• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 601
  • 80
  • 60
  • 25
  • 24
  • 13
  • 10
  • 10
  • 9
  • 9
  • 7
  • 7
  • 7
  • 7
  • 7
  • Tagged with
  • 1030
  • 1030
  • 312
  • 276
  • 179
  • 155
  • 150
  • 142
  • 124
  • 120
  • 105
  • 101
  • 101
  • 100
  • 86
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
791

Playing tag with baggage : RFID technology in baggage handling at Stockholm Skavsta Airport / Den som väntar på sitt bagage behöver inte vänta längre : RFID-teknologi i bagagehantering vid Stockholm Skavsta Flygplats

Florén, Daniel, Rydh, Joakim January 2005 (has links)
The purpose of this master thesis has been to develop a baggage handling process at Stockholm Skavsta Airport that is cost-efficient, in order to prepare for the expected expansion of the airport. When developing the new process it was a directive to examine the possibilities of using radio frequency identification, RFID, technology and also that the required investment for the new process should have a payback time of no more than two to three years. The current process contains a completely manual sorting activity, which is both costly in terms of personnel and creates some mishandling of baggage due to the human factor. Our recommendation is a baggage handling process that use automatic sorting through RFID technology that eliminates the mishandling of baggage and reduce the personnel costs and at the same time have a payback period of less than three years. The main cost driver is the RFID tag costs and therefore our process is a so called closed-loop system, where the tags are reused several times and require very little work in between uses. The proposed physical layout consists of a drawing of the physical layout of the baggage sorting hall, a description of the RFID system, and the required information system software.
792

Modelling and Applications of the Hollow Cathode Plasma

Söderström, Daniel January 2008 (has links)
This thesis presents experimental and modelling research on atmospheric pressure hollow cathodes and hollow electrodes. Experiments with the hybrid hollow electrode activated discharge (H-HEAD), which is a combination of a hollow cathode and a microwave plasma source, is presented. The experiments show that this source is able to produce long plasma columns in air and nitrogen at atmospheric pressure and at very low gas flow rates. Measurements of the vibrational temperature of the nitrogen molecules are also presented in this thesis. The vibrational temperature is an indication of the electron temperature in the plasma, an important characteristic of the plasma. Modelling work on the hollow cathode at atmospheric pressure with fluid equations is also presented. It is shown that the inclusion of fast and secondary electrons, characteristic of the hollow cathode plasmas, increases the sheath width. The sheath width was found to be of the order of 100 μm. By modelling the plasma as highly collisional by using the drift-diffusion approximation, it was shown that the increase in sheath thickness was larger at lower pressures than at higher pressures. Still, the sheath width can be of the order of 100 μm. A pulsed atmospheric plasma in a hollow electrode geometry was also modelled by the drift-diffusion fluid equations, with the addition of the energy equation for electrons. Rate and transport coefficients for the electrons were calculated from the solution to the Boltzmann equation as functions of mean electron energy. The dynamics of the plasma at pulse rise time showed large electron density and mean energy peaks at the cathode ends, but also that these quantities were enhanced at the centre of the discharge, between the cathode plates.
793

Wideband active-balun variable-gain low-noise amplifier for mobile-TV applications

Lo, Keng Wai January 2010 (has links)
University of Macau / Faculty of Science and Technology / Department of Electrical and Electronics Engineering
794

High performance radio-frequency and millimeter-wave front-end integrated circuits design in silicon-based technologies

Kim, Jihwan 21 April 2011 (has links)
Design techniques and procedures to improve performances of radio-frequency and millimeter-wave front-end integrated circuits were developed. Power amplifiers for high data-rate wireless communication applications were designed using CMOS technology employing a novel device resizing and concurrent power-combining technique to implement a multi-mode operation. Comprehensive analysis on the efficiency degradation effect of multi-input-single-output combining transformers with idle input terminals was performed. The proposed discrete resizing and power-combining technique effectively enhanced the efficiency of a linear CMOS power amplifier at back-off power levels. In addition, a novel power-combining transformer that is suitable to generate multi-watt-level output power was proposed and implemented. Employing the proposed power-combining transformer, a high-power linear CMOS power amplifier was designed. Furthermore, receiver building blocks such as a low-noise amplifier, a down-conversion mixer, and a passive balun were implemented using SiGe technology for W-band applications.
795

CMOS-based amplitude and phase control circuits designed for multi-standard wireless communication systems

