101 |
Estudo da caracterização de nódulos em mamogramas através de uma configuração de rede neural artificial / Study of breast masses characterization in mammograms by an artificial neural network configurationKinoshita, Sérgio Koodi 27 October 1998 (has links)
Este trabalho apresenta um estudo de classificação de nódulos em mamograma digitalizados através de um classificador de rede neural artificial (RNA). O algoritmo de treinamento de \"backpropagation\" foi utilizado para ajustar os pesos da RNA. O objetivo principal deste trabalho foi determinar um método para analisar e selecionar a melhor configuração de atributos e topologia da RNA para classificar lesões mamárias do tipo nódulo. Foram escolhidas 118 imagens de regiões de interesse (ROI), sendo 68 benignas e 50 malignas de duas bases de imagens: uma do Hospital das Clínicas de Ribeirão Preto, da Universidade de São Paulo, e outra do MIAS-UK (Mammographic Image Analysis Society). O processo completo envolveu quatro etapas: detecção, extração e seleção de atributos, e classificação. Na etapa de detecção, as imagens foram submetidas ao processo combinado das técnicas segmentação de thresholding, morfologia matemática e crescimento de região. Foram extraídos 14 atributos de textura e 14 atributos de forma. Para selecionar os atributos mais discriminantes, foi utilizado o método de Jeffries-Matusita. Foram selecionados três grupos de atributos de forma, três de atributos de textura e três de atributos combinados. Análise pela curva ROC foram dirigidas para avaliar o desempenho do classificador de rede neural artificial (RNA). Os melhores resultados obtidos foram: para o grupo de atributos de forma com 5 unidades escondidas, a área dentro da curva ROC foi de 0.99, taxa de acerto de 98,21%, taxa de especificidade de 98,37% e taxa de sensibilidade de 98.00%; para o grupo de atributos de textura com 4 unidades escondidas, a área dentro da curva foi de 0.98, taxa de acerto de 97,08%, taxa de especificidade de 98,53% e taxa de sensibilidade de 95.11%; para o grupo de atributos combinados de textura e forma com 3 unidades escondidas, a área dentro da curva foi de 0.99, taxa de acerto de 98,21%, taxa de especificidade de 100.00% e taxa de sensibilidade de 95.78%. / This work presents a study of masses classification in digitized mammograms by means of artificial neural network (ANN). The backpropagation training algorithm was used to adjust the weights of ANN. The aim of this work was to determine a methodology to analyze and selection of the best feature subset and ANN topology to classify masses lesions. A total of 118 regions of interest images were chosen (68 benign and 50 malignant lesions) from two image databases: one from \"Hospital das Clínicas de Ribeirão Preto\", at the University of São Paulo, and other from Mammographic lmage Analysis Society (MIAS-UK). The whole process involved four steps: segmentation, feature extraction, selection, and classification. In the first step, the images were submitted to a combined process of thresholding, mathematical morphology, and region growing techniques. In the second step, fourteen texture features and fourteen shape features were extracted. The Jeffries-Matusita method was used to select the best features. The results of this stage were the selection of three shape feature sets, three texture feature sets, and three combined feature sets. The Receiver Operating Characteristic (ROC) analysis were conducted to evaluated the ANN classifier performance. The best result obtained for shape feature set was obtained using a ANN with 5 hidden units, the area under ROC curve was of 0.99, classification rate of 98.21%, specificity rate of 98.37% and sensitivity rate of 98.00%. For texture feature set, the best result was using a ANN with 4 hidden units, the area under ROC curve was of 0.98, classification rate of 97.08%, specificity rate of 98.53% and sensitivity rate of 95.11%. Finally, for the combined feature set (texture and shape) the best result obtained was using a ANN with 3 hidden units, the area under ROC curve was of 0.99, classification rate of 98.21%, specificity rate of 100.00% and sensitivity rate of 95.78%.
