• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 3
  • 3
  • Tagged with
  • 19
  • 19
  • 18
  • 18
  • 8
  • 8
  • 8
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Ein Beitrag zur Behandlung nichtmaterieller Randbedingungen in der Kontinuumsmechanik

Franze, Andreas 28 June 2013 (has links)
In der vorliegenden Arbeit werden kontinuumsmechanische Probleme mit nichtmateriellen Randbedingungen untersucht. Randbedingungen gelten dabei als nichtmateriell, wenn sie im Zeitverlauf nicht ein und demselben materiellen Punkt zugeordnet werden können. Die Erweiterung der klassischen kontinuumsmechanischen Feldgleichungen um solche Randbedingungen erfolgt unter Anwendung einer Arbitrary-LAGRANGE-EULER-Kinematik. Hierbei wird eine Notation entwickelt, bei der Feldgrößen und Operatoren ihre jeweilige Platzierung eindeutig zugeordnet wird. Insbesondere in Hinblick auf eine konsistente Darstellung von Ableitungsoperatoren werden die Vorteile dieser Schreibweise dargelegt. Zur Ermittlung und Untersuchung (semi-)analytischer Lösungen dienen Beispiele eindimensionaler Kontinua, die sich zwei unterschiedlichen Problemklassen zuordnen lassen. In der ersten Problemklasse gelingen analytische Lösungen mit Hilfe eines Integrations- und eines Separationsansatzes für das Modell einer axial unbewegten, schwingenden Saite. Als nichtmaterielle Randbedingungen werden dabei die transversalen Verschiebungen an zwei zeitabhängigen Positionen zu null vorgeschrieben. In der zweiten Problemklasse sind eine Saite sowie ein Seil, die einer vorgegebenen axialen Führungsbewegung unterliegen, Gegenstand der Untersuchung. In diesem Fall sind die zwei vorgegebenen, räumlich festen Verschiebungsrandbedingungen nichtmateriell. Es finden (semi-)analytische Verfahren Anwendung. Die Relativgeschwindigkeit zwischen den Randbedingungen und dem jeweils betrachteten Kontinuum wird dabei als beliebig zeitabhängig angenommen. Eine experimentelle Studie zum Schwingungsverhalten eines Monochords mit nichtmateriellen Randbedingungen vervollständigt die Analyse eindimensionaler Kontinua. Aus den ermittelten (semi-)analytischen Lösungen werden Rückschlüsse auf das Transformationsverhalten der Bewegungsgleichungen dreidimensionaler Kontinua gezogen. Damit sind die entwickelten Methoden in vielen technischen Anwendungen einsetzbar. Als ein wirtschaftlich bedeutendes Beispiel ist die Schwingungsanalyse axial bewegter Papierbahnen in Papierproduktionsmaschinen zu nennen.:1 Einführung 1.1 Einleitendes 1.2 Stand des Wissens 1.3 Motivierendes Beispiel 1.4 Ziele und Gliederung der Arbeit 2 Kontinuumsmechanische Grundlagen 2.1 Allgemeines 2.2 Kinematik 2.2.1 Bewegung des Körpers 2.2.2 Intrinsische Beschreibung 2.2.3 Referentielle Beschreibung 2.2.4 Stromlinien und Bahnlinien im EUKLIDischen Raum 2.2.5 Räumliche Beschreibung 2.2.6 Relative Beschreibung 2.2.7 Notation zur Beschreibung von Feldgrößen 2.3 Verschiebungen und daraus abgeleitete Größen 2.3.1 Verschiebungsfelder 2.3.2 Notation von Ableitungen 2.3.3 Geschwindigkeitsfelder 2.3.4 Beschleunigungsfelder 2.3.5 Deformationsgradienten 2.3.6 Metriktensoren bzw. RIESZ-Abbildungen 2.3.7 Dehnungstensoren 2.4 Spannungstensoren 2.5 Bilanz- und Erhaltungsgleichungen 2.5.1 Transporttheoreme 2.5.2 Allgemeine Struktur von Bilanzgleichungen 2.5.3 Massebilanz 2.5.4 Impulsbilanz 2.5.5 Drallbilanz 2.5.6 Entropie- und Energiebilanz 2.5.7 Lokale Form der Bilanzgleichungen 2.6 Konstitutive Beziehungen 2.7 Anfangsbedingungen und Randbedingungen 2.7.1 Allgemeines 2.7.2 Verschiebungsrandbedingungen 2.7.3 Spannungsrandbedingungen 2.7.4 Beschreibung von nichtmateriellen Randbedingungen mithilfe einer ALE-Kinematik 2.8 Feldproblem 2.8.1 Feldproblem in der EULER -Beschreibung 2.8.2 Feldproblem in der ALE-Beschreibung 3 Axial unbewegte eindimensionale Kontinua mit nichtmateriellen Randbedingungen 3.1 Direkte Herleitung der Bewegungsgleichung für die axial unbewegte Saite 3.2 Modellbeschreibungen 3.3 Integrationsansatz für einen konstanten Abstand der Randbedingungen 3.3.1 Transformation der Bewegungsgleichung 3.3.2 Lösungsansatz in Operatornotation 3.3.3 Einarbeiten der Anfangsbedingungen 3.3.4 Einarbeiten der Randbedingungen 3.3.5 Numerische Umsetzung 3.3.6 Auswertung 3.4 Separationsansatz für einen