Huang, Yan-Yu 05 July 2011 (has links)
Designing CMOS linear transmitter front-end, specially the power amplifiers (PAs), in multi-band wireless transceivers is a major challenge for the single-chip integration of a CMOS radio. In some of the linear PA systems, for example, polar- or predistortion-PA system, amplitude and phase control circuits are used to suppress the distortion produces by the PA core. The requirements of these controlling circuits are much different from their conventional role in a receiver or a phase array system. In this dissertation, the special design issues will be addressed, and the circuit topologies of the amplitude and phase controllers will be proposed. In attempt to control the high-power input signal of a PA system, a highly linear variable attenuator with adaptive body biasing is first introduced. The voltage swing on the signal path is intentionally coupled to the body terminal of the triple-well NMOS devices to reduce their impedance variation. The fabricated variable attenuator shows a significant improvement on linearity as compared to previous CMOS works. The results of this research are then used to build a variable gain amplifier for linear PA systems that requires gain of its amplitude tuning circuits. Different from the conventional attenuator-based VGAs, the high linearity of the suggested attenuator allows it to be put after the gain stage in the presented VGA topology. This arrangement along with the current boosting technique gives the VGA a better noise performance while having a linear-in-dB tuning curve and better worst-case linearity. The following part of the dissertation is about a compact, linear-in-degree tuned variable phase shifter as the phase controller in the PA system. This design uses a modified RC poly-phase filter to produce a set of an orthogonal phase vectors with smaller loss. A specially designed control circuit combines these vectors and generates an output signal with different phases, while having very small gain mismatches at different phase setting. The proposed amplitude and phase control circuits are then verified with a system level analysis. The results show that the proposed designs successfully reduce the non-linear effect of a wireless transmitter.
796

Cross-layer dynamic spectrum management framework for the coexistence of white space applications

Yoon, Seungil 25 May 2011 (has links)
The objective of this dissertation is to propose the cross-layer spectrum management architecture for white space applications that improves the performance the main functions of the spectrum management. In the proposed cross-layer architecture, white space network devices such as white space devices and the spectrum map server cooperate to support the extended spectrum map, the inter-cell transmit power adaptation (ITPA), and the frequency-domain coexistence beacon (FCB). Upon the cross-layer architecture, firstly, white space devices (WSDs) achieve a faster search and higher accuracy in spectrum sensing with the extended spectrum map, the extended DHCP (Dynamic Host Configuration Protocol), and the FCB. Secondly, WSDs achieve the precise selection of their operating channel in spectrum decision with the extended spectrum map and the ITPA. In spectrum sharing, thirdly, the collaboration- based spectrum sharing with the ITPA achieve more accommodation of WSDs by increasing the number of channels shared between WSDs. Finally, WSDs with the FCB and the extended spectrum achieve effective spectrum mobility by obtaining the occupancy-status of channels precisely.
797

CMOS RF transmitter front-end module for high-power mobile applications

Kim, Hyun-Woong 28 March 2012 (has links)
With the explosive growth of the wireless market, the demand for low-cost and highly-integrated radio frequency (RF) transceiver has been increased. Keeping up with this trend, complimentary metal-oxide-semiconductor (CMOS) has been spotlighted by virtue of its superior characteristics. However, there are challenges in achieving this goal, especially designing the transmitter portion. The objective of this research is to demonstrate the feasibility of fully integrated CMOS transmitter module which includes power amplifier (PA) and transmit/receive (T/R) switch by compensating for the intrinsic drawbacks of CMOS technology. As an effort to overcome the challenges, the high-power handling T/R switches are introduced as the first part of this dissertation. The proposed differential switch topology and feed-forward capacitor helps reducing the voltage stress over the switch devices, enabling a linear power transmission. With the high-power T/R switches, a new transmitter front-end topology - differential PA and T/R switch topology with the multi-section PA output matching network - is also proposed. The multi-stage PA output matching network assists to relieve the voltage stress over the switch device even more, by providing a low switch operating impedance. By analyzing the power performance and efficiency of entire transmitter module, design methodology for the high-power handling and efficient transmitter module is established. Finally, the research in this dissertation provides low-cost, high-power handling, and efficient CMOS RF transmitter module for wireless applications.
798

Radio Frequency Low Noise and High Q Integrated Filters in Digital CMOS Processes

Xiong, Zhijie 09 July 2004 (has links)
Radio Frequency Low Noise and High Q Integrated Filters in Digital CMOS Processes Zhijie Xiong 149 pages Directed by Dr. Phillip E. Allen Presented in this work is a novel design technique for CMOS integration of RF high Q integrated filters using positive feedback and current mode approach. Two circuits are designed in this work: a 100MHz low-noise and high Q bandpass filter suited for an FM radio front-end, and a 2.4GHz low-noise and high-Q bandpass filter suited for a Bluetooth front-end. Current-mode approach and positive feedback design techniques are successfully used in the design of both circuits. Both circuits are fabricated through a 0.18um CMOS process provided by National Semiconductor Corp. The 100MHz circuit achieves 3.15uV RF sensitivity with 26dB SNR, and the total current consumption is 12mA. The center frequency of the filter is tunable from 80MHz to 110MHz, and the Q value is tunable from 0.5 to 28.9. 1 dB compression point is measured as -34.0dBm, combined with noise measurement results, a dynamic range of 54.1 dB results. Silicon area of the core circuit is 0.4 square millimeters. The center frequency of the 2.4GHz circuit is tunable from 2.4GHz to 2.5GHz, and the Q value is tunable from 20 to 120. The 1 dB compression dynamic range of the circuit is 50dB. Integrated spiral inductors are developed for this design. Patterned ground shields are laid out to reduce inductor loss through substrate, especially eddy current loss when the circuit is fabricated on epi wafers. Accumulation mode MOS varactors are designed to tune the frequency response. Silicon area of the core circuit is 1 square millimeter.
799

Dual-Band Transmitters Using Digitally Predistorted Frequency Multipliers for Reconfigurable Radios

Park, Youngcheol 12 July 2004 (has links)
The objective of the proposed research is to develop simplified reconfigurable transmission systems with frequency multipliers for the transmission of complex modulated signals. Because they rely on nonlinear properties, frequency multiplier-based transmission systems require proper linearization techniques and accurate modeling of the signal transfer function. To accomplish these two goals, the author has developed techniques to model and linearize frequency multipliers and to digitize feedback signals for nonlinear characterization. First, adaptive predistortion techniques and zonal transfer theories have been developed for modeling and linearization. The predistortion system has been verified by applying an IS-95B signal to various frequency multipliers built by the author. Second, because the output signals at higher harmonic zones occupy wider frequency bandwidths than the signal in the fundamental zone does and thus make it harder to use traditional sampling techniques, a simplified but effective method called the sub-Nyquist sampling rate was developed and verified. Third, two methods for reconfigurable transmitters using frequency multipliers in conjunction with digital predistortion linearizers were developed. Both methods make it possible to transmit complex signals via frequency multipliers by using dual-band transmission systems that incorporate frequency multipliers that are based on linearization techniques. One of these methods uses a circuit topology that can be switched between a fundamental-mode in-phase combined amplifier and a push-push frequency doubler using input phasing. The second suggested method uses a fundamental-frequency power amplifier followed by a varactor multiplier that can be bypassed with an RF switch. This work will contribute to the development of low-cost and size-effective reconfigurable transmission systems because it requires fewer transmitting components and needs less sampling of the feedback networks.
800

Micromachined Components for RF Systems

Yoon, Yong-Kyu 12 April 2004 (has links)
Several fabrication techniques for surface micromachined 3-D structures have been developed for RF components. The fabrication techniques all have in common the use of epoxy patterning and subsequent metallization. Techniques and structures such as embedded conductors, epoxy-core conductors, a reverse-side exposure technique, a multi-exposure scheme, and inclined patterning are presented. The epoxy-core conductor technique makes it easy to fabricate high-aspect-ratio (10-20:1), tall (~1mm) RF subelements as well as potentially very complex structures by taking advantage of advanced epoxy processes. To demonstrate feasibility and usefulness of the developed fabrication techniques for RF applications, two test vehicles are employed. One is a solenoid type RF inductor, and the other is a millimeter wave radiating structure such as a W-band quarter-wavelength monopole antenna. The embedded inductor approach provides mechanical robustness and package compatibility as well as good electrical performance. An inductor with a peak Q-factor of 21 and an inductance of 2.6nH at 4.5GHz has been fabricated on a silicon substrate. In addition, successful integration with a CMOS power amplifier has been demonstrated. A high-aspect-ratio inductor fabricated using epoxy core conductors shows a maximum Q-factor of 84 and an inductance of 1.17nH at 2.6GHz on a glass substrate with a height of 900um and a single turn. Successful W-band monopole antenna fabrication is demonstrated. A monopole with a height of 800um shows its radiating resonance at 85GHz with a return loss of 16dB. In addition to the epoxy-based devices, an advanced tunable ferroelectric device architecture is introduced. This architecture enables a low-loss conductor device; a reduced intermodulation distortion (IMD) device; and a compact tunable LC module. A single-finger capacitor having a low-loss conductor with an electrode gap of 1.2um and an electrode thickness of 2.2um has been fabricated using a reverse-side exposure technique, showing a tunability of 33% at 10V. It shows an improved Q-factor of 21.5. Reduced IMD capacitors consist of wide RF gaps and narrowly spaced high resistivity electrodes with a gap of 2um and a width of 2um within the wide gap. A 14um gap and a 20um gap capacitor show improved IMD performance compared to a 4um gap capacitor by 6dB and 15dB, respectively, while the tunability is approximately 21% at 30V for all three devices due to the narrowly spaced multi-pair high resistivity DC electrodes within the gap. Finally, a compact tunable LC module is implemented by forming the narrow gap capacitor in an inductor shape. The resonance frequency of this device is variable as a function of DC bias and a frequency tunability of 1.1%/V is achieved. The RF components developed in this thesis illustrate the usefulness of the application of micromachining technology to this application area, especially as frequencies of operation of RF systems continue to increase (and therefore wavelengths continue to shrink).

Page generated in 0.0438 seconds