate soot mass concentrations and absorption coefficients for the Central European Troposphere. The model was validated using soot mass concentrations from Raman measurements and absorption coefficients. Simulated soot mass concentrations were found to be too low by around 50 %, which could be improved by scaling the emissions by a factor of two. In contrast, the absorption coefficient was positively biased by around 20%. Adjusting the modeled mass absorption coefficient to measurements, the simulation of soot light absorption was improved. Finally, the positive direct radiative forcing at top of the atmosphere was found to be lowered by up to 70% for the model run with adjusted soot absorption behaviour, , indicating a decreased heating effect on the atmosphere.
419

The Arctic Polar-night Jet Oscillation

Hitchcock, Adam Peter 21 August 2012 (has links)
The eastward winds that form each winter in the Arctic stratosphere are intermittently disrupted by planetary-scale waves propagating up from the surface in events known as stratospheric sudden warmings. It is shown here that following roughly half of these sudden warmings, the winds take as long as three months to recover, during which time the polar stratosphere evolves in a robust and predictable fashion. These extended recoveries, termed here Polar-night Jet Oscillation (PJO) events, are relevant to understanding the response of the extratropical troposphere to forcings such as solar variability and climate change. They also represent a possible source of improvement in our ability to predict weather regimes at seasonal timescales. Four projects are reported on here. In the first, the approximation of stratospheric radiative cooling by a linear relaxation is tested and found to hold well enough to diagnose effective damping rates. In the polar night, the rates found are weaker than those typically assumed by simplified modelling studies of the extratropical stratosphere and troposphere. In the second, PJO events are identified and characterized in observations, reanalyses, and a comprehensive chemistry-climate model. Their observed behaviour is reproduced well in the model. Their duration correlates with the depth in the stratosphere to which the disruption descends, and is associated with the strong suppression of further planetary wave propagation into the vortex. In the third, the response of the zonal mean winds and temperatures to the eddy-driven torques that occur during PJO events is studied. The collapse of planetary waves following the initial warming permits radiative processes to dominate. The weak radiative damping rates diagnosed in the first project are required to capture the redistribution of angular momentum responsible for the circulation anomalies. In the final project, these damping rates are imposed in a simplified model of the coupled stratosphere and troposphere. The weaker damping is found to change the warmings generated by the model to be more PJO-like in character. Planetary waves in this case collapse following the warmings, confirming the dual role of the suppression of wave driving and extended radiative timescales in determining the behaviour of PJO events.
420

The Arctic Polar-night Jet Oscillation

Hitchcock, Adam Peter 21 August 2012 (has links)
The eastward winds that form each winter in the Arctic stratosphere are intermittently disrupted by planetary-scale waves propagating up from the surface in events known as stratospheric sudden warmings. It is shown here that following roughly half of these sudden warmings, the winds take as long as three months to recover, during which time the polar stratosphere evolves in a robust and predictable fashion. These extended recoveries, termed here Polar-night Jet Oscillation (PJO) events, are relevant to understanding the response of the extratropical troposphere to forcings such as solar variability and climate change. They also represent a possible source of improvement in our ability to predict weather regimes at seasonal timescales. Four projects are reported on here. In the first, the approximation of stratospheric radiative cooling by a linear relaxation is tested and found to hold well enough to diagnose effective damping rates. In the polar night, the rates found are weaker than those typically assumed by simplified modelling studies of the extratropical stratosphere and troposphere. In the second, PJO events are identified and characterized in observations, reanalyses, and a comprehensive chemistry-climate model. Their observed behaviour is reproduced well in the model. Their duration correlates with the depth in the stratosphere to which the disruption descends, and is associated with the strong suppression of further planetary wave propagation into the vortex. In the third, the response of the zonal mean winds and temperatures to the eddy-driven torques that occur during PJO events is studied. The collapse of planetary waves following the initial warming permits radiative processes to dominate. The weak radiative damping rates diagnosed in the first project are required to capture the redistribution of angular momentum responsible for the circulation anomalies. In the final project, these damping rates are imposed in a simplified model of the coupled stratosphere and troposphere. The weaker damping is found to change the warmings generated by the model to be more PJO-like in character. Planetary waves in this case collapse following the warmings, confirming the dual role of the suppression of wave driving and extended radiative timescales in determining the behaviour of PJO events.

Page generated in 0.0489 seconds