konstanten Abstand der Randbedingungen 3.5 Integrationsansatz für einen veränderlichen Abstand der Randbedingungen 4 Axial bewegte eindimensionale Kontinua mit nichtmateriellen Randbedingungen 4.1 Direkte Herleitung der Bewegungsgleichung für die axial bewegte Saite 4.2 Lösung mittels GALERKIN-Verfahren 4.2.1 Zeitlich veränderliche Führungsgeschwindigkeit 4.2.2 Zeitlich unveränderliche Führungsgeschwindigkeit 4.2.3 Numerische Umsetzung 4.2.4 Auswertung 4.3 Direkte Herleitung der Bewegungsgleichung für das axial bewegte Seil 4.4 Lösung mittels GALERKIN -Verfahren 4.4.1 Modellbeschreibung 4.4.2 Transformation der Bewegungsgleichung 4.4.3 Zeitlich veränderliche Führungsgeschwindigkeit 4.4.4 Zeitlich unveränderliche Führungsgeschwindigkeit 4.4.5 Ortszeittransformation und Separationsansatz 4.4.6 Auswertung 5 Experimentelle Studie zu nichtmateriellen Randbedingungen 5.1 Versuchsaufbau 5.2 Untersuchung des Einflusses materieller Randbedingungen 5.3 Untersuchung des Einflusses nichtmaterieller Randbedingungen 6 Rückschlüsse für dreidimensionale Kontinua 6.1 Allgemeines 6.2 Rückschlüsse aus dem Verhalten axial unbewegter eindimensionaler Kontinua 6.3 Rückschlüsse aus dem Verhalten axial bewegter eindimensionaler Kontinua 6.3.1 Instationäre Führungsbewegung 6.3.2 Ortszeittransformation für eine stationäre Führungsbewegung 6.3.3 Zusammenhang mit der LORENTZ -Transformation 7 Zusammenfassung und Ausblick 7.1 Zusammenfassung 7.2 Ausblick Literaturverzeichnis A Ergänzungen zu den kontinuumsmechanischen Grundlagen A.1 Neo-klassische Raumzeit A.2 Beobachterabbildung und Bezugssystem A.3 Materieller Körper A.4 Tangentialraum und Kotangentialraum A.5 Beispiele zur Ableitungsnotation A.6 Ausgewählte Nebenrechnungen zu den kontinuumsmechanischen Grundlagen A.7 Zur Symmetrie von Tensoren B Ergänzungen zum Verhalten eindimensionaler Kontinua B.1 Überführen von inhomogenen in homogene Randbedingungen B.2 Einführung einer verallgemeinerten Zeitableitung B.2.1 Selbstadjungiertheit des Zeitableitungsoperators B.2.2 FOURIER-Transformation B.2.3 Definition der verallgemeinerten Zeitableitung B.2.4 Beschränktheit der Inversen der verallgemeinerten Zeitableitung B.2.5 Beispiele zur verallgemeinerten Zeitableitung B.3 Abschätzung zur Hilfslösung beim Integrationsansatz B.4 Besondere Eigenschaften der DIRAC-Distribution B.5 Bestimmung einer ausgewählten Stammfunktion / Within this work, problems of continuum mechanics with non-material boundary conditions are investigated. Boundary conditions are classified as non-material if they can not be assigned to one and only one material particle over time. The extension of the classical field-equations of continuum mechanics by such boundary conditions is realized by application of Arbitrary-LAGRANGE -E ULER -Kinematics. Therefore a notation, which assigns the particular placement to field quantities and operators, is developed. The advantages of this notation can be identified particularly with regard to a consistent representation of derivative operators. Examples of one-dimensional continua, which can be assigned to different problem categories, are used to determine and investigate (semi-)analytical solutions. In the first category, analytical solutions can be found using an integral and a separation formulation for the model of an axially non-moving, vibrating string. As non-material boundary conditions the transverse displacements at two time-dependent positions are prescribed to zero. A string and a wire, which are moved axially, are investigated within the second problem category. In this case, the prescribed, spatially fixed displacement conditions are non-material. The applied methods are (semi-)analytical. The relative velocity between the boundary conditions and the considered continuum is assumed to be arbitrary time-dependent. An experimental study on the vibration behaviour of a monochord with non-material boundary conditions completes the analysis of one-dimensional continua. Conclusions on the transformation of the equations of motion of three-dimensional continua are derived from the determined (semi-)analytical solutions. For this reason the developed methods are usable in many technical applications. The vibration analysis of axially moving