141 |
[pt] ARQUITETURA PROFUNDA PARA EXTRAÇÃO DE CITAÇÕES / [en] DEEP ARCHITECTURE FOR QUOTATION EXTRACTIONLUIS FELIPE MULLER DE OLIVEIRA HENRIQUES 28 July 2017 (has links)
[pt] A Extração e Atribuição de Citações é a tarefa de identificar citações de um texto e associá-las a seus autores. Neste trabalho, apresentamos um sistema de Extração e Atribuição de Citações para a língua portuguesa. A tarefa de Extração e Atribuição de Citações foi abordada anteriormente utilizando diversas técnicas e para uma variedade de linguagens e datasets. Os modelos tradicionais para a tarefa consistem em extrair manualmente um rico conjunto de atributos e usá-los para alimentar um classificador
raso. Neste trabalho, ao contrário da abordagem tradicional, evitamos usar atributos projetados à mão, usando técnicas de aprendizagem não supervisionadas e redes neurais profundas para automaticamente aprender atributos relevantes para resolver a tarefa. Ao evitar a criação manual de atributos, nosso modelo de aprendizagem de máquina tornou-se facilmente adaptável a outros domínios e linguagens. Nosso modelo foi treinado e avaliado no corpus GloboQuotes e sua métrica de desempenho F1 é igual a 89.43 por cento. / [en] Quotation Extraction and Attribution is the task of identifying quotations from a given text and associating them to their authors. In this work, we present a Quotation Extraction and Attribution system for the Portuguese language. The Quotation Extraction and Attribution task has been previously approached using various techniques and for a variety of languages and datasets. Traditional models to this task consist of extracting a rich set of hand-designed features and using them to feed a shallow classifier. In this work, unlike the traditional approach, we avoid using hand-designed features using unsupervised learning techniques and deep neural networks to automatically learn relevant features to solve the task. By avoiding design features by hand, our machine learning model became easily adaptable to other languages and domains. Our model is trained and evaluated at the GloboQuotes corpus, and its F1 performance metric is equal to 89.43 percent.
|
142 |
[en] A STUDY ON NEURAL NETWORKS FOR POKER PLAYING AGENTS / [pt] UM ESTUDO EM REDES NEURAIS PARA AGENTES JOGADORES DE PÔQUERALEXANDRE MARANGONI COSTA 12 May 2020 (has links)
[pt] A ciência de dados precisa de uma grande quantidade de dados para testar e melhorar soluções. Jogos são largamente usados para abstrair situações da vida real. Rodadas de pôquer são um bom exemplo pois, por
não saber as cartas dos oponentes, o jogador analisa um cenário de informação incompleta numa competição de agentes que envolve conhecimento probabilístico, análise de risco e brefe. Isso o diferencia de xadrez, damas e jogos de conhecimento perfeito e algoritmos de busca em forca bruta sobre o espaço de soluções. Usar o pôquer como um caso de teste possibilita a análise de diferentes abordagens usadas na vida real, porém num cenário mais controlado. Esta dissertação propõe um arcabouço de funcionalidades para criar e testar diferentes algorítimos de Deep Learning, que podem jogar pôquer entre sí, aprender com o histórico e maximizar suas recompensas. / [en] Data science research needs real examples to test and improve solutions. Games are widely used to mimic those real-world examples. Poker rounds are a good example of imperfect information state with competing
agents dealing with probabilistic knowledge, risk assessment, and possible deception, unlike chess, checkers and perfect information brute-force search style of games. By using poker as a test-bed we can analyze different approaches used in real-world examples, in a more controlled environment, which should give great insights on how to tackle those real-world scenarios. We propose a framework to build and test different neural networks that can play against each other, learn from a supervised experience and maximize
its rewards.