|
102 |
Extração de regras de redes neurais artificiais aplicadas ao problema da determinação da estrutura secundária de proteínas / Rule extraction from artificial neural networks applied to the problem of protein secondary structure predictionBattistella, Eduardo 09 March 2004 (has links)
Made available in DSpace on 2015-03-05T13:53:43Z (GMT). No. of bitstreams: 0
Previous issue date: 9 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Extração de Regras de Redes Neurais Artificiais Aplicadas ao Problema da Previsão da Estrutura Secundária de Proteínas apresenta o estudo feito sobre a extração de conhecimento de Redes Neurais na forma de regras difusas. Na aplicação desta técnica, foi utilizado o problema da classificação da estrutura secundária de proteínas, em alfa, beta e coil, a partir da estrutura primária.
Serão apresentadas as implementações feitas para viabilizar esta tarefa. Dentre elas: a implementação de recursos adicionais ao software de extração de regras; a definição de uma metodologia de extração de regras; a implementação desta metodologia; e a análise das regras extraídas.
Dentre os recursos implementados no processo de extração, sra visto que o foco principal foi o de embasar o conhecimento extraído sobre um suporte estático e disponibilizar medidas complementares para sua avaliação.
Na definição da metodologia, será visto que cuidados devem ser tomados na preparação da base de dados e na definição da estrutura da rede / This work presents a study about knowledge extraction from Neural Networks in the form of fuzzy rules. In the application of this technique, it was investigated the problem of classification of the protein secondary structure (alpha, beta and coil) from its primary structure.
The implementations that make possible this task will be presented. Amongst them: the implementation of new features in the rule extraction software; the definition of a methodology for the rule extraction process; the implementation of this methodology; and the analysis of the rules.
Amongst the implemented features in the rules extraction process, it will be noticed that the main point was to provide a statistical support for the knowledge extracted and to make available additional resources to measure this information.
In the definition of this methodology, it will be seen that some considerations must be observed in the database preparation and in definition of the network structure. Observations that had been followed and pr
|
103 |
MÉTODO DE CLASSIFICAÇÃO DE PRAGAS POR MEIO DE REDE NEURAL CONVOLUCIONAL PROFUNDARosa, Renan de Paula 19 November 2018 (has links)
Submitted by Angela Maria de Oliveira (amolivei@uepg.br) on 2019-02-28T17:58:29Z
No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Renan Rosa.pdf: 4067327 bytes, checksum: eb0bd9e84fbd89a24b4a397c9655fa62 (MD5) / Made available in DSpace on 2019-02-28T17:58:29Z (GMT). No. of bitstreams: 2
license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)
Renan Rosa.pdf: 4067327 bytes, checksum: eb0bd9e84fbd89a24b4a397c9655fa62 (MD5)
Previous issue date: 2018-11-19 / As pragas em lavouras causam prejuízos econômicos na agricultura, reduzindo a produção e consequentemente os lucros. O manejo de pragas é essencial, para reduzir estes prejuízos, e consiste na identificação e posterior controle desse tipo de ameaça. O controle é fundamentalmente dependente da identificação, pois é a partir dela que o manejo é feito. A identificação é feita visualmente, baseando-se nas características da praga. Essas características são inerentes e diferem de espécie para espécie. Devido à dificuldade da identificação, esse processo é realizado principalmente por profissionais especializados na área, o que acarreta na concentração do conhecimento. Esta dissertação apresenta uma metodologia para classificação de pragas por meio de técnicas de computação, onde um sistema computacional do tipo clienteservidor foi criado a fim de prover a classificação de pragas por meio de serviço, que é realizado pelo uso de rede neural convolucional baseada na arquitetura Inception V3. As pragas Anticarsia Gemmatalis, Helicoverpa armigera e Spodoptera Cosmioides, foram escolhidas para classificação por serem bastante comuns no estado do Paraná. A rede neural convolucional obteve índice de acerto de 92,5%. / Pests on crops cause economic damage to agriculture, reducing production and consequently profits. Pest management is essential to reduce these losses, and consists in the identification and subsequent control of this type of threat. Control is fundamentally dependent on identification, because management is done from it. The identification is made visually, based on the characteristics of the pest. These characteristics are inherent and differ from species to species. Due to the difficulty of identification, this process is carried out mainly by professionals specialized in the area, which entails the concentration of knowledge. This dissertation presents a methodology for pest classification by means of computational techniques, in which a client-server computational system was created in order to provide pest classification by means of a service, which is performed by the use of convolutional neural network based in the Inception V3 architecture. The pests Anticarsia Gemmatalis, Helicoverpa armigera and Spodoptera Cosmioides, were chosen for classification because they are quite common in the state of Paraná. The convolutional neural network obtained a success rate of 92.5%.
|
104 |
Variáveis sistemicamente prevalentes para a eficiência técnica: avaliação da operação de um forno de reaquecimento no setor siderúrgicoBrasil, João Eduardo Sampaio 23 August 2018 (has links)
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2018-11-08T13:01:52Z
No. of bitstreams: 1
João Eduardo Sampaio_.pdf: 5481805 bytes, checksum: ff4fd651d904071e9a30223e3222c4dc (MD5) / Made available in DSpace on 2018-11-08T13:01:52Z (GMT). No. of bitstreams: 1
João Eduardo Sampaio_.pdf: 5481805 bytes, checksum: ff4fd651d904071e9a30223e3222c4dc (MD5)
Previous issue date: 2018-08-23 / Nenhuma / O Brasil precisa de um setor siderúrgico eficiente e competitivo para enfrentar a concorrência externa. A siderurgia é um ramo da metalurgia responsável pela fabricação do aço, e dentre os processos produtivos do setor, destaca-se o processo de laminação do aço, que utiliza fornos de reaquecimento. Esta pesquisa emprega a modelagem com as técnicas do Pensamento Sistêmico e da Dinâmica de Sistemas na formulação de um modelo computacional no contexto dos fornos de reaquecimento. A partir da validação do modelo, são utilizadas a Análise Envoltória de dados, para avaliar a eficiência técnica, e a regressão Tobit, para identificar variáveis estatisticamente significantes. Essas variáveis são usadas para definição dos cenários simulados. Posteriormente, as eficiências dos cenários são avaliadas por meio de estatística descritiva. Também são avaliados alvos e folgas e é testada a hipótese de igualdade da média com o teste de Welch e Post-Hoc Kruskal-Wallis. Finalmente, é realizada a análise explicativa e, com a aplicação da técnica computacional da Rede Neural Artificial, são identificadas as variáveis prevalentes da eficiência técnica do forno de reaquecimento. Tal estudo possibilita e estimula o planejamento, a gestão e a tomada de decisão a partir da análise das melhores opções. Permite, ainda, a tomada de ações com base no conhecimento prévio, contribuindo para iniciativas pontuais e focadas na competitividade. / Brazil needs an efficient and competitive steel sector to face external competition. The siderurgy is a branch of metallurgy responsible for steelmaking, and among the productive processes in the industry the steelmaking process that uses the reheating furnaces can be highlighted. This research employs the modeling with the techniques of Systemic Thinking and Systems Dynamics in the formulation of a computational model in the context of reheating furnaces. Then, using the validated model, Data Envelopment Analysis was used, evaluating the technical efficiency and the use of the Tobit regression of statistically significant
variables. These variables are used to define the simulated scenarios. Subsequently, the scenarios efficiencies were evaluated by means of descriptive statistics, evaluated targets and backlash and tested the hypothesis of equality of the average with the test of Welch and Post-Hoc Kruskal-Wallis. Finally, the explanatory analysis and identified with the application of the computational technique of the Artificial Neural Network are the prevalent variables of the technical efficiency of the reheating furnace. This study enables and stimulates planning, management and decision making based on the analysis of the best options and allows the taking of actions based on previous knowledge, and thus contributes to specific initiatives focused on competitiveness.
|
105 |
Identificação de variáveis prevalentes para situações de stress em parques de tancagem: uma análise a partir das redes neurais artificiaisBortolini, Filipe 20 November 2015 (has links)
Submitted by Silvana Teresinha Dornelles Studzinski (sstudzinski) on 2016-04-28T12:47:41Z
No. of bitstreams: 1
FILIPE BORTOLINI_.pdf: 6329595 bytes, checksum: 3dd8331791bb827a0806c8da5947b553 (MD5) / Made available in DSpace on 2016-04-28T12:47:41Z (GMT). No. of bitstreams: 1
FILIPE BORTOLINI_.pdf: 6329595 bytes, checksum: 3dd8331791bb827a0806c8da5947b553 (MD5)
Previous issue date: 2015-11-20 / Nenhuma / A melhoria no planejamento de operações é uma das preocupações constantes das refinarias de petróleo, e a gestão eficiente dos estoques em parques de tancagem é um ponto fundamental nesse contexto. No entanto, são poucos os trabalhos que tratam especificamente deste assunto e as ferramentas de simulação existentes são caras e não refletem a realidade de muitas refinarias. A gestão ineficiente ou o dimensionamento inadequado dos parques de tancagem, por sua vez, podem gerar uma série de prejuízos. Um parque superdimensionado gera custos de gestão e manutenção, além dos custos do estoque. Um parque subdimensionado pode gerar perdas devido a desabastecimentos e degradação de produtos, entre outros. Às situações em que o subdimensionamento gera impactos na produção, com ou sem perdas financeiras, dá-se a denominação de stress em parques de tancagem. Esse trabalho descreve a implantação de uma ferramenta que possibilita a quantificação do stress em parques de tancagem. Essa quantificação é feita com o apoio de uma heurística baseada em dados relativos às movimentações, manutenções e níveis de estoque dos tanques. Também descreve a forma de cálculo de cinquenta e nove variáveis relacionadas às movimentações dos tanques. A influência que essas variáveis têm na formação de situações de stress foi analisada através do uso de redes neurais artificiais. Essa influência foi quantificada em cinco diferentes cenários, considerando-se a existência ou não de um ciclo de certificação de produto e a natureza das variáveis analisadas. Como resultado, identifica-se que as variáveis relacionadas ao tempo de esvaziamento, tempo de tanque parado em nível baixo e tempo de enchimento são as prevalentes na criação de situações de stress em parques de tancagem no contexto analisado. Também são mapeados e formalizados os fluxos dos algoritmos para determinação das etapas do ciclo de um tanque, e é definida uma fórmula para a determinação do nível de stress em um parque de tancagem em um determinado período de tempo. / The improvement in operations planning is a constant concern of oil refineries, and the efficient management of inventories in tank farm sites is a key point in this context. However, there are few studies that deal specifically with this issue and existing simulation tools are expensive and do not reflect the reality of many refineries. The inefficient management or improper sizing of tank farm sites, in turn, can generate significant financial losses. A oversized tank farm generates management and maintenance costs, in addition to inventory costs. An undersized tank farm can generate losses due to shortages and degradation of products, among others. The situations in which the undersizing generates impact in operations, with or without financial losses, is defined as stress in tank farm sites. The present study describes the implementation of a tool that allows the quantification of stress in tank farm sites. This measurement is made using a heuristic based on data on the inventory movimentation, maintenance status and inventory levels of the tanks. It also describes the calculation method of fifty-nine variables related to the movimentation of inventory. The influence of these variables on the formation of stress situations was analyzed using artificial neural networks. This influence was quantified in five different scenarios, considering whether or not a product certification cycle and the nature of the variables. As a result, it is identified that the variables related to emptying time, tank downtime at low level and fill time are prevalent in creating stressful situations in tank farm sites in the analyzed context. They are also mapped and formalized flows of algorithms to determine the stages of a tank cycle, and is defined a formula for determining the stress level in a tankage park at a given time.
|
106 |
Projeto de um módulo de aquisição e pré-processamento de imagem colorida baseado em computação reconfigurável e aplicado a robôs móveis / A project of a module for acquisition and color image pre-processing based on reconfigurable computation and applied to mobile robotsBonato, Vanderlei 14 May 2004 (has links)
Este trabalho propõe um módulo básico de aquisição e pré-processamento de imagem colorida aplicado a robôs móveis, implementado em hardware reconfigurável, dentro do conceito de sistemas SoC (System-on-a-Chip). O módulo básico é apresentado em conjunto com funções mais específicas de pré-processamento de imagem, que são utilizadas como base para a verificação das funcionalidades implementadas no trabalho proposto. As principais funções realizadas pelo módulo básico são: montagem de frames a partir dos pixels obtidos da câmera digital CMOS, controle dos diversos parâmetros de configuração da câmera e conversão de padrões de cores. Já as funções mais específicas abordam as etapas de segmentação, centralização, redução e interpretação das imagens adquiridas. O tipo de dispositivo reconfigurável utilizado neste trabalho é o FPGA (Field-Programmable Gate Array), que permite maior adequação das funções específicas às necessidades das aplicações, tendo sempre como base o módulo proposto. O sistema foi aplicado para reconhecer gestos e obteve a taxa 99,57% de acerto operando a 31,88 frames por segundo. / This work proposes a basic module for a mobile robot color image capture and pre-processing, implemented in reconfigurable hardware based on SoC (System-on-a-Chip). The basic module is presented with a specifics image pre-processing function that are used as a base for verify the functionalities implemented in this research. The mains functions implemented on this basic module are: to read the pixels provide by the CMOS camera for compose the frame, to adjust the parameters of the camera control and to convert color space. The specifics image pre-processing functions are used to do image segmentation, centralization, reduction and image classification. The reconfigurable dispositive used in this research is the FPGA (Field-Programmable Gate Array) that permit to adapt the specific function according to the application needs. The system was applied to recognize gesture and had 99,57% rate of true recognition at 31,88 frames per second.
|
107 |
Teste de validade de mÃtodos de maximizaÃÃo de entropia para construÃÃo de modelos com correlaÃÃo par-a-par.Wagner Rodrigues de Sena 20 February 2017 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / No sÃculo XXI a humanidade produziu mais novos dados (informaÃÃes) do que em toda sua histÃria. Entender a natureza dos diversos sistemas que geram essa abundÃncia de dados se tornou um dos grandes desafios desse sÃculo. Uma forma de analisar formalmente esses grandes bancos de dados à empregando a teoria da informaÃÃo desenvolvida por Claude Shannon. Essa teoria permite, usando o princÃpio da mÃxima entropia, encontrar as distribuiÃÃes de probabilidades que melhor descrevem os comportamentos coletivos desses sistemas. Nessa dissertaÃÃo, discutimos a possibilidade de usar modelos tipo Ising para descrever observaÃÃes de sistemas reais. Devido a suas limitaÃÃes, empregar o modelo de Ising implica em supor que os elementos que constituem o sistema real sà podem estar em dois estados, por exemplo ativo ou inativo. AlÃm disso, o modelo de Ising da conta apenas de interaÃÃes entre pares de elementos e desconsidera a possibilidade de interaÃÃes entre grupos maiores de elementos. Como discutiremos, mesmo com essas limitaÃÃes tal modelo pode descrever bem resultados observados em alguns sistemas naturais, como por exemplo redes de neurÃnios. Especificamente, discutiremos resultados de trabalhos anteriores que mostram que usando apenas as mÃdias de atividade de cada neurÃnio e a correlaÃÃo entre os mesmo, usando a teoria de Shannon, observa-se que os estados visitados pela rede seguem à distribuiÃÃo de Ising. Para testar a aplicabilidade desse mÃtodo em diversos sistemas geramos dados sintÃticos, obtidos de modelos tipo Ising em trÃs situaÃÃes: ferromagnÃtico, anti-ferro e vidro de spins (spin glass). NÃs chamamos o sistema que gera os dados sintÃticos de sistema subjacente. Usamos mÃtodos de maximizaÃÃo de entropia para tentar construir sistemas modelos que consigam reproduzir as mÃdia e correlaÃÃes observadas nos dados sintÃticos. Dessa forma, verificamos em que situaÃÃes nossos mÃtodos conseguem de fato gerar um sistema modelo que reproduza o sistema subjacente que gerou os dados. Esses resultados podem estabelecer um limite de aplicabilidade para a tÃcnica discutida.
|
108 |
Diagnóstico de nódulos pulmonares em imagens de tomografia computadorizada usando redes neurais convolucionais evolutivasSilva, Giovanni Lucca França da 31 January 2017 (has links)
Submitted by Rosivalda Pereira (mrs.pereira@ufma.br) on 2017-05-30T19:36:59Z
No. of bitstreams: 1
GiovanniLucca.pdf: 1608375 bytes, checksum: 90ad0a568a12b861d1a2a3467c275a12 (MD5) / Made available in DSpace on 2017-05-30T19:36:59Z (GMT). No. of bitstreams: 1
GiovanniLucca.pdf: 1608375 bytes, checksum: 90ad0a568a12b861d1a2a3467c275a12 (MD5)
Previous issue date: 2017-01-31 / CAPES / Lung cancer is the leading cause of cancer death worldwide, which accounts for more
than 17% percent of the total cancer related deaths. However, its early detection may
help in a sharp drop in this mortality rate. Because of the arduous analysis process,
alternatives such as computational tools that use image processing techniques and pattern
recognition have been widely developed and explored for the early diagnosis of this disease,
providing a second opinion to the specialist and making this process faster. Therefore,
this work proposes a methodology for the diagnosis of slice-based lung nodules extracted
from computed tomography images using evolutionary convolutional neural networks.
Firstly, the nodules are divided into two sub-regions using the Otsu algorithm based on
the particle swarm optimization algorithm. Then, the slices of the nodules and the slices of
their sub-regions were resized to the 28 x 28 dimension and given as input simultaneously
to the networks. The architecture of the model was composed of three convolutional
neural networks sharing the same fully connected layer at the end. Being a parameterized
model, the genetic algorithm was applied to optimize some parameters, such as the number
of filters in the convolution layers and the number of neurons in the hidden layer. The
proposed methodology was tested on the Lung Image Database Consortium and the Image
Database Resource Initiative, resulting in a sensitivity of 94.66 %, specificity of 95.14 %, accuracy of 94.78 % and area under the ROC curve of 0.949. / O câncer de pulmão é a maior causa de morte por câncer em todo mundo, representando
mais de 17% do total de mortes relacionadas com câncer. No entanto, sua detecçãao
precoce pode ajudar em uma queda acentuada nesta taxa de mortalidade. Devido ao árduo
processo na análise dos exames por imagens, alternativas como sistemas computacionais
que utilizam técnicas de processamento de imagens e reconhecimento de padrões têm sido
amplamente desenvolvidos e explorados para o diagnóstico precoce desta doen¸ca, provendo
uma segunda opinião para o especialista e tornando esse processo mais rápido. Diante disso,
este trabalho propõe uma metodologia para o diagnóstico de nódulos pulmonares baseado
nas fatias extraídas da tomografia computadorizada usando as redes neurais convolucionais
evolutivas. Primeiramente, os nódulos são divididos em duas sub-regiões utilizando o
algoritmo de Otsu baseado no algoritmo de otimização por enxame de partículas. Em
seguida, as fatias dos nódulos e as fatias das suas sub-regiões foram redimensionadas
para a dimensão 28 x 28 e dadas como entrada simultaneamente às redes. A arquitetura
do modelo foi composta por três redes neurais convolucionais compartilhando a mesma
camada completamente conectada no final. Tratando-se de um modelo parametrizado,
o algoritmo genético foi aplicado para otimização de alguns parâmetros, tais como a
quantidade de filtros nas camadas de convolução e a quantidade de neurônios na camada
oculta. A metodologia proposta foi testada na base de imagens Lung Image Database
Consortium e a Image Database Resource Initiative, resultando em uma sensibilidade de
94,66%, especifidade de 95,14%, acurácia de 94,78% e área sob a curva ROC de 0,949.
|
109 |
DESENVOLVIMENTO DE UM SISTEMA BASEADO EM REDUNDÂNCIA ANALÍTICA E REDES NEURONAIS ARTIFICIAIS PARA RECUPERAÇÃO DE FALHAS NA INSTRUMENTAÇÃO DE SUBESTAÇÕES DE ENERGIA ELÉTRICA. / DEVELOPMENT OF A SYSTEM BASED ON REDUNDANCY ANALYTICAL AND ARTIFICIAL NEURONAL NETWORKS FOR RECOVERY OF ELECTRICITY SUBSTATION INSTRUMENTATION FAILURES.LOUREIRO, Ronnie Santiago 31 August 2012 (has links)
Submitted by Maria Aparecida (cidazen@gmail.com) on 2017-08-24T15:00:02Z
No. of bitstreams: 1
Ronnie.pdf: 3320281 bytes, checksum: 56be4f928c1366ece428d2ae6caf9627 (MD5) / Made available in DSpace on 2017-08-24T15:00:02Z (GMT). No. of bitstreams: 1
Ronnie.pdf: 3320281 bytes, checksum: 56be4f928c1366ece428d2ae6caf9627 (MD5)
Previous issue date: 2012-08-31 / This work aims to monitor and analyze the data from the instrumentation system of a
substation as a way to identify false alarms, which can result in a decision by the
mistaken maintenance and operation. This project was conceived because of the
need for a research and development project which is called Maintenance
Management Center (MMC) whose overall objective is to assist in the maintenance
of their equipment operational intervention. Data is extracted from the automation
system that has digital relay protection function and measurement of the electric grid,
passing through a sequence of data processing to achieve the results that will serve
for the detection and diagnosis of faults. We applied methods based on quantitative
model by transforming the data system of continuous variables (SVC) and qualitative
data by transforming the system of discrete event (SDE) applying analytical
redundancy techniques and neural networks respectively, thus aiming a simplified
model for detection and diagnosis fault (DDF). The model has been designed taking
into account the characteristics DDF due to its stages, thereby providing a good
system failure recovery. Know filter if certain event is real or a false alarm is not an
easy task, but this system will have to meet this purpose. Technological resources
are used fairly consolidated in the industrial process for the integration of the
solution, because the time factor and information processing are critical in the results
generated by the system recovery. Another key point of this trial was to have
developed a system based on experiential knowledge, because it has higher
robustness in results. / Este trabalho tem como objetivo monitorar e analisar os dados provenientes do
sistema de instrumentação de uma subestação como forma de identificar falsos
alarmes, que pode acarretar em uma tomada de decisão equivocada por parte da
manutenção e operação. Este projeto foi concebido devido à necessidade de um
projeto de pesquisa e desenvolvimento que se intitula Centro de Gestão da
Manutenção (CGM) cujo objetivo global é auxiliar a manutenção na intervenção
operacional de seus equipamentos. Os dados são extraídos do sistema de
automação provenientes dos reles digitais que tem função de proteção e medição da
rede elétrica, passando por um sequencia de transformação dos dados até chegar
aos resultados, que servirá para detecção e diagnostico de falhas. Foram aplicados
métodos baseados no modelo quantitativo através da transformação dos dados do
sistema de variáveis contínuas (SVC) e qualitativo através da transformação dos
dados do sistema de eventos discretos (SED) aplicando técnicas de redundância
analítica e redes neurais respectivamente, objetivando assim um modelo
simplificado para detecção e diagnóstico da falha (DDF). O modelo foi concebido
levando em consideração as características DDF decorrente de suas etapas,
propiciando assim um bom sistema de recuperação de falha. Saber filtrar se
determinado evento é real ou um falso alarme não é uma tarefa fácil, porém este
sistema terá que atender este propósito. Foram utilizados recursos tecnológicos
bastante consolidados no processo industrial para garantir a integração da solução,
pois o fator tempo e o processamento da informação são decisivos nos resultados
gerados pelo sistema de recuperação. Outro ponto fundamental neste trabalho foi ter
desenvolvido um sistema baseado no conhecimento experimental, pois se tem maior
robustez nos resultados.
|
110 |
Visual urban road features detection using Convolutional Neural Network with application on vehicle localization / Detecção de características visuais de vias urbanas usando Rede Neural Convolutiva com aplicação em localização de veículoHorita, Luiz Ricardo Takeshi 28 February 2018 (has links)
Curbs and road markings were designed to provide a visual low-level spatial perception of road environments. In this sense, a perception system capable of detecting those road features is of utmost importance for an autonomous vehicle. In vision-based approaches, few works have been developed for curb detection, and most of the advances on road marking detection have aimed lane markings only. Therefore, to detect all these road features, multiple algorithms running simultaneously would be necessary. Alternatively, as the main contribution of this work, it was proposed to employ an architecture of Fully Convolutional Neural Network (FCNN), denominated as 3CSeg-Multinet, to detect curbs and road markings in a single inference. Since there was no labeled dataset available for training and validation, a new one was generated with Brazilian urban scenes, and they were manually labeled. By visually analyzing experimental results, the proposed approach has shown to be effective and robust against most of the clutter present on images, running at around 10 fps in a Graphics Processing Unit (GPU). Moreover, with the intention of granting spatial perception, stereo vision techniques were used to project the detected road features in a point cloud. Finally, as a way to validate the applicability of the proposed perception system on a vehicle, it was also introduced a vision-based metric localization model for the urban scenario. In an experiment, compared to the ground truth, this localization method has revealed consistency on its pose estimations in a map generated by LIDAR. / Guias e sinalizações horizontais foram projetados para fornecer a percepção visual de baixo nível do espaço das vias urbanas. Deste modo, seria de extrema importância para um veículo autônomo ter um sistema de percepção capaz de detectar tais características visuais. Em abordagens baseadas em visão, poucos trabalhos foram desenvolvidos para detecção de guias, e a maioria dos avanços em detecção de sinalizações horizontais foi focada na detecção de faixas apenas. Portanto, para que fosse possível detectar todas essas características visuais, seria necessário executar diversos algoritmos simultaneamente. Alternativamente, como sendo a principal contribuição deste trabalho, foi proposto a adoção de uma Rede Neural Totalmente Convolutiva, denominado 3CSeg-Multinet, para detectar guias e sinalizações horizontais em apenas uma inferência. Como não havia um conjunto de dados rotulados disponível para treinar e validar a rede, foi gerado um novo conjunto com imagens capturadas em ambiente urbano brasileiro, e foi realizado a rotulação manual. Através de uma análise visual dos resultados experimentais obtidos, o método proposto mostrou-se eficaz e robusto contra a maioria dos fatores que causam confusão nas imagens, executando a aproximadamente 10 fps em uma GPU. Ainda, com o intuito de garantir a percepção espacial, foram usados métodos de visão estéreo para projetar as características detectadas em núvem de pontos. Finalmente, foi apresentado também um modelo de localização métrica baseado em visão para validar a aplicabilidade do sistema de percepção proposto em um veículo. Em um experimento, este método de localização revelou-se capaz de manter as estimativas consistentes com a verdadeira pose do veículo em um mapa gerado a partir de um sensor LIDAR.
|
Page generated in 0.0761 seconds