paper sheets in papermaking machines can be stated as an economical important example.:1 Einführung 1.1 Einleitendes 1.2 Stand des Wissens 1.3 Motivierendes Beispiel 1.4 Ziele und Gliederung der Arbeit 2 Kontinuumsmechanische Grundlagen 2.1 Allgemeines 2.2 Kinematik 2.2.1 Bewegung des Körpers 2.2.2 Intrinsische Beschreibung 2.2.3 Referentielle Beschreibung 2.2.4 Stromlinien und Bahnlinien im EUKLIDischen Raum 2.2.5 Räumliche Beschreibung 2.2.6 Relative Beschreibung 2.2.7 Notation zur Beschreibung von Feldgrößen 2.3 Verschiebungen und daraus abgeleitete Größen 2.3.1 Verschiebungsfelder 2.3.2 Notation von Ableitungen 2.3.3 Geschwindigkeitsfelder 2.3.4 Beschleunigungsfelder 2.3.5 Deformationsgradienten 2.3.6 Metriktensoren bzw. RIESZ-Abbildungen 2.3.7 Dehnungstensoren 2.4 Spannungstensoren 2.5 Bilanz- und Erhaltungsgleichungen 2.5.1 Transporttheoreme 2.5.2 Allgemeine Struktur von Bilanzgleichungen 2.5.3 Massebilanz 2.5.4 Impulsbilanz 2.5.5 Drallbilanz 2.5.6 Entropie- und Energiebilanz 2.5.7 Lokale Form der Bilanzgleichungen 2.6 Konstitutive Beziehungen 2.7 Anfangsbedingungen und Randbedingungen 2.7.1 Allgemeines 2.7.2 Verschiebungsrandbedingungen 2.7.3 Spannungsrandbedingungen 2.7.4 Beschreibung von nichtmateriellen Randbedingungen mithilfe einer ALE-Kinematik 2.8 Feldproblem 2.8.1 Feldproblem in der EULER -Beschreibung 2.8.2 Feldproblem in der ALE-Beschreibung 3 Axial unbewegte eindimensionale Kontinua mit nichtmateriellen Randbedingungen 3.1 Direkte Herleitung der Bewegungsgleichung für die axial unbewegte Saite 3.2 Modellbeschreibungen 3.3 Integrationsansatz für einen konstanten Abstand der Randbedingungen 3.3.1 Transformation der Bewegungsgleichung 3.3.2 Lösungsansatz in Operatornotation 3.3.3 Einarbeiten der Anfangsbedingungen 3.3.4 Einarbeiten der Randbedingungen 3.3.5 Numerische Umsetzung 3.3.6 Auswertung 3.4 Separationsansatz für einen konstanten Abstand der Randbedingungen 3.5 Integrationsansatz für einen veränderlichen Abstand der Randbedingungen 4 Axial bewegte eindimensionale Kontinua mit nichtmateriellen Randbedingungen 4.1 Direkte Herleitung der Bewegungsgleichung für die axial bewegte Saite 4.2 Lösung mittels GALERKIN-Verfahren 4.2.1 Zeitlich veränderliche Führungsgeschwindigkeit 4.2.2 Zeitlich unveränderliche Führungsgeschwindigkeit 4.2.3 Numerische Umsetzung 4.2.4 Auswertung 4.3 Direkte Herleitung der Bewegungsgleichung für das axial bewegte Seil 4.4 Lösung mittels GALERKIN -Verfahren 4.4.1 Modellbeschreibung 4.4.2 Transformation der Bewegungsgleichung 4.4.3 Zeitlich veränderliche Führungsgeschwindigkeit 4.4.4 Zeitlich unveränderliche Führungsgeschwindigkeit 4.4.5 Ortszeittransformation und Separationsansatz 4.4.6 Auswertung 5 Experimentelle Studie zu nichtmateriellen Randbedingungen 5.1 Versuchsaufbau 5.2 Untersuchung des Einflusses materieller Randbedingungen 5.3 Untersuchung des Einflusses nichtmaterieller Randbedingungen 6 Rückschlüsse für dreidimensionale Kontinua 6.1 Allgemeines 6.2 Rückschlüsse aus dem Verhalten axial unbewegter eindimensionaler Kontinua 6.3 Rückschlüsse aus dem Verhalten axial bewegter eindimensionaler Kontinua 6.3.1 Instationäre Führungsbewegung 6.3.2 Ortszeittransformation für eine stationäre Führungsbewegung 6.3.3 Zusammenhang mit der LORENTZ -Transformation 7 Zusammenfassung und Ausblick 7.1 Zusammenfassung 7.2 Ausblick Literaturverzeichnis A Ergänzungen zu den kontinuumsmechanischen Grundlagen A.1 Neo-klassische Raumzeit A.2 Beobachterabbildung und Bezugssystem A.3 Materieller Körper A.4 Tangentialraum und Kotangentialraum A.5 Beispiele zur Ableitungsnotation A.6 Ausgewählte Nebenrechnungen zu den kontinuumsmechanischen Grundlagen A.7 Zur Symmetrie von Tensoren B Ergänzungen zum Verhalten eindimensionaler Kontinua B.1 Überführen von inhomogenen in homogene Randbedingungen B.2 Einführung einer verallgemeinerten Zeitableitung B.2.1 Selbstadjungiertheit des Zeitableitungsoperators B.2.2 FOURIER-Transformation B.2.3 Definition der verallgemeinerten Zeitableitung B.2.4 Beschränktheit der Inversen der verallgemeinerten Zeitableitung B.2.5 Beispiele zur verallgemeinerten Zeitableitung B.3 Abschätzung zur Hilfslösung beim Integrationsansatz B.4 Besondere Eigenschaften der DIRAC-Distribution B.5 Bestimmung einer ausgewählten Stammfunktion
12

Adaptive least-squares finite element method with optimal convergence rates

Bringmann, Philipp 29 January 2021 (has links)
Die Least-Squares Finite-Elemente-Methoden (LSFEMn) basieren auf der Minimierung des Least-Squares-Funktionals, das aus quadrierten Normen der Residuen eines Systems von partiellen Differentialgleichungen erster Ordnung besteht. Dieses Funktional liefert einen a posteriori Fehlerschätzer und ermöglicht die adaptive Verfeinerung des zugrundeliegenden Netzes. Aus zwei Gründen versagen die gängigen Methoden zum Beweis optimaler Konvergenzraten, wie sie in Carstensen, Feischl, Page und Praetorius (Comp. Math. Appl., 67(6), 2014) zusammengefasst werden. Erstens scheinen fehlende Vorfaktoren proportional zur Netzweite den Beweis einer schrittweisen Reduktion der Least-Squares-Schätzerterme zu verhindern. Zweitens kontrolliert das Least-Squares-Funktional den Fehler der Fluss- beziehungsweise Spannungsvariablen in der H(div)-Norm, wodurch ein Datenapproximationsfehler der rechten Seite f auftritt. Diese Schwierigkeiten führten zu einem zweifachen Paradigmenwechsel in der Konvergenzanalyse adaptiver LSFEMn in Carstensen und Park (SIAM J. Numer. Anal., 53(1), 2015) für das 2D-Poisson-Modellproblem mit Diskretisierung niedrigster Ordnung und homogenen Dirichlet-Randdaten. Ein neuartiger expliziter residuenbasierter Fehlerschätzer ermöglicht den Beweis der Reduktionseigenschaft. Durch separiertes Markieren im adaptiven Algorithmus wird zudem der Datenapproximationsfehler reduziert. Die vorliegende Arbeit verallgemeinert diese Techniken auf die drei linearen Modellprobleme das Poisson-Problem, die Stokes-Gleichungen und das lineare Elastizitätsproblem. Die Axiome der Adaptivität mit separiertem Markieren nach Carstensen und Rabus (SIAM J. Numer. Anal., 55(6), 2017) werden in drei Raumdimensionen nachgewiesen. Die Analysis umfasst Diskretisierungen mit beliebigem Polynomgrad sowie inhomogene Dirichlet- und Neumann-Randbedingungen. Abschließend bestätigen numerische Experimente mit dem h-adaptiven Algorithmus die theoretisch bewiesenen optimalen Konvergenzraten. / The least-squares finite element methods (LSFEMs) base on the minimisation of the least-squares functional consisting of the squared norms of the residuals of first-order systems of partial differential equations. This functional provides a reliable and efficient built-in a posteriori error estimator and allows for adaptive mesh-refinement. The established convergence analysis with rates for adaptive algorithms, as summarised in the axiomatic framework by Carstensen, Feischl, Page, and Praetorius (Comp. Math. Appl., 67(6), 2014), fails for two reasons. First, the least-squares estimator lacks prefactors in terms of the mesh-size, what seemingly prevents a reduction under mesh-refinement. Second, the first-order divergence LSFEMs measure the flux or stress errors in the H(div) norm and, thus, involve a data resolution error of the right-hand side f. These difficulties led to a twofold paradigm shift in the convergence analysis with rates for adaptive LSFEMs in Carstensen and Park (SIAM J. Numer. Anal., 53(1), 2015) for the lowest-order discretisation of the 2D Poisson model problem with homogeneous Dirichlet boundary conditions. Accordingly, some novel explicit residual-based a posteriori error estimator accomplishes the reduction property. Furthermore, a separate marking strategy in the adaptive algorithm ensures the sufficient data resolution. This thesis presents the generalisation of these techniques to three linear model problems, namely, the Poisson problem, the Stokes equations, and the linear elasticity problem. It verifies the axioms of adaptivity with separate marking by Carstensen and Rabus (SIAM J. Numer. Anal., 55(6), 2017) in three spatial dimensions. The analysis covers discretisations with arbitrary polynomial degree and inhomogeneous Dirichlet and Neumann boundary conditions. Numerical experiments confirm the theoretically proven optimal convergence rates of the h-adaptive algorithm.
13