|
143 |
[en] IDENTIFICATION OF PROTEIN SUBCELLULAR LOCALIZATION BY DEEP LEARNING TECHNIQUES / [pt] IDENTIFICAÇÃO DA LOCALIZAÇÃO SUBCELULAR DE PROTEÍNAS POR MEIO DE TÉCNICAS DE DEEP LEARNINGROBERTO BANDEIRA DE MELLO MORAIS DA SILVA 21 May 2020 (has links)
[pt] As proteínas são macromoléculas biológicas compostas por cadeias de aminoácidos, presentes em praticamente todos os processos celulares, sendo essenciais para o correto funcionamento do organismo humano. Existem diversos estudos em torno do proteoma humano a fim de se identificar quais são as funções de cada proteína nas diferentes células, tecidos e órgãos do corpo humano. A classificação destas proteínas em diferentes formas, como por exemplo a localização subcelular, é importante para diversas
aplicações da biomedicina. Com o avanço das tecnologias para obtenção de imagens das proteínas, tem-se que hoje estas são geradas em grande volume e mais rapidamente do que é possível classificá-las manualmente, o que torna importante o desenvolvimento de um classificador automático capaz
de realizar esta classificação de maneira eficaz. Dessa forma, esta dissertação buscou desenvolver algoritmos capazes de realizar a classificação automática de padrões mistos de localização subcelular de proteínas, por meio do uso de técnicas de Deep Learning. Inicialmente, fez-se uma revisão da literatura
em torno de redes neurais, Deep Learning e SVMs, e utilizou-se o banco de dados, publicamente disponíve, de imagens de células do Human Protein Atlas, para treinamento dos algoritmos de aprendizagem supervisionada. Diversos modelos foram desenvolvidos e avaliados, visando identificar aquele
com melhor desempenho na tarefa de classificação. Ao longo do trabalho foram desenvolvidas redes neurais artificiais convolucionais de topologia LeNet, ResNet e um modelo híbrido ResNet-SVM, tendo sido treinadas ao todo 81 redes neurais diferentes, a fim de se identificar o melhor conjunto de hiper-parâmetros. As análises efetuadas permitiram concluir que a rede de melhor desempenho foi uma variante da topologia ResNet, que obteve em suas métricas de desempenho uma acurácia de 0,94 e uma pontuação
F1 de 0,44 ao se avaliar o comportamento da rede frente ao conjunto de teste. Os resultados obtidos pela diferentes topologias analisadas foram detalhadamente avaliados e, com base nos resultados alcançados, foram sugeridos trabalhos futuros baseados em possíveis melhorias para as redes de melhor desempenho. / [en] Proteins are biological macromolecules composed of aminoacid chains, part of practically all cellular processes, being essential for the correct functioning of the human organism. There are many studies around the human protein aiming to identify the proteins’ functions in different cells, tissues and organs in the human body. The protein classification in many forms, such as the subcellular localization, is important for many biomedical applications. With the advance of protein image obtention technology, today these images are generated in large scale and faster than it is possible to manually classify them, which makes crucial the development of a system capable of classifying these images automatically and accurately. In that matter, this dissertation aimed to develop algorithms capable of automatically classifying proteins in mixed patterns of subcellular localization with the use of Deep Learning techniques. Initially, a literature review on neural networks, Deep Learning and SVMs, and a publicly available image database from the Human Protein Atlas was used to train the supervised learning algorithms. Many models were developed seeking the best performance in the classification task. Throughout this work, convolutional artificial neural networks of topologies LeNet, ResNet and a hybrid ResNet-SVM model were developed, with a total of 81 different neural networks trained, aiming to identify the best hyper-parameters. The analysis allowed the conclusion that the network with best performance was a ResNet variation, which obtained in its performance metrics an accuracy of 0.94 and an F1 score of 0.44 when evaluated against the test data. The obtained results of these topologies were detailedly evaluated and, based on the measured results,
future studies were suggested based on possible improvements for the neural networks that had the best performances.
|
144 |
[en] INTTELIGENT SYSTEM TO SUPPORT BASKETBALL COACHES / [pt] SISTEMA INTELIGENTE DE APOIO A TÉCNICOS DE BASQUETEEDUARDO VERAS ARGENTO 12 September 2024 (has links)
[pt] Em meio ao avanço expressivo da tecnologia e às evoluções contínuas
observadas no ramo de inteligência artificial, esta última se mostrou ter
potencial para ser aplicada a diferentes setores da sociedade. No contexto de
extrema competitividade e relevância crescente nos esportes mais famosos ao
redor do mundo, o basquete se apresenta como um esporte interessante para a
aplicação de mecanismos de apoio à decisão capazes de aumentar a eficácia e
consistência de vitórias dos times nos campeonatos. Diante desse contexto, este
estudo propõe o desenvolvimento de sistemas de apoio à decisão baseados em
modelos de redes neurais e k-Nearest Neighbors (kNNs). O objetivo é avaliar,
para cada substituição durante um jogo de basquete, qual grupo de jogadores
em quadra, conhecido por quinteto, apresenta mais chances de ter uma
maior vantagem sobre o adversário. Para tal, foram treinados modelos para
classificar, ao final de uma sequência de posses de bola, a equipe que conseguiria
vantagem, e prever a magnitude dessa vantagem. A base de dados foi obtida de
partidas do Novo Basquete Brasil (NBB), envolvendo estatísticas de jogadores,
detalhes de jogo e contextos diversos. O modelo apresentou uma acurácia de
76,99 por cento das posses de bola nas projeções de vantagem entre duas equipes em
quadra, demonstrando o potencial da utilização de métodos de inteligência
computacional na tomada de decisões em esportes profissionais. Por fim, o
trabalho ressalta a importância do uso de tais ferramentas em complemento à
experiência humana, instigando pesquisas futuras para o desenvolvimento de
modelos ainda mais sofisticados e eficazes na tomada de decisões no âmbito
esportivo. / [en] In light of the recent significant growth in technological capabilities andthe observed advancements in the field of computational intelligence, the latterhas demonstrated potential for application in various sectors of society. Inthe context of extreme competitiveness and increasing relevance in the mostfamous sports around the world, basketball presents itself as an interestingsport for the application of decision-support mechanisms capable of enhancingthe efficacy and consistency of team victories in championships. In this context,this study proposes the development of decision-support systems, such asneural networks and k-Nearest Neighbors (kNNs). The goal is to evaluate, foreach substitution during a match, which group of players in the field, knownas lineup, presents the most probability to be superior to their opponent. Forthis, models were trained to predict, during a sequence of possessions, theteam that would have advantage and the magnitude of this advantage. Thedatabase was obtained from Novo Basquete Brasil (NBB) matches, involvingplayers statistics, match details and different contexts.. The model achieved anaccuracy of 76,99 percent in projections of superiority between the playing lineups,demonstrating the potential of using computational intelligence methods indecision-making applied to professional sports. Finally, the study highlightsthe importance of using such tools in conjunction with human experience,encouraging future research for the development of even more sophisticatedand effective models for decision-making in the sports field.
|
145 |
[en] DESIGN OF ORGANIC LIGHT-EMITTING DIODES SUPPORTED BY COMPUTACIONAL INTELLIGENCE TECHNIQUES / [pt] PROJETO DE DIODOS ORGÂNICOS EMISSORES DE LUZ COM O AUXÍLIO DE TÉCNICAS DA INTELIGÊNCIA COMPUTACIONALCARLOS AUGUSTO FEDERICO DE FARIA ROCHA COSTA 10 September 2018 (has links)
[pt] Esta dissertação trata da investigação, simulação e otimização da estrutura de Diodos Orgânicos Emissores de Luz Multicamadas (ML-OLEDs) através da utilização de técnicas da Inteligência Computacional. Além disso, um desses métodos, chamado Otimização por Colônia de Formigas (ACO), foi implementado com base em um modelo proposto na literatura e aplicado pela primeira vez na otimização de diodos orgânicos. OLEDs são dispositivos optoeletrônicos nanométricos fabricados a partir de materiais semicondutores
orgânicos. Ao contrário das tecnologias tradicionais, eles conjugam elevada luminescência e baixo consumo energético. Na fabricação de um OLED, o número configurações possíveis é quase ilimitado, em função da quantidade de parâmetros que se pode variar. Isso faz com que determinação da arquitetura ótima torne-se uma tarefa não trivial. Para simular os OLEDs foram empregados dois modelos distintos de simulação. Assim, as Redes Neurais Artificiais (RNA) foram empregadas com o objetivo de emular um dos simuladores e acelerar o cálculo da densidade de corrente. Os Algoritmos Genéticos (AG) foram aplicados na determinação dos valores ótimos de espessura das camadas, mobilidades dos portadores de carga e concentração dos materiais orgânicos em OLEDs com duas camadas, enquanto o ACO foi aplicado para encontrar os valores de concentração em OLEDs com duas e cinco camadas, constituindo assim três estudos de caso. Os resultados encontrados foram promissores, sobretudo no caso das espessuras,
onde houve uma confirmação experimental do dispositivo com duas camadas. / [en] This dissertation deals with the research, simulation and optimization of the structure of Multilayer Organic Light Emitting Diodes (ML-OLEDs) by using Computational Intelligence techniques. In addition, one of these methods, called Ant Colony Optimization (ACO), was implemented based on a model proposed in the literature and applied for the first time in the optimization of organic diodes. OLEDs are nanometric optoelectronic devices fabricated from organic semiconducting materials. Unlike traditional technologies, they combine high luminance and low power consumption. In the manufacturing of an OLED, the number of possible configurations is almost unlimited due to the number of parameters that can modified. Because of this the determination of the optimal architecture becomes a non-trivial task. Two different simulation models were used to simulate the OLEDs. Thus, the Artificial Neural Networks (ANN) were employed in order to work as the proxy of the commercial simulator and to accelerate the calculation of the current density. The Genetic Algorithms (GA) were applied to determine the optimal values of thickness of the layers, the charge carrier mobility and the concentration of the organic materials in OLEDs with two layers, while the ACO was applied to find the values of concentration in OLEDs with two and five layers, thus establishing three case studies. The employed strategy has proved to be promising, since it has show good results for two case studies, especially for the optimization of the thickness, where there was an
experimental confirmation of the bilayer device.
|
146 |
[en] MULTILAYER PERCEPTRON FOR CLASSIFYING POLYMERS FROM TENSILE TEST DATA / [pt] PERCEPTRON DE MÚLTIPLAS CAMADAS PARA A CLASSIFICAÇÃO DE POLÍMEROS A PARTIR DE DADOS DE ENSAIOS DE TRAÇÃOHENRIQUE MONTEIRO DE ABREU 03 September 2024 (has links)
[pt] O ensaio de tração é o ensaio mecânico mais aplicado para a obtenção
das propriedades mecânicas de polímeros. Por meio de um ensaio de tração
é obtida a curva tensão-deformação, e é a partir desta curva que são obtidas propriedades mecânicas tais como o módulo de elasticidade, a tenacidade
e a resiliência do material, as quais podem ser utilizadas na identificação de
comportamentos mecânicos equivalentes em materiais poliméricos, seja para
a diferenciação de resíduos plásticos para a reciclagem ou para a classificação
de um material plástico reciclado quanto ao teor de um determinado polímero
em sua composição. Porém, a obtenção das propriedades mecânicas a partir da curva tensão-deformação envolve cálculos e ajustes nos intervalos da
curva em que essas propriedades são determinadas, tornando a obtenção das
propriedades mecânicas um processo complexo sem a utilização de programas
computacionais especializados. A partir da compreensão do padrão de comportamento da curva tensão-deformação de um material, algoritmos de aprendizagem de máquina (AM) podem ser ferramentas eficientes para automatizar
a classificação de diferentes tipos de materiais poliméricos. Com o objetivo
de verificar a acurácia de um algoritmo de AM na classificação de três tipos
de polímeros, foram realizados ensaios de tração em corpos de prova de polietileno de alta densidade (PEAD), polipropileno (PP) e policloreto de vinila
(PVC). O conjunto de dados obtido a partir das curvas tensão-deformação foi
utilizado no treinamento de uma rede neural artificial perceptron de múltiplas
camadas (PMC). Com uma acurácia de 0,9261 para o conjunto de teste, o
modelo obtido a partir da rede PMC foi capaz de classificar os polímeros com
base nos dados da curva tensão-deformação, indicando a possibilidade do uso
de modelos de AM para automatizar a classificação de materiais poliméricos a
partir de dados de ensaios de tração. / [en] The tensile test is the most applied mechanical test to obtain the mechanical properties of polymers, which can be used in polymeric materials classification. Through a tensile test is obtained the stress-strain curve, is from which
mechanical properties such as the modulus of elasticity, tenacity, and resilience
of the material are obtained, which can be used to identify equivalent mechanical behaviors in polymeric materials, whether for the distinguishing plastic
waste for recycling or for classifying recycled plastic material according to the
content of a polymer type in its composition. However, obtaining mechanical
properties from the stress-strain curve involves calculations and adjustments in
the intervals of the curve in which these properties are determined, turning it
into a complex process without the use of specialized software. By understanding the behavior pattern of a material’s stress-strain curve, machine learning
(ML) algorithms can be efficient tools to automate the classification of different types of polymeric materials. To verify the accuracy of an ML algorithm
in classifying three types of polymers, tensile tests were performed on specimens made of high-density polyethylene (HDPE), polypropylene (PP), and
polyvinyl chloride (PVC). The dataset obtained from the stress-strain curves
was used in the training of a multilayer perceptron (MLP) neural network.
With an accuracy of 0.9261 for the test set, the model obtained from the MLP
neural network was able to classify the polymers based on the stress-strain
curve data, thus indicating the possibility of using an ML algorithm to automate the classification of polymeric materials based on tensile test data.
|
147 |
[pt] MODELAGEM DE OBJETOS GEOLÓGICOS: IA PARA DETECÇÃO AUTOMÁTICA DE FALHAS E GERAÇÃO DE MALHAS DE QUADRILÁTEROS / [en] MODELING OF GEOBODIES: AI FOR SEISMIC FAULT DETECTION AND ALL-QUADRILATERAL MESH GENERATIONAXELLE DANY JULIETTE POCHET 14 December 2018 (has links)
[pt] A exploração segura de reservatórios de petróleo necessita uma boa modelagem numérica dos objetos geológicos da sub superfície, que inclui entre outras etapas: interpretação sísmica e geração de malha. Esta tese apresenta um estudo nessas duas áreas. O primeiro estudo é uma contribuição para interpretação de dados sísmicos, que se baseia na detecção automática de falhas sísmicas usando redes neurais profundas. Em particular, usamos Redes Neurais Convolucionais (RNCs) diretamente sobre mapas de amplitude sísmica, com a particularidade de usar dados sintéticos para treinar a rede com o objetivo final de classificar dados reais. Num segundo estudo, propomos um novo algoritmo para geração de malhas bidimensionais de quadrilaterais para estudos geomecânicos, baseado numa abordagem inovadora do método de quadtree: definimos novos padrões de subdivisão para adaptar a malha de maneira eficiente a qualquer geometria de entrada. As malhas obtidas podem ser usadas para simulações com o Método de Elementos Finitos (MEF). / [en] Safe oil exploration requires good numerical modeling of the subsurface geobodies, which includes among other steps: seismic interpretation and mesh generation. This thesis presents a study in these two areas. The first study is a contribution to data interpretation, examining the possibilities of automatic seismic fault detection using deep learning methods. In particular, we use Convolutional Neural Networks (CNNs) on seismic amplitude maps, with the particularity to use synthetic data for training with the goal to classify real data. In the second study, we propose a new two-dimensional all-quadrilateral meshing algorithm for geomechanical domains, based on an innovative quadtree approach: we define new subdivision patterns to efficiently adapt the mesh to any input geometry. The resulting mesh is suited for Finite Element Method (FEM) simulations.
|
148 |
[pt] DESENVOLVIMENTO DE PIV ULTRA PRECISO PARA BAIXOS GRADIENTES USANDO ABORDAGEM HÍBRIDA DE CORRELAÇÃO CRUZADA E CASCATA DE REDE NEURAIS CONVOLUCIONAIS / [en] DEVELOPMENT OF ULTRA PRECISE PIV FOR LOW GRADIENTS USING HYBRID CROSS-CORRELATION AND CASCADING NEURAL NETWORK CONVOLUTIONAL APPROACHCARLOS EDUARDO RODRIGUES CORREIA 31 January 2022 (has links)
[pt] Ao longo da história a engenharia de fluidos vem se mostrado como uma das áreas mais
importantes da engenharia devido ao seu impacto nas áreas de transporte, energia e militar. A
medição de campos de velocidade, por sua vez, é muito importante para estudos nas áreas de
aerodinâmica e hidrodinâmica. As técnicas de medição de campo de velocidade em sua maioria
são técnicas ópticas, se destacando a técnica de Particle Image Velocimetry (PIV). Por outro
lado, nos últimos anos importantes avanços na área de visão computacional, baseados em redes
neurais convolucionais, se mostram promissores para a melhoria do processamento das técnicas
ópticas. Nesta dissertação, foi utilizada uma abordagem híbrida entre correlação cruzada e
cascata de redes neurais convolucionais, para desenvolver uma nova técnica de PIV. O projeto
se baseou nos últimos trabalhos de PIV com redes neurais artificiais para desenvolver a
arquitetura das redes e sua forma de treinamento. Diversos formatos de cascata de redes neurais
foram testados até se chegar a um formato que permitiu reduzir o erro em uma ordem de
grandeza para escoamento uniforme. Além do desenvolvimento da cascata para escoamento
uniforme, gerou-se conhecimento para fazer cascatas para outros tipos de escoamentos. / [en] Throughout history, fluid engineering is one of the most important areas of engineering
due to its impact in the areas of transportation, energy and the military. The measurement of
velocity fields is important for studies in aerodynamics and hydrodynamics. The techniques for
measuring the velocity field are mostly optical techniques, with emphasis on the PIV technique.
On the other hand, in recent years, important advances in computer vision, based on
convolutional neural networks, have shown promise for improving the processing of optical
techniques. In this work, a hybrid approach between cross-correlation and cascade of
convolutional neural networks was used to develop a new PIV technique. The project was based
on the latest work of PIV with an artificial neural network to develop the architecture of the
networks and their form of training. Several cascade formats of neural networks were tested
until they reached a format that allowed the error to be reduced by an order of magnitude for
uniform flow. In addition to the development of the cascade for uniform flow, knowledge was
generated to make cascades for other types of flows.
|
149 |
Desenvolvimento de um algoritmo morfológico para detecção e classificação de lesões em imagens de mamografiaLIMA, Sidney Marlon Lopes de 25 February 2016 (has links)
Submitted by Fabio Sobreira Campos da Costa (fabio.sobreira@ufpe.br) on 2017-02-23T14:02:54Z
No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
tese-completa-Sidney_Lima_v21.pdf: 4757211 bytes, checksum: 205170db8b002cc2ab72255ab77628a3 (MD5) / Made available in DSpace on 2017-02-23T14:02:54Z (GMT). No. of bitstreams: 2
license_rdf: 1232 bytes, checksum: 66e71c371cc565284e70f40736c94386 (MD5)
tese-completa-Sidney_Lima_v21.pdf: 4757211 bytes, checksum: 205170db8b002cc2ab72255ab77628a3 (MD5)
Previous issue date: 2016-02-25 / REUNI / O câncer de mama é a principal causa de morte de mulheres adultas por
câncer no mundo. Do ponto de vista clínico, a mamografia é ainda a mais efetiva
tecnologia de diagnóstico do câncer de mama, dada a grande difusão de uso e
interpretações dessas imagens. De acordo com o estado da arte da classificação de
lesões em mamogramas, as wavelets têm apresentado os melhores resultados do
ponto de vista da taxa de classificação, quando utilizadas como etapa de préprocessamento
que decompõe a imagem original em imagens de detalhes (verticais,
horizontais e diagonais) e aproximações para, a partir dessas imagens
componentes, serem extraídos atributos de textura. Neste trabalho, propõe-se a
Decomposição baseada em Aproximações Morfológicas em regiões de interesse em
mamogramas. O método proposto tem por base a decomposição inspirada em
wavelets que emprega filtros não lineares passa-baixas e passa-altas, baseados em
aberturas e fechamentos, que por sua vez são construídos a partir dos operadores
morfológicos clássicos de erosão e dilatação. Neste trabalho, são propostas
aproximações aritméticas para esses dois operadores morfológicos clássicos,
substituindo os desvios condicionais, presentes na Morfologia Matemática, por
operações aritméticas de somas, subtrações e multiplicações, computacionalmente
mais rápidas. O trabalho proposto compara o tempo estimado de execução entre as
aproximações aritméticas propostas e as operações morfológicas clássicas
utilizando a notação Big-Oh e também faz uso de estimativas baseadas em
arquitetura de hardware pipeline. Em todas as estimativas e cenários reais, as
aproximações morfológicas propostas são mais rápidas do que a morfologia
clássica. Além disso, por não empregar unidade de hardware em ambiente pipeline
para tratamento de desvios condicionais, as aproximações morfológicas propostas
se tornam uma solução mais barata, ocupa menos espaço, mais propícia à
miniaturização, consome menos energia e reduz o número de codificações da UC
(Unidade de Controle). Logo, as Aproximações Morfológicas criadas são superiores
à morfologia clássica nos principais requisitos para o bom funcionamento do
hardware. Quanto à classificação, a Decomposição baseada em Aproximações
Morfológicas alcança um desempenho médio de 84,65% na distinção entre casos
normais, benignos e malignos. Os classificadores empregados são redes neurais
ELM e SVM, cujas classes são definidas de acordo com os critérios da American
College of Radiology. Foram usadas 355 imagens de mama adