• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 83
  • 31
  • 14
  • 9
  • 7
  • 7
  • 4
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 193
  • 57
  • 49
  • 35
  • 32
  • 26
  • 22
  • 21
  • 19
  • 18
  • 18
  • 17
  • 17
  • 17
  • 17
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Fermentuotų augalų produktų panaudojimas mėsos pusgaminių gamyboje / The use of ferment plant products in the production of meat ready-to-cook

Augėnienė, Dovilė 18 June 2013 (has links)
Šio darbo tikslas: nustatyti kietafaze fermentacija fermentuotų topinambų ir lubinų raugų įtaką mėsos pusgaminių kokybei ir saugai Darbo uždaviniai: Įvertinti kietafaze fermentacija (toliau – KF) fermentuotų skirtingomis pienarūgštėmis bakterijomis topinambų įtaką: kiaulienos pusgaminių fizikiniams – cheminiams rodikliams; jautienos pusgaminių fizikiniams – cheminiams rodikliams; lakiųjų junginių pokyčiams jautienos pusgaminiuose. Įvertinti KF fermentuotų skirtingomis pienarūgštėmis bakterijomis lubinų įtaką: kiaulienos pusgaminių fizikiniams – cheminiams rodikliams; jautienos pusgaminių fizikiniams – cheminiams rodikliams; lakiųjų junginių pokyčiams kiaulienos ir jautienos pusgaminiuose. Įvertinti KF fermentuotų skirtingomis pienarūgštėmis bakterijomis topinambų ir lubinų įtaką kiaulienos pusgaminių bendram bakteriniam užterštumui. Eksperimentui atlikti buvo gaminami kiaulienos ir jautienos pusgaminiai su 5 proc. raugu (fermentuotais lubinais ir topinambais, fermentacijai panaudojant tris pienarūgštes bakterijas: P. acidilactici KTU -05-7, P. pentosaceus KTU -05-8, L. sakei KTU -05-6). Naudota metodika: LST ISO 1442:2000 „Mėsa ir mėsos produktai. Drėgmės kiekio nustatymas (pamatinis metodas).; Grau ir Hammo (1956) metodas (vandens rišlumo nustatymas); Soksleto (1879) metodas (riebalų kiekio nustatymas); LST ISO 936:2000 „Mėsa ir mėsos produktai. Bendrojo pelenų kiekio nustatymas; lakiųjųi junginių analizė atlikta dujų chromatografu metodu. Išvados: Fermentuoti lubinų... [toliau žr. visą tekstą] / The aim of this paper is to identify the solid state fermentation of Jerusalem artichoke and lupine cultures affect to the quality and safety of meat ready-to-cook. Job tasks: Evaluate the solid state fermentation (thereinafter – SSF) fermente by lactic acid bacteria (thereinafter – LAB) in different Jerusalem artichoke influence: pork ready-to-cook physical- chemical parameters; beef ready-to-cook physical-chemical parameters; changes of volatile compounds in beef ready-to-cook. Evaluate the SSF of fermented in different LAB lupine influence: pork ready-to-cook physical- chemical parameters; beef ready-to-cook physical-chemical parameters; changes of volatile compounds in pork and beef ready-to-cook. Evaluate SFF ferment in different LAB Jerusalem artichoke and lupine influence to pork ready-to-cook impurity. In this experiment pork and beef ready-to-cook have been used with 5 percent product (fermented lupine and Jerusalem artichoke, for fementation were used 3 LAB: P. acidilactici KTU -05-7, P. pentosaceus KTU -05-8, L. sakei KTU -05-6). Methods: LST ISO 1442:2000 Meat and meat products – Determination of moisture content (References method).;Grau and Hamm (1956); Soxlet (1879); LST ISO 936:2000 Meat and meat products – Determination of total ash.; Detection volatile compounds using gas chromatography method. Conclusion: Ferment lupine and Jerusalem artichoke products have reduced pH in pork and beef ready-to-cook. Beef ready-to-cook fermentated with Jerusalem artichoke... [to full text]
132

Effects Of Retempering With Superplasticizer On Properties Of Prolonged Mixed Mineral Admixture Containing Concrete At Hot Weather Conditions

Yazan, Kazim 01 November 2005 (has links) (PDF)
Concrete which is manufactured in a mixing plant to be delivered to construction site in unhardened and plastic stage is called ready-mixed concrete. Because of technical and economical reasons, many mineral and chemical admixtures are used in ready-mixed concrete production. As a result of extra mixing and delayed placing of ready-mixed concrete (especially at hot weather conditions), there can be many problems about concrete, like slump loss. Addition of water for retempering concrete is the usual procedure, but addition of water without proper adjustment in mixture proportions, adversely affects compressive strength. During this study, effects of prolonged mixing and retempering with superplasticizer on properties of fresh and hardened concrete at hot weather conditions are observed. Some of the properties of concrete inspected are compressive strength, splitting tensile strength, slump and air content. All mixes contain air entrainer and water reducer at a standard amount. The difference between mixes comes from kind and amount of mineral admixture which cement is replaced by. During the study, fly ash, blast furnace slag, ground clay brick and natural pozzolan are used at amounts, 25% and 50% of cement. Also, a mixture of pure cement is prepared as control concrete. 15 cm initial slump is planned in the experimental work. After five minutes and at the end of first, second, third and fourth hours of mixing process, if needed retempering process is proceeded with superplasticizer and samples are taken. As a result of retempering with superplasticizer, the aimed slump values are obtained. The effects are than, observed. As a result of this study, it has been observed that replacing Portland cement with certain mineral admixtures, especially fly ash at certain amounts, can be a solution for slump loss problem, by retarding the slump loss effect of prolonged mixing. Also it has been seen that ground clay brick causes better performance for slump values at lateral stages of mixing with respect to pure Portland cement. Another important observation has been about the increase in the amount of air caused by air entraining admixtures in fresh concrete based on prolonged mixing at hot weather conditions.
133