A lattice Boltzmann equation model for thermal liquid film flow

Hantsch, Andreas 10 December 2013 (has links) (PDF)
Liquid film flow is an important flow type in many applications of process engineering. For supporting experiments, theoretical and numerical investigations are required. The present state of the art is to model the liquid film flow with Navier--Stokes-based methods, whereas the lattice Boltzmann method is employed here. The final model has been developed within this treatise by means of a two-phase flow and a heat transfer model, and boundary and initial conditions. All these sub-models have been applied to simple test cases. It could be found that the two-phase model is capable of solving flow phenomena with a large density ratio which has been shown impressively in conjunction with wall boundary conditions. The heat transfer model was tested against spectral method results with a transient non-uniform flow field. It was possible to find optimal parameters for computation. The final model has been applied to steady-state film flow, and showed very good agreement to OpenFOAM simulations. Tests with transient film flow demonstrated that the model is also able to predict these flow phenomena. / Flüssigkeitsfilmströmungen kommen in vielen verfahrenstechnischen Prozessen zum Einsatz. Zur Unterstützung von Experimenten sind theoretische und numerische Untersuchungen nötig. Stand der Technik ist es, Navier--Stokes-basierte Modelle zu verwenden, wohingegen hier die Lattice-Boltzmann-Methode verwendet wird. Das finale Modell wurde unter Verwendung eines Zweiphasen- und eines Wärmeübertragungsmodell entwickelt und geeignete Rand- und Anfangsbedingungen formuliert. Alle Untermodelle wurden anhand einfacher Testfälle überprüft. Es konnte herausgefunden werden, dass das Zweiphasenmodell Strömungen großer Dichteunterschiede rechnen kann, was eindrucksvoll im Zusammenhang mit Wandrandbedingungen gezeigt wurde. Das Wärmeübertragungsmodell wurde gegen eine Spektrallösung anhand eines transienten und nichtuniformen Strömungsproblemes getestet. Stationäre Filmströmungen zeigten sehr gute Übereinstimmungen mit OpenFOAM-Lösungen und instationäre Berechungen bewiesen, dass das Model auch solche Strömungen abbilden kann.
14

Zur Dynamik geometrisch nichtlinearer Balken

Weiß, Holger 01 December 1999 (has links)
Ziel der Arbeit ist es, die instationären zeitlichen und räumlichen Bewegungsabläufe stark deformierbarer eindimensionaler Kontinua durch ein allgemeines mechanisch-mathematisches Modell unter Berücksichtigung ihrer Biege- und Torsionssteifigkeit zu beschreiben und zu dessen Lösung geeignete numerische Verfahren zu testen und auszuwählen. Die entwickelten Algorithmen werden auf Aufgabenstellungen aus der Raumfahrt-, Meeres- und Textiltechnik angewendet. / It is the aim of this thesis to describe the instationary motion of flexible one-dimensional continua by a general mechanical-mathematical model, when bending and torsional stiffness is not negligible, and to test and select appropriate numerical solution methods. The developed algorithms are used to solve problems from space, marine and textil engineering.
15

A lattice Boltzmann equation model for thermal liquid film flow

Hantsch, Andreas 05 December 2013 (has links)
Liquid film flow is an important flow type in many applications of process engineering. For supporting experiments, theoretical and numerical investigations are required. The present state of the art is to model the liquid film flow with Navier--Stokes-based methods, whereas the lattice Boltzmann method is employed here. The final model has been developed within this treatise by means of a two-phase flow and a heat transfer model, and boundary and initial conditions. All these sub-models have been applied to simple test cases. It could be found that the two-phase model is capable of solving flow phenomena with a large density ratio which has been shown impressively in conjunction with wall boundary conditions. The heat transfer model was tested against spectral method results with a transient non-uniform flow field. It was possible to find optimal parameters for computation. The final model has been applied to steady-state film flow, and showed very good agreement to OpenFOAM simulations. Tests with transient film flow demonstrated that the model is also able to predict these flow phenomena. / Flüssigkeitsfilmströmungen kommen in vielen verfahrenstechnischen Prozessen zum Einsatz. Zur Unterstützung von Experimenten sind theoretische und numerische Untersuchungen nötig. Stand der Technik ist es, Navier--Stokes-basierte Modelle zu verwenden, wohingegen hier die Lattice-Boltzmann-Methode verwendet wird. Das finale Modell wurde unter Verwendung eines Zweiphasen- und eines Wärmeübertragungsmodell entwickelt und geeignete Rand- und Anfangsbedingungen formuliert. Alle Untermodelle wurden anhand einfacher Testfälle überprüft. Es konnte herausgefunden werden, dass das Zweiphasenmodell Strömungen großer Dichteunterschiede rechnen kann, was eindrucksvoll im Zusammenhang mit Wandrandbedingungen gezeigt wurde. Das Wärmeübertragungsmodell wurde gegen eine Spektrallösung anhand eines transienten und nichtuniformen Strömungsproblemes getestet. Stationäre Filmströmungen zeigten sehr gute Übereinstimmungen mit OpenFOAM-Lösungen und instationäre Berechungen bewiesen, dass das Model auch solche Strömungen abbilden kann.
16

Efficient Computation of Electrostatic Interactions in Particle Systems Based on Nonequispaced Fast Fourier Transforms

Nestler, Franziska 27 August 2018 (has links)
The present thesis is dedicated to the efficient computation of electrostatic interactions in particle systems, which is of great importance in the field of molecular dynamics simulations. In order to compute the therefor required physical quantities with only O(N log N) arithmetic operations, so called particle-mesh methods make use of the well-known Ewald summation approach and the fast Fourier transform (FFT). Typically, such methods are able to handle systems of point charges subject to periodic boundary conditions in all spatial directions. However, periodicity is not always desired in all three dimensions and, moreover, also interactions to dipoles play an important role in many applications. Within the scope of the present work, we consider the particle-particle NFFT method (P²NFFT), a particle-mesh approach based on the fast Fourier transform for nonequispaced data (NFFT). An extension of this method for mixed periodic as well as open boundary conditions is presented. Furthermore, the method is appropriately modified in order to treat particle systems containing both charges and dipoles. Consequently, an efficient algorithm for mixed charge-dipole systems, that additionally allows a unified handling of various types of periodic boundary conditions, is presented for the first time. Appropriate error estimates as well as parameter tuning strategies are developed and verified by numerical examples. / Die vorliegende Arbeit widmet sich der Berechnung elektrostatischer Wechselwirkungen in Partikelsystemen, was beispielsweise im Bereich der molekulardynamischen Simulationen eine zentrale Rolle spielt. Um die dafür benötigten physikalischen Größen mit lediglich O(N log N) arithmetischen Operationen zu berechnen, nutzen sogenannte Teilchen-Gitter-Methoden die Ewald-Summation sowie die schnelle Fourier-Transformation (FFT). Typischerweise können derartige Verfahren Systeme von Punktladungen unter periodischen Randbedingungen in allen Raumrichtungen handhaben. Periodizität ist jedoch nicht immer bezüglich aller drei Dimensionen erwünscht. Des Weiteren spielen auch Wechselwirkungen zu Dipolen in vielen Anwendungen eine wichtige Rolle. Zentraler Gegenstand dieser Arbeit ist die Partikel-Partikel-NFFT Methode (P²NFFT), ein Teilchen-Gitter-Verfahren, welches auf der schnellen Fouriertransformation für nichtäquidistante Daten (NFFT) basiert. Eine Erweiterung dieses Verfahrens auf gemischt periodische sowie offene Randbedingungen wird vorgestellt. Außerdem wird die Methode für die Behandlung von Partikelsystemen, in denen sowohl Ladungen als auch Dipole vorliegen, angepasst. Somit wird erstmalig ein effizienter Algorithmus für gemischte Ladungs-Dipol-Systeme präsentiert, der zusätzlich die Behandlung sämtlicher Arten von Randbedingungen mit einem einheitlichen Zugang erlaubt. Entsprechende Fehlerabschätzungen sowie Strategien für die Parameterwahl werden entwickelt und anhand numerischer Beispiele verifiziert.
17

Berechnungsmodelle zur Beschreibung der Interaktion von bewegtem Sägedraht und Ingot

Lorenz, Michael 25 February 2014 (has links) (PDF)
Die vorliegende Arbeit widmet sich der Aufgabe makroskopische Berechnungsmodelle zur Beschreibung des Drahtsägens zu erarbeiten. Ziel ist es, die wesentlichen Effekte abzubilden und den Einfluss von Prozessparametern auf die Dynamik des Systems zu bestimmen. Ein zentraler Punkt ist die Modellierung des bewegten Sägedrahtes. Durch die dem Kontinuum an den Auflagern aufgeprägte Führungsbewegung sind einerseits die Randbedingungen und andererseits ortsfest auf den Draht wirkende Lasten nichtmateriell. Die korrekte kinematische Beschreibung dieses Sachverhaltes ist essentielle Grundlage für die spätere Anwendung des Prinzips von HAMILTON. Durch die Führungsbewegung, die Formulierung der Kontaktkräfte als Folgelasten und durch explizit zeitabhängige Systemparameter ergibt sich ein kompliziertes Systemverhalten. Die dargestellten Berechnungsergebnisse umfassen Studien zu stationären Lagen, die Berechnung von Eigenfrequenzen, Stabilitätsnachweise des dynamischen Grundzustandes, die Bestimmung von Zeitlösungen und die Simulation des Materialabtrages beim Einschnitt. / The aim of the present thesis is to generate macroscopic models to describe the wire sawing process. The principal purpose is to illustrate basic effects and to investigate the influence of important process parameters relating to the dynamics of the system. A fundamental point is the modeling of the moving wire. Because of the axially movement of the continuum the boundary conditions and spatial acting loads are non-material. The precise kinematical description of this issue is the pre-condition for the correct evaluation of HAMILTON’s principle to characterize the dynamics of the system. The resultant complex system behavior is a consequence of the movement of the wire, of the formulation of the contact forces as follower loads and of explicitly time-dependent model parameters. The results of research contain studies of steady state equilibrium solutions and the proof of their LJAPUNOW stability, the calculation of eigenfrequencies, steady state time solutions under harmonically oscillating contact forces and the simulation of the material removal during the cutting process.
18

Berechnungsmodelle zur Beschreibung der Interaktion von bewegtem Sägedraht und Ingot

Lorenz, Michael 09 December 2013 (has links)
Die vorliegende Arbeit widmet sich der Aufgabe makroskopische Berechnungsmodelle zur Beschreibung des Drahtsägens zu erarbeiten. Ziel ist es, die wesentlichen Effekte abzubilden und den Einfluss von Prozessparametern auf die Dynamik des Systems zu bestimmen. Ein zentraler Punkt ist die Modellierung des bewegten Sägedrahtes. Durch die dem Kontinuum an den Auflagern aufgeprägte Führungsbewegung sind einerseits die Randbedingungen und andererseits ortsfest auf den Draht wirkende Lasten nichtmateriell. Die korrekte kinematische Beschreibung dieses Sachverhaltes ist essentielle Grundlage für die spätere Anwendung des Prinzips von HAMILTON. Durch die Führungsbewegung, die Formulierung der Kontaktkräfte als Folgelasten und durch explizit zeitabhängige Systemparameter ergibt sich ein kompliziertes Systemverhalten. Die dargestellten Berechnungsergebnisse umfassen Studien zu stationären Lagen, die Berechnung von Eigenfrequenzen, Stabilitätsnachweise des dynamischen Grundzustandes, die Bestimmung von Zeitlösungen und die Simulation des Materialabtrages beim Einschnitt.:1 Einleitung 1.1 Technische Problemstellung und Motivation der Arbeit 1.2 Literaturübersicht 1.3 Thema und Gliederung der Arbeit 2 Theoretische Grundlagen 2.1 Notation und mathematische Grundlagen 2.2 Kinematische Grundlagen der Kontinuumsmechanik 2.2.1 Konfiguration und Betrachtungsweisen 2.2.2 Verformungskinematik 2.2.3 Zeitableitungen 2.3 Variationsrechnung 2.3.1 Grundlagen 2.3.2 Verallgemeinerte Variationen 2.4 Kinetik / Prinzip von HAMILTON 2.5 Diskretisierung von Feldproblemen 2.6 Stabilität stationärer Lösungen 2.6.1 Grundlagen der kinetischen Stabilitätstheorie 2.6.2 Erste Methode von LJAPUNOW 2.6.3 Stabilitätsbetrachtung für bewegte Kontinua 2.7 Zeitlösung 2.7.1 Homogene Lösung der Störungsdifferentialgleichungen 2.7.2 Partikuläre Lösung der Störungsdifferentialgleichungen 3 Mechanisches Modell und Modellvarianten 3.1 Kinematik des Drahtes in LAGRANGE-Koordinaten 3.2 Kinematik des Drahtes in EULER-Koordinaten 3.3 Modell I 3.3.1 Variationsformulierung und Feldgleichungen 3.3.2 Ortsdiskretisierung der Variationsformulierung 3.3.3 Stationäre Lage, Stabilitätsuntersuchung und Zeitlösung 3.4 Modell II 3.4.1 Variationsformulierung und Feldgleichungen 3.4.2 Ortsdiskretisierung der Variationsformulierung 3.4.3 Stationäre Lage, Stabilitätsuntersuchung und Zeitlösung 3.5 Numerische Umsetzung 3.6 Berechnungsergebnisse 3.6.1 Stationäre Lagen 3.6.2 Eigenfrequenzen 3.6.3 Stabilitätsuntersuchungen 3.6.4 Zeitlösungen 4 Ankopplung des Ingot und Modellierung des Materialabtrages 4.1 FE- Modell des Gesamtblocks 4.1.1 Bestimmung der mechanischen Eigenschaften des Ingot 4.1.2 Berechnungsergebnisse 4.2 Strukturmechanisches Modell des Gesamtblocks und Ankopplung an den Sägedraht 4.3 Variationsformulierungen der gekoppelten Gesamtsysteme unter Berücksichtigung des Materialabtrages 4.3.1 Gesamtmodell I 4.3.2 Gesamtmodell II 4.4 Simulation des Schnittvorganges 5 Zusammenfassung / Ausblick 6 Verzeichnisse 6.1 Literaturverzeichnis 6.1.1 Allgemeine Literatur 6.1.2 Literatur zum Thema Drahtsägen 6.1.3 Literatur zum Thema bewegte Kontinua Anhang / The aim of the present thesis is to generate macroscopic models to describe the wire sawing process. The principal purpose is to illustrate basic effects and to investigate the influence of important process parameters relating to the dynamics of the system. A fundamental point is the modeling of the moving wire. Because of the axially movement of the continuum the boundary conditions and spatial acting loads are non-material. The precise kinematical description of this issue is the pre-condition for the correct evaluation of HAMILTON’s principle to characterize the dynamics of the system. The resultant complex system behavior is a consequence of the movement of the wire, of the formulation of the contact forces as follower loads and of explicitly time-dependent model parameters. The results of research contain studies of steady state equilibrium solutions and the proof of their LJAPUNOW stability, the calculation of eigenfrequencies, steady state time solutions under harmonically oscillating contact forces and the simulation of the material removal during the cutting process.:1 Einleitung 1.1 Technische Problemstellung und Motivation der Arbeit 1.2 Literaturübersicht 1.3 Thema und Gliederung der Arbeit 2 Theoretische Grundlagen 2.1 Notation und mathematische Grundlagen 2.2 Kinematische Grundlagen der Kontinuumsmechanik 2.2.1 Konfiguration und Betrachtungsweisen 2.2.2 Verformungskinematik 2.2.3 Zeitableitungen 2.3 Variationsrechnung 2.3.1 Grundlagen 2.3.2 Verallgemeinerte Variationen 2.4 Kinetik / Prinzip von HAMILTON 2.5 Diskretisierung von Feldproblemen 2.6 Stabilität stationärer Lösungen 2.6.1 Grundlagen der kinetischen Stabilitätstheorie 2.6.2 Erste Methode von LJAPUNOW 2.6.3 Stabilitätsbetrachtung für bewegte Kontinua 2.7 Zeitlösung 2.7.1 Homogene Lösung der Störungsdifferentialgleichungen 2.7.2 Partikuläre Lösung der Störungsdifferentialgleichungen 3 Mechanisches Modell und Modellvarianten 3.1 Kinematik des Drahtes in LAGRANGE-Koordinaten 3.2 Kinematik des Drahtes in EULER-Koordinaten 3.3 Modell I 3.3.1 Variationsformulierung und Feldgleichungen 3.3.2 Ortsdiskretisierung der Variationsformulierung 3.3.3 Stationäre Lage, Stabilitätsuntersuchung und Zeitlösung 3.4 Modell II 3.4.1 Variationsformulierung und Feldgleichungen 3.4.2 Ortsdiskretisierung der Variationsformulierung 3.4.3 Stationäre Lage, Stabilitätsuntersuchung und Zeitlösung 3.5 Numerische Umsetzung 3.6 Berechnungsergebnisse 3.6.1 Stationäre Lagen 3.6.2 Eigenfrequenzen 3.6.3 Stabilitätsuntersuchungen 3.6.4 Zeitlösungen 4 Ankopplung des Ingot und Modellierung des Materialabtrages 4.1 FE- Modell des Gesamtblocks 4.1.1 Bestimmung der mechanischen Eigenschaften des Ingot 4.1.2 Berechnungsergebnisse 4.2 Strukturmechanisches Modell des Gesamtblocks und Ankopplung an den Sägedraht 4.3 Variationsformulierungen der gekoppelten Gesamtsysteme unter Berücksichtigung des Materialabtrages 4.3.1 Gesamtmodell I 4.3.2 Gesamtmodell II 4.4 Simulation des Schnittvorganges 5 Zusammenfassung / Ausblick 6 Verzeichnisse 6.1 Literaturverzeichnis 6.1.1 Allgemeine Literatur 6.1.2 Literatur zum Thema Drahtsägen 6.1.3 Literatur zum Thema bewegte Kontinua Anhang
19

Optimal Control of Thermoviscoplasticity

Stötzner, Ailyn 09 November 2018 (has links)
This thesis is devoted to the study of optimal control problems governed by a quasistatic, thermoviscoplastic model at small strains with linear kinematic hardening, von Mises yield condition and mixed boundary conditions. Mathematically, the thermoviscoplastic equations are given by nonlinear partial differential equations and a variational inequality of second kind in order to represent the elastic, plastic and thermal effects. Taking into account thermal effects we have to handle numerous mathematical challenges during the analysis of the thermoviscoplastic model, mainly due to the low integrability of the nonlinear terms on the right-hand side of the heat equation. One of our main results is the existence of a unique weak solution, which is proved by means of a fixed-point argument and by employing maximal parabolic regularity theory. Furthermore, we define the related control-to-state mapping and investigate properties of this mapping such as boundedness, weak continuity and local Lipschitz continuity. Another major result is the finding that the mapping is Hadamard differentiable; a main ingredient is the reformulation of the variational inequality, the so called viscoplastic flow rule, as a Banach space-valued ordinary differential equation with non-differentiable right-hand side. Subsequently, we consider an optimal control problem governed by thermoviscoplasticity and show the existence of a minimizer. Finally, close this thesis with numerical examples. / Diese Arbeit ist der Untersuchung von Optimalsteuerproblemen gewidmet, denen ein quasistatisches, thermoviskoplastisches Model mit kleinen Deformationen, mit linearem kinematischen Hardening, von Mises Fließbedingung und gemischten Randbedingungen zu Grunde liegt. Mathematisch werden thermoviskoplastische Systeme durch nichtlineare partielle Differentialgleichungen und eine variationelle Ungleichung der zweiten Art beschrieben, um die elastischen, plastischen und thermischen Effekte abzubilden. Durch die Miteinbeziehung thermischer Effekte, treten verschiedene mathematische Schwierigkeiten während der Analysis des thermoviskoplastischen Systems auf, die ihren Ursprung hauptsächlich in der schlechten Regularität der nichtlinearen Terme auf der rechten Seite der Wärmeleitungsgleichung haben. Eines unserer Hauptresultate ist die Existenz einer eindeutigen schwachen Lösung, welches wir mit Hilfe von einem Fixpunktargument und unter Anwendung von maximaler parabolischer Regularitätstheorie beweisen. Zudem definieren wir die entsprechende Steuerungs-Zustands-Abbildung und untersuchen Eigenschaften dieser Abbildung wie die Beschränktheit, schwache Stetigkeit und lokale Lipschitz Stetigkeit. Ein weiteres wichtiges Resultat ist, dass die Abbildung Hadamard differenzierbar ist; Hauptbestandteil des Beweises ist die Umformulierung der variationellen Ungleichung, der sogenannten viskoplastischen Fließregel, als eine Banachraum-wertige gewöhnliche Differentialgleichung mit nichtdifferenzierbarer rechter Seite. Schließlich runden wir diese Arbeit mit numerischen Beispielen ab.

Page generated in 0.1202 seconds