Ready meals from the consumers' perspective : attitudes, beliefs, contexts and appropriateness

Prim, Mia January 2007 (has links)
The aim of this thesis was to gain a deeper understanding of ready meal consumers and their demands regarding ready meal products in different situations. Data were gathered with one extensive postal survey and five focus group discussions. The aim of the survey was to investigate the beliefs held about ready meal consumers, identify typical ready meal situations, assess the aims of eating ready meals in these meal situations and, finally, to identify demands regarding ready meals in the purchase situation. The results of the survey showed that the image of the frequent ready meal consumer was a person alone and stressed. The ready meal-consuming respondents confirmed this image when they were in actual situations eating ready meals but not in general. Four common ready meal-eating situations were identified. Ready meals were eaten most frequently as lunch at work and dinner at home. The social context in these situations was found to differ and to affect the activities performed. Ready meals for lunch at work were commonly eaten with colleagues and then discussing was a normal activity. For dinner at home ready meals were usually eaten alone watching TV. The reasons why ready meals were chosen as meal solutions differed. Ready meals suitable for lunch at work should be time-saving and for dinner at home the main demand was that the products should be convenient in order to avoid cooking. Purchaser demands regarding ready meals were found to be influenced by the gender of the purchaser and the intended end-consumer. Female ready meal purchasers were more demanding buyers than males, especially concerning health aspects. The aim of the focus groups was to explore consumers' reasons regarding the choice of ready meals for dinner and to find out how ready meals suit their needs. Ready meals were not regarded as being very appropriate for dinner at home. The social setting of the dinner was one of the most important aspects affecting the choice of what to eat. For ready meals to be suitable for dinner use they should be dishes out of the ordinary with more taste. This thesis has demonstrated that the context of meals affects the entire ready meal choice process and that there is a need to broaden the research perspective beyond the meal. The entire food provisioning process needs to be taken into account. / Målet med denna avhandling var att generera en större kunskap om färdigmatskonsumenter och deras krav på färdigmat i olika situationer. För att kunna göra detta genomfördes en omfattande postal enkät och fem fokusgrupper. Syftet med enkäten var att kartlägga existerande attityder till färdigmatskonsumenter, identifiera typiska färdigmatssituationer, undersöka skälen till att äta färdigmat i dessa situationer samt slutligen identifiera vad som är avgörande för inköpet av färdigmat. Resultaten av enkäten visade att bilden av en färdigmatskonsument var en ensam och tidspressad person. Bilden bekräftades av de färdigmatsätande respondenterna men stämde enbart i färdigmatssituationen som sådan. Fyra typiska färdigmatssituationer identifierades. Mest frekvent åt respondenterna färdigmat till lunch på arbetet och till middag hemma. Den sociala kontexten skilde sig åt i dessa situationer och visade sig påverka vilka aktiviteter som pågick under måltiden. Färdigmat till lunch på arbetet åts vanligen med kollegor och då diskuterade man oftast. Vid middagen hemma åts färdigmat oftast ensam framför TV:n. Motiven till att välja färdigmat skilde sig åt i olika situationer. För en lunch på arbetet var det viktigast att färdigmaten var tidsbesparande men för en middag hemma var det främst bekvämlighetsaspekten, i form av att slippa laga mat, som avgjorde. I inköpssituationen visade det sig att olika aspekter var olika viktiga för inköpet av färdigmat beroende på inköparens kön och om inköparen var den som skulle äta färdigmaten. Generellt var kvinnliga färdigmatsinköpare mer krävande, i synnerhet gällande hälsorelaterade aspekter. När färdigmat köptes åt någon annan så var det signifikant viktigare att det var lätt att öppna förpackningen samt att maten skulle vara lik den mat som den personen brukade äta. Målet med fokusgrupperna var att utforska konsumenternas resonemang kring valet av färdigmat till middag och komma fram till hur färdigmat passade deras behov. Slutsatsen var att utformningen av en middag hemma var mycket beroende av den sociala kontexten, dvs. vem som skulle äta. Framför allt närvaron av barn var viktig för de val som gjordes inför middagen. Färdigmat ansågs inte passa särskilt bra till en social middag hemma. Ett färdigmatssortiment anpassat för middag föreslogs inbegripa mer speciella rätter med mer smak. Den här avhandlingen har visat på att måltidskontexten påverkar hela valprocessen av färdigmat och att det därför finns ett behov av att bredda forskningsperspektivet bortom maten i sig och även bortom måltiden. Hela processen, från planeringsstadiet till omhändertagandet av disk och avfall, måste tas i beaktande.
134

Nutritional characteristics of New Zealand export lamb and functional properties of selected beef forequarter muscles : a thesis presented in partial fulfilment of the requirements for the degree of Masters of technology in Bioprocess Engineering at Massey University, Palmerston North, New Zealand

Jansen, Eion January 2001 (has links)
Richmond Ltd. has recently undergone a change in strategy, away from the traditional commodity based meat industry, towards the modern food business. To do this, opportunities to add value to their current product range must be identified. This involves the conversion of traditionally low value commodity based products into products that demand a premium. An example of this is converting muscles that are currently used for grinding meat into a further processed convenience food (i.e. ready meals). Another method is to add further value to premium products by making them more appealing to consumers (i.e. nutritional information on labels). This work details investigations into the functional properties of selected beef forequarter muscles (low value commodity products) and the nutritional properties of selected export lamb products (premium products). The functional properties of a number of beef forequarter muscles were measured to identify which had the best potential for further processing applications with respect to ready meals. The functional properties of tenderness, cook loss and shrinkage were measured for the Latissimus Dorsi, Pectorialis Profundus (Point End Brisket), Infraspinatus (Cross Cut Blade), Triceps Brachi Longhead (Main muscle in Bolar Shoulder Clod), Supraspinatus (Chuck Tender), Serratus Ventralis and Triceps Brachi Medialhead (Muscle in Bolar Shoulder Clod. From the tests conducted the Infraspinatus and the Triceps Brachi Longhead have been identified as having the best functional properties with respect to further processing for ready meal applications. As well as conducting tests to identify the forequarter muscles with the best potential for further processing applications, investigations were carried out to identify cooking regimes that would optimise the functional properties. This work confirmed that there are three major chemical reactions, which determine the resultant functional properties of cooked meat. They are the denaturation and aggregation of the myofibrillar proteins and the denaturation and solubilisation of connective tissue (collagen). At around 50°C myosin (45% to 50% of the myofibrillar proteins) denatures, which results in a substantial increase in cook loss and reduction in water holding capacity. At around 60°C collagen (main connective tissue protein) denatures, which results in a substantial increase in tenderness and increase in cook loss. This is because as the collagen denatures it loses it mechanical strength (increase in tenderness) and can no longer support its own structure, and causes it to contract. This contraction causes fluid within the meat and cook loss caused by the denaturation of myosin to be expelled from the meat by compressive forces (squeezed out). At around 70°C actomyosin (22% of the myofibrillar proteins) denatures. This results in a substantial increase in the cook loss and firming of the meat. The increase in cook loss or decrease in water holding capacity that occurs with myofibrillar protein denaturation is due to the fact that when these proteins denature and aggregate their ability to bind water is greatly reduced. From the results of the cooking regime trials it is recommended that for functional property considerations that during the cooking of further processed meat products (i.e. ready meal applications) a meat temperature of 62°C should be aimed for, for the slowest heating region during cooking (usually the centre). This is because it has been identified that a cooking temperature of 65°C should not be exceeded otherwise detrimental effects can occur to the functional properties of the cooked meat. For health concerns a 7D bacterial death reduction has to be achieved. This means that for a cooking temperature of 62°C the meat has to be held at this temperature for at least 5 minutes. Therefore the total cooking time would be the time needed to heat all the meat to 62°C plus 5 minutes to ensure a safe product. The heating or cooking system employed should also ensure that a minimal amount of the meat is heated above 65°C. This can be easily achieved by minimising the external cooking temperature, but long cooking times will result. An industrial cooking process will be a compromise between the cost associated with longer residence time and product functionality. As mentioned earlier another way to add value is to supply nutritional information for selected cuts. Consequentially one of the objectives of this project was to provide some nutritional information for selected meat cuts. Though the primary objective of this part of the project was to develop a method for producing the needed information, so that Richmond N.Z. Ltd. can develop further information on an as needs basis. The nutritional characteristics of a number of export lamb cuts from the saddle region has also been investigated and a method devised to allow further characterisation of other cuts. The method involves breaking down a standard cut into its constituent components (e.g. Frenched rack consists of loin eye, fat cap, intercostals and fatty tissue). The constituent components are tested for their nutritional properties. The frenched rack nutritional properties are calculated from the nutritional properties of the constituents components and the yield data (percentage of each constituent component within a frenched rack) for frenched racks. This method allowed the identification of the main sources of variation for nutritional characteristics. These differences were found to be caused by the lean to fat ratio, not nutritional differences in lean tissue from the same region of lamb (i.e. loin eye and tenderloin very similar nutritionally). The difference in lean to fat ration also accounts for the variation between grades (i.e. PX grade lamb cuts have a higher fat content than YX grade lamb cuts due to PX grade cuts having a higher percentage fat tissue in their cuts). The cuts characterised were the shortloin section (whole section or chop), rack section (whole section or chop), 75mm racks frenched 25mm, boneless loin and tenderloin for both PX and YX grade lamb. The method will be applicable to other regions of lamb (i.e. hindquarter and forequarter) for which nutritional information already exists, but for which yielding data will have to be collected. The method would also be applicable to other species such as beef and venison, but both nutritional data for constituent components and yielding data would have to be collected.
135

Nutritional characteristics of New Zealand export lamb and functional properties of selected beef forequarter muscles : a thesis presented in partial fulfilment of the requirements for the degree of Masters of technology in Bioprocess Engineering at Massey University, Palmerston North, New Zealand

Jansen, Eion January 2001 (has links)
Richmond Ltd. has recently undergone a change in strategy, away from the traditional commodity based meat industry, towards the modern food business. To do this, opportunities to add value to their current product range must be identified. This involves the conversion of traditionally low value commodity based products into products that demand a premium. An example of this is converting muscles that are currently used for grinding meat into a further processed convenience food (i.e. ready meals). Another method is to add further value to premium products by making them more appealing to consumers (i.e. nutritional information on labels). This work details investigations into the functional properties of selected beef forequarter muscles (low value commodity products) and the nutritional properties of selected export lamb products (premium products). The functional properties of a number of beef forequarter muscles were measured to identify which had the best potential for further processing applications with respect to ready meals. The functional properties of tenderness, cook loss and shrinkage were measured for the Latissimus Dorsi, Pectorialis Profundus (Point End Brisket), Infraspinatus (Cross Cut Blade), Triceps Brachi Longhead (Main muscle in Bolar Shoulder Clod), Supraspinatus (Chuck Tender), Serratus Ventralis and Triceps Brachi Medialhead (Muscle in Bolar Shoulder Clod. From the tests conducted the Infraspinatus and the Triceps Brachi Longhead have been identified as having the best functional properties with respect to further processing for ready meal applications. As well as conducting tests to identify the forequarter muscles with the best potential for further processing applications, investigations were carried out to identify cooking regimes that would optimise the functional properties. This work confirmed that there are three major chemical reactions, which determine the resultant functional properties of cooked meat. They are the denaturation and aggregation of the myofibrillar proteins and the denaturation and solubilisation of connective tissue (collagen). At around 50°C myosin (45% to 50% of the myofibrillar proteins) denatures, which results in a substantial increase in cook loss and reduction in water holding capacity. At around 60°C collagen (main connective tissue protein) denatures, which results in a substantial increase in tenderness and increase in cook loss. This is because as the collagen denatures it loses it mechanical strength (increase in tenderness) and can no longer support its own structure, and causes it to contract. This contraction causes fluid within the meat and cook loss caused by the denaturation of myosin to be expelled from the meat by compressive forces (squeezed out). At around 70°C actomyosin (22% of the myofibrillar proteins) denatures. This results in a substantial increase in the cook loss and firming of the meat. The increase in cook loss or decrease in water holding capacity that occurs with myofibrillar protein denaturation is due to the fact that when these proteins denature and aggregate their ability to bind water is greatly reduced. From the results of the cooking regime trials it is recommended that for functional property considerations that during the cooking of further processed meat products (i.e. ready meal applications) a meat temperature of 62°C should be aimed for, for the slowest heating region during cooking (usually the centre). This is because it has been identified that a cooking temperature of 65°C should not be exceeded otherwise detrimental effects can occur to the functional properties of the cooked meat. For health concerns a 7D bacterial death reduction has to be achieved. This means that for a cooking temperature of 62°C the meat has to be held at this temperature for at least 5 minutes. Therefore the total cooking time would be the time needed to heat all the meat to 62°C plus 5 minutes to ensure a safe product. The heating or cooking system employed should also ensure that a minimal amount of the meat is heated above 65°C. This can be easily achieved by minimising the external cooking temperature, but long cooking times will result. An industrial cooking process will be a compromise between the cost associated with longer residence time and product functionality. As mentioned earlier another way to add value is to supply nutritional information for selected cuts. Consequentially one of the objectives of this project was to provide some nutritional information for selected meat cuts. Though the primary objective of this part of the project was to develop a method for producing the needed information, so that Richmond N.Z. Ltd. can develop further information on an as needs basis. The nutritional characteristics of a number of export lamb cuts from the saddle region has also been investigated and a method devised to allow further characterisation of other cuts. The method involves breaking down a standard cut into its constituent components (e.g. Frenched rack consists of loin eye, fat cap, intercostals and fatty tissue). The constituent components are tested for their nutritional properties. The frenched rack nutritional properties are calculated from the nutritional properties of the constituents components and the yield data (percentage of each constituent component within a frenched rack) for frenched racks. This method allowed the identification of the main sources of variation for nutritional characteristics. These differences were found to be caused by the lean to fat ratio, not nutritional differences in lean tissue from the same region of lamb (i.e. loin eye and tenderloin very similar nutritionally). The difference in lean to fat ration also accounts for the variation between grades (i.e. PX grade lamb cuts have a higher fat content than YX grade lamb cuts due to PX grade cuts having a higher percentage fat tissue in their cuts). The cuts characterised were the shortloin section (whole section or chop), rack section (whole section or chop), 75mm racks frenched 25mm, boneless loin and tenderloin for both PX and YX grade lamb. The method will be applicable to other regions of lamb (i.e. hindquarter and forequarter) for which nutritional information already exists, but for which yielding data will have to be collected. The method would also be applicable to other species such as beef and venison, but both nutritional data for constituent components and yielding data would have to be collected.
136

Nutritional characteristics of New Zealand export lamb and functional properties of selected beef forequarter muscles : a thesis presented in partial fulfilment of the requirements for the degree of Masters of technology in Bioprocess Engineering at Massey University, Palmerston North, New Zealand

Jansen, Eion January 2001 (has links)
Richmond Ltd. has recently undergone a change in strategy, away from the traditional commodity based meat industry, towards the modern food business. To do this, opportunities to add value to their current product range must be identified. This involves the conversion of traditionally low value commodity based products into products that demand a premium. An example of this is converting muscles that are currently used for grinding meat into a further processed convenience food (i.e. ready meals). Another method is to add further value to premium products by making them more appealing to consumers (i.e. nutritional information on labels). This work details investigations into the functional properties of selected beef forequarter muscles (low value commodity products) and the nutritional properties of selected export lamb products (premium products). The functional properties of a number of beef forequarter muscles were measured to identify which had the best potential for further processing applications with respect to ready meals. The functional properties of tenderness, cook loss and shrinkage were measured for the Latissimus Dorsi, Pectorialis Profundus (Point End Brisket), Infraspinatus (Cross Cut Blade), Triceps Brachi Longhead (Main muscle in Bolar Shoulder Clod), Supraspinatus (Chuck Tender), Serratus Ventralis and Triceps Brachi Medialhead (Muscle in Bolar Shoulder Clod. From the tests conducted the Infraspinatus and the Triceps Brachi Longhead have been identified as having the best functional properties with respect to further processing for ready meal applications. As well as conducting tests to identify the forequarter muscles with the best potential for further processing applications, investigations were carried out to identify cooking regimes that would optimise the functional properties. This work confirmed that there are three major chemical reactions, which determine the resultant functional properties of cooked meat. They are the denaturation and aggregation of the myofibrillar proteins and the denaturation and solubilisation of connective tissue (collagen). At around 50°C myosin (45% to 50% of the myofibrillar proteins) denatures, which results in a substantial increase in cook loss and reduction in water holding capacity. At around 60°C collagen (main connective tissue protein) denatures, which results in a substantial increase in tenderness and increase in cook loss. This is because as the collagen denatures it loses it mechanical strength (increase in tenderness) and can no longer support its own structure, and causes it to contract. This contraction causes fluid within the meat and cook loss caused by the denaturation of myosin to be expelled from the meat by compressive forces (squeezed out). At around 70°C actomyosin (22% of the myofibrillar proteins) denatures. This results in a substantial increase in the cook loss and firming of the meat. The increase in cook loss or decrease in water holding capacity that occurs with myofibrillar protein denaturation is due to the fact that when these proteins denature and aggregate their ability to bind water is greatly reduced. From the results of the cooking regime trials it is recommended that for functional property considerations that during the cooking of further processed meat products (i.e. ready meal applications) a meat temperature of 62°C should be aimed for, for the slowest heating region during cooking (usually the centre). This is because it has been identified that a cooking temperature of 65°C should not be exceeded otherwise detrimental effects can occur to the functional properties of the cooked meat. For health concerns a 7D bacterial death reduction has to be achieved. This means that for a cooking temperature of 62°C the meat has to be held at this temperature for at least 5 minutes. Therefore the total cooking time would be the time needed to heat all the meat to 62°C plus 5 minutes to ensure a safe product. The heating or cooking system employed should also ensure that a minimal amount of the meat is heated above 65°C. This can be easily achieved by minimising the external cooking temperature, but long cooking times will result. An industrial cooking process will be a compromise between the cost associated with longer residence time and product functionality. As mentioned earlier another way to add value is to supply nutritional information for selected cuts. Consequentially one of the objectives of this project was to provide some nutritional information for selected meat cuts. Though the primary objective of this part of the project was to develop a method for producing the needed information, so that Richmond N.Z. Ltd. can develop further information on an as needs basis. The nutritional characteristics of a number of export lamb cuts from the saddle region has also been investigated and a method devised to allow further characterisation of other cuts. The method involves breaking down a standard cut into its constituent components (e.g. Frenched rack consists of loin eye, fat cap, intercostals and fatty tissue). The constituent components are tested for their nutritional properties. The frenched rack nutritional properties are calculated from the nutritional properties of the constituents components and the yield data (percentage of each constituent component within a frenched rack) for frenched racks. This method allowed the identification of the main sources of variation for nutritional characteristics. These differences were found to be caused by the lean to fat ratio, not nutritional differences in lean tissue from the same region of lamb (i.e. loin eye and tenderloin very similar nutritionally). The difference in lean to fat ration also accounts for the variation between grades (i.e. PX grade lamb cuts have a higher fat content than YX grade lamb cuts due to PX grade cuts having a higher percentage fat tissue in their cuts). The cuts characterised were the shortloin section (whole section or chop), rack section (whole section or chop), 75mm racks frenched 25mm, boneless loin and tenderloin for both PX and YX grade lamb. The method will be applicable to other regions of lamb (i.e. hindquarter and forequarter) for which nutritional information already exists, but for which yielding data will have to be collected. The method would also be applicable to other species such as beef and venison, but both nutritional data for constituent components and yielding data would have to be collected.
137

Nutritional characteristics of New Zealand export lamb and functional properties of selected beef forequarter muscles : a thesis presented in partial fulfilment of the requirements for the degree of Masters of technology in Bioprocess Engineering at Massey University, Palmerston North, New Zealand

Jansen, Eion January 2001 (has links)
Richmond Ltd. has recently undergone a change in strategy, away from the traditional commodity based meat industry, towards the modern food business. To do this, opportunities to add value to their current product range must be identified. This involves the conversion of traditionally low value commodity based products into products that demand a premium. An example of this is converting muscles that are currently used for grinding meat into a further processed convenience food (i.e. ready meals). Another method is to add further value to premium products by making them more appealing to consumers (i.e. nutritional information on labels). This work details investigations into the functional properties of selected beef forequarter muscles (low value commodity products) and the nutritional properties of selected export lamb products (premium products). The functional properties of a number of beef forequarter muscles were measured to identify which had the best potential for further processing applications with respect to ready meals. The functional properties of tenderness, cook loss and shrinkage were measured for the Latissimus Dorsi, Pectorialis Profundus (Point End Brisket), Infraspinatus (Cross Cut Blade), Triceps Brachi Longhead (Main muscle in Bolar Shoulder Clod), Supraspinatus (Chuck Tender), Serratus Ventralis and Triceps Brachi Medialhead (Muscle in Bolar Shoulder Clod. From the tests conducted the Infraspinatus and the Triceps Brachi Longhead have been identified as having the best functional properties with respect to further processing for ready meal applications. As well as conducting tests to identify the forequarter muscles with the best potential for further processing applications, investigations were carried out to identify cooking regimes that would optimise the functional properties. This work confirmed that there are three major chemical reactions, which determine the resultant functional properties of cooked meat. They are the denaturation and aggregation of the myofibrillar proteins and the denaturation and solubilisation of connective tissue (collagen). At around 50°C myosin (45% to 50% of the myofibrillar proteins) denatures, which results in a substantial increase in cook loss and reduction in water holding capacity. At around 60°C collagen (main connective tissue protein) denatures, which results in a substantial increase in tenderness and increase in cook loss. This is because as the collagen denatures it loses it mechanical strength (increase in tenderness) and can no longer support its own structure, and causes it to contract. This contraction causes fluid within the meat and cook loss caused by the denaturation of myosin to be expelled from the meat by compressive forces (squeezed out). At around 70°C actomyosin (22% of the myofibrillar proteins) denatures. This results in a substantial increase in the cook loss and firming of the meat. The increase in cook loss or decrease in water holding capacity that occurs with myofibrillar protein denaturation is due to the fact that when these proteins denature and aggregate their ability to bind water is greatly reduced. From the results of the cooking regime trials it is recommended that for functional property considerations that during the cooking of further processed meat products (i.e. ready meal applications) a meat temperature of 62°C should be aimed for, for the slowest heating region during cooking (usually the centre). This is because it has been identified that a cooking temperature of 65°C should not be exceeded otherwise detrimental effects can occur to the functional properties of the cooked meat. For health concerns a 7D bacterial death reduction has to be achieved. This means that for a cooking temperature of 62°C the meat has to be held at this temperature for at least 5 minutes. Therefore the total cooking time would be the time needed to heat all the meat to 62°C plus 5 minutes to ensure a safe product. The heating or cooking system employed should also ensure that a minimal amount of the meat is heated above 65°C. This can be easily achieved by minimising the external cooking temperature, but long cooking times will result. An industrial cooking process will be a compromise between the cost associated with longer residence time and product functionality. As mentioned earlier another way to add value is to supply nutritional information for selected cuts. Consequentially one of the objectives of this project was to provide some nutritional information for selected meat cuts. Though the primary objective of this part of the project was to develop a method for producing the needed information, so that Richmond N.Z. Ltd. can develop further information on an as needs basis. The nutritional characteristics of a number of export lamb cuts from the saddle region has also been investigated and a method devised to allow further characterisation of other cuts. The method involves breaking down a standard cut into its constituent components (e.g. Frenched rack consists of loin eye, fat cap, intercostals and fatty tissue). The constituent components are tested for their nutritional properties. The frenched rack nutritional properties are calculated from the nutritional properties of the constituents components and the yield data (percentage of each constituent component within a frenched rack) for frenched racks. This method allowed the identification of the main sources of variation for nutritional characteristics. These differences were found to be caused by the lean to fat ratio, not nutritional differences in lean tissue from the same region of lamb (i.e. loin eye and tenderloin very similar nutritionally). The difference in lean to fat ration also accounts for the variation between grades (i.e. PX grade lamb cuts have a higher fat content than YX grade lamb cuts due to PX grade cuts having a higher percentage fat tissue in their cuts). The cuts characterised were the shortloin section (whole section or chop), rack section (whole section or chop), 75mm racks frenched 25mm, boneless loin and tenderloin for both PX and YX grade lamb. The method will be applicable to other regions of lamb (i.e. hindquarter and forequarter) for which nutritional information already exists, but for which yielding data will have to be collected. The method would also be applicable to other species such as beef and venison, but both nutritional data for constituent components and yielding data would have to be collected.
138

Nutritional characteristics of New Zealand export lamb and functional properties of selected beef forequarter muscles : a thesis presented in partial fulfilment of the requirements for the degree of Masters of technology in Bioprocess Engineering at Massey University, Palmerston North, New Zealand

Jansen, Eion January 2001 (has links)
Richmond Ltd. has recently undergone a change in strategy, away from the traditional commodity based meat industry, towards the modern food business. To do this, opportunities to add value to their current product range must be identified. This involves the conversion of traditionally low value commodity based products into products that demand a premium. An example of this is converting muscles that are currently used for grinding meat into a further processed convenience food (i.e. ready meals). Another method is to add further value to premium products by making them more appealing to consumers (i.e. nutritional information on labels). This work details investigations into the functional properties of selected beef forequarter muscles (low value commodity products) and the nutritional properties of selected export lamb products (premium products). The functional properties of a number of beef forequarter muscles were measured to identify which had the best potential for further processing applications with respect to ready meals. The functional properties of tenderness, cook loss and shrinkage were measured for the Latissimus Dorsi, Pectorialis Profundus (Point End Brisket), Infraspinatus (Cross Cut Blade), Triceps Brachi Longhead (Main muscle in Bolar Shoulder Clod), Supraspinatus (Chuck Tender), Serratus Ventralis and Triceps Brachi Medialhead (Muscle in Bolar Shoulder Clod. From the tests conducted the Infraspinatus and the Triceps Brachi Longhead have been identified as having the best functional properties with respect to further processing for ready meal applications. As well as conducting tests to identify the forequarter muscles with the best potential for further processing applications, investigations were carried out to identify cooking regimes that would optimise the functional properties. This work confirmed that there are three major chemical reactions, which determine the resultant functional properties of cooked meat. They are the denaturation and aggregation of the myofibrillar proteins and the denaturation and solubilisation of connective tissue (collagen). At around 50°C myosin (45% to 50% of the myofibrillar proteins) denatures, which results in a substantial increase in cook loss and reduction in water holding capacity. At around 60°C collagen (main connective tissue protein) denatures, which results in a substantial increase in tenderness and increase in cook loss. This is because as the collagen denatures it loses it mechanical strength (increase in tenderness) and can no longer support its own structure, and causes it to contract. This contraction causes fluid within the meat and cook loss caused by the denaturation of myosin to be expelled from the meat by compressive forces (squeezed out). At around 70°C actomyosin (22% of the myofibrillar proteins) denatures. This results in a substantial increase in the cook loss and firming of the meat. The increase in cook loss or decrease in water holding capacity that occurs with myofibrillar protein denaturation is due to the fact that when these proteins denature and aggregate their ability to bind water is greatly reduced. From the results of the cooking regime trials it is recommended that for functional property considerations that during the cooking of further processed meat products (i.e. ready meal applications) a meat temperature of 62°C should be aimed for, for the slowest heating region during cooking (usually the centre). This is because it has been identified that a cooking temperature of 65°C should not be exceeded otherwise detrimental effects can occur to the functional properties of the cooked meat. For health concerns a 7D bacterial death reduction has to be achieved. This means that for a cooking temperature of 62°C the meat has to be held at this temperature for at least 5 minutes. Therefore the total cooking time would be the time needed to heat all the meat to 62°C plus 5 minutes to ensure a safe product. The heating or cooking system employed should also ensure that a minimal amount of the meat is heated above 65°C. This can be easily achieved by minimising the external cooking temperature, but long cooking times will result. An industrial cooking process will be a compromise between the cost associated with longer residence time and product functionality. As mentioned earlier another way to add value is to supply nutritional information for selected cuts. Consequentially one of the objectives of this project was to provide some nutritional information for selected meat cuts. Though the primary objective of this part of the project was to develop a method for producing the needed information, so that Richmond N.Z. Ltd. can develop further information on an as needs basis. The nutritional characteristics of a number of export lamb cuts from the saddle region has also been investigated and a method devised to allow further characterisation of other cuts. The method involves breaking down a standard cut into its constituent components (e.g. Frenched rack consists of loin eye, fat cap, intercostals and fatty tissue). The constituent components are tested for their nutritional properties. The frenched rack nutritional properties are calculated from the nutritional properties of the constituents components and the yield data (percentage of each constituent component within a frenched rack) for frenched racks. This method allowed the identification of the main sources of variation for nutritional characteristics. These differences were found to be caused by the lean to fat ratio, not nutritional differences in lean tissue from the same region of lamb (i.e. loin eye and tenderloin very similar nutritionally). The difference in lean to fat ration also accounts for the variation between grades (i.e. PX grade lamb cuts have a higher fat content than YX grade lamb cuts due to PX grade cuts having a higher percentage fat tissue in their cuts). The cuts characterised were the shortloin section (whole section or chop), rack section (whole section or chop), 75mm racks frenched 25mm, boneless loin and tenderloin for both PX and YX grade lamb. The method will be applicable to other regions of lamb (i.e. hindquarter and forequarter) for which nutritional information already exists, but for which yielding data will have to be collected. The method would also be applicable to other species such as beef and venison, but both nutritional data for constituent components and yielding data would have to be collected.
139

Nutritional characteristics of New Zealand export lamb and functional properties of selected beef forequarter muscles : a thesis presented in partial fulfilment of the requirements for the degree of Masters of technology in Bioprocess Engineering at Massey University, Palmerston North, New Zealand

Jansen, Eion January 2001 (has links)
Richmond Ltd. has recently undergone a change in strategy, away from the traditional commodity based meat industry, towards the modern food business. To do this, opportunities to add value to their current product range must be identified. This involves the conversion of traditionally low value commodity based products into products that demand a premium. An example of this is converting muscles that are currently used for grinding meat into a further processed convenience food (i.e. ready meals). Another method is to add further value to premium products by making them more appealing to consumers (i.e. nutritional information on labels). This work details investigations into the functional properties of selected beef forequarter muscles (low value commodity products) and the nutritional properties of selected export lamb products (premium products). The functional properties of a number of beef forequarter muscles were measured to identify which had the best potential for further processing applications with respect to ready meals. The functional properties of tenderness, cook loss and shrinkage were measured for the Latissimus Dorsi, Pectorialis Profundus (Point End Brisket), Infraspinatus (Cross Cut Blade), Triceps Brachi Longhead (Main muscle in Bolar Shoulder Clod), Supraspinatus (Chuck Tender), Serratus Ventralis and Triceps Brachi Medialhead (Muscle in Bolar Shoulder Clod. From the tests conducted the Infraspinatus and the Triceps Brachi Longhead have been identified as having the best functional properties with respect to further processing for ready meal applications. As well as conducting tests to identify the forequarter muscles with the best potential for further processing applications, investigations were carried out to identify cooking regimes that would optimise the functional properties. This work confirmed that there are three major chemical reactions, which determine the resultant functional properties of cooked meat. They are the denaturation and aggregation of the myofibrillar proteins and the denaturation and solubilisation of connective tissue (collagen). At around 50°C myosin (45% to 50% of the myofibrillar proteins) denatures, which results in a substantial increase in cook loss and reduction in water holding capacity. At around 60°C collagen (main connective tissue protein) denatures, which results in a substantial increase in tenderness and increase in cook loss. This is because as the collagen denatures it loses it mechanical strength (increase in tenderness) and can no longer support its own structure, and causes it to contract. This contraction causes fluid within the meat and cook loss caused by the denaturation of myosin to be expelled from the meat by compressive forces (squeezed out). At around 70°C actomyosin (22% of the myofibrillar proteins) denatures. This results in a substantial increase in the cook loss and firming of the meat. The increase in cook loss or decrease in water holding capacity that occurs with myofibrillar protein denaturation is due to the fact that when these proteins denature and aggregate their ability to bind water is greatly reduced. From the results of the cooking regime trials it is recommended that for functional property considerations that during the cooking of further processed meat products (i.e. ready meal applications) a meat temperature of 62°C should be aimed for, for the slowest heating region during cooking (usually the centre). This is because it has been identified that a cooking temperature of 65°C should not be exceeded otherwise detrimental effects can occur to the functional properties of the cooked meat. For health concerns a 7D bacterial death reduction has to be achieved. This means that for a cooking temperature of 62°C the meat has to be held at this temperature for at least 5 minutes. Therefore the total cooking time would be the time needed to heat all the meat to 62°C plus 5 minutes to ensure a safe product. The heating or cooking system employed should also ensure that a minimal amount of the meat is heated above 65°C. This can be easily achieved by minimising the external cooking temperature, but long cooking times will result. An industrial cooking process will be a compromise between the cost associated with longer residence time and product functionality. As mentioned earlier another way to add value is to supply nutritional information for selected cuts. Consequentially one of the objectives of this project was to provide some nutritional information for selected meat cuts. Though the primary objective of this part of the project was to develop a method for producing the needed information, so that Richmond N.Z. Ltd. can develop further information on an as needs basis. The nutritional characteristics of a number of export lamb cuts from the saddle region has also been investigated and a method devised to allow further characterisation of other cuts. The method involves breaking down a standard cut into its constituent components (e.g. Frenched rack consists of loin eye, fat cap, intercostals and fatty tissue). The constituent components are tested for their nutritional properties. The frenched rack nutritional properties are calculated from the nutritional properties of the constituents components and the yield data (percentage of each constituent component within a frenched rack) for frenched racks. This method allowed the identification of the main sources of variation for nutritional characteristics. These differences were found to be caused by the lean to fat ratio, not nutritional differences in lean tissue from the same region of lamb (i.e. loin eye and tenderloin very similar nutritionally). The difference in lean to fat ration also accounts for the variation between grades (i.e. PX grade lamb cuts have a higher fat content than YX grade lamb cuts due to PX grade cuts having a higher percentage fat tissue in their cuts). The cuts characterised were the shortloin section (whole section or chop), rack section (whole section or chop), 75mm racks frenched 25mm, boneless loin and tenderloin for both PX and YX grade lamb. The method will be applicable to other regions of lamb (i.e. hindquarter and forequarter) for which nutritional information already exists, but for which yielding data will have to be collected. The method would also be applicable to other species such as beef and venison, but both nutritional data for constituent components and yielding data would have to be collected.
140

Nutritional characteristics of New Zealand export lamb and functional properties of selected beef forequarter muscles : a thesis presented in partial fulfilment of the requirements for the degree of Masters of technology in Bioprocess Engineering at Massey University, Palmerston North, New Zealand

Jansen, Eion January 2001 (has links)
Richmond Ltd. has recently undergone a change in strategy, away from the traditional commodity based meat industry, towards the modern food business. To do this, opportunities to add value to their current product range must be identified. This involves the conversion of traditionally low value commodity based products into products that demand a premium. An example of this is converting muscles that are currently used for grinding meat into a further processed convenience food (i.e. ready meals). Another method is to add further value to premium products by making them more appealing to consumers (i.e. nutritional information on labels). This work details investigations into the functional properties of selected beef forequarter muscles (low value commodity products) and the nutritional properties of selected export lamb products (premium products). The functional properties of a number of beef forequarter muscles were measured to identify which had the best potential for further processing applications with respect to ready meals. The functional properties of tenderness, cook loss and shrinkage were measured for the Latissimus Dorsi, Pectorialis Profundus (Point End Brisket), Infraspinatus (Cross Cut Blade), Triceps Brachi Longhead (Main muscle in Bolar Shoulder Clod), Supraspinatus (Chuck Tender), Serratus Ventralis and Triceps Brachi Medialhead (Muscle in Bolar Shoulder Clod. From the tests conducted the Infraspinatus and the Triceps Brachi Longhead have been identified as having the best functional properties with respect to further processing for ready meal applications. As well as conducting tests to identify the forequarter muscles with the best potential for further processing applications, investigations were carried out to identify cooking regimes that would optimise the functional properties. This work confirmed that there are three major chemical reactions, which determine the resultant functional properties of cooked meat. They are the denaturation and aggregation of the myofibrillar proteins and the denaturation and solubilisation of connective tissue (collagen). At around 50°C myosin (45% to 50% of the myofibrillar proteins) denatures, which results in a substantial increase in cook loss and reduction in water holding capacity. At around 60°C collagen (main connective tissue protein) denatures, which results in a substantial increase in tenderness and increase in cook loss. This is because as the collagen denatures it loses it mechanical strength (increase in tenderness) and can no longer support its own structure, and causes it to contract. This contraction causes fluid within the meat and cook loss caused by the denaturation of myosin to be expelled from the meat by compressive forces (squeezed out). At around 70°C actomyosin (22% of the myofibrillar proteins) denatures. This results in a substantial increase in the cook loss and firming of the meat. The increase in cook loss or decrease in water holding capacity that occurs with myofibrillar protein denaturation is due to the fact that when these proteins denature and aggregate their ability to bind water is greatly reduced. From the results of the cooking regime trials it is recommended that for functional property considerations that during the cooking of further processed meat products (i.e. ready meal applications) a meat temperature of 62°C should be aimed for, for the slowest heating region during cooking (usually the centre). This is because it has been identified that a cooking temperature of 65°C should not be exceeded otherwise detrimental effects can occur to the functional properties of the cooked meat. For health concerns a 7D bacterial death reduction has to be achieved. This means that for a cooking temperature of 62°C the meat has to be held at this temperature for at least 5 minutes. Therefore the total cooking time would be the time needed to heat all the meat to 62°C plus 5 minutes to ensure a safe product. The heating or cooking system employed should also ensure that a minimal amount of the meat is heated above 65°C. This can be easily achieved by minimising the external cooking temperature, but long cooking times will result. An industrial cooking process will be a compromise between the cost associated with longer residence time and product functionality. As mentioned earlier another way to add value is to supply nutritional information for selected cuts. Consequentially one of the objectives of this project was to provide some nutritional information for selected meat cuts. Though the primary objective of this part of the project was to develop a method for producing the needed information, so that Richmond N.Z. Ltd. can develop further information on an as needs basis. The nutritional characteristics of a number of export lamb cuts from the saddle region has also been investigated and a method devised to allow further characterisation of other cuts. The method involves breaking down a standard cut into its constituent components (e.g. Frenched rack consists of loin eye, fat cap, intercostals and fatty tissue). The constituent components are tested for their nutritional properties. The frenched rack nutritional properties are calculated from the nutritional properties of the constituents components and the yield data (percentage of each constituent component within a frenched rack) for frenched racks. This method allowed the identification of the main sources of variation for nutritional characteristics. These differences were found to be caused by the lean to fat ratio, not nutritional differences in lean tissue from the same region of lamb (i.e. loin eye and tenderloin very similar nutritionally). The difference in lean to fat ration also accounts for the variation between grades (i.e. PX grade lamb cuts have a higher fat content than YX grade lamb cuts due to PX grade cuts having a higher percentage fat tissue in their cuts). The cuts characterised were the shortloin section (whole section or chop), rack section (whole section or chop), 75mm racks frenched 25mm, boneless loin and tenderloin for both PX and YX grade lamb. The method will be applicable to other regions of lamb (i.e. hindquarter and forequarter) for which nutritional information already exists, but for which yielding data will have to be collected. The method would also be applicable to other species such as beef and venison, but both nutritional data for constituent components and yielding data would have to be collected.

Page generated in 0.0276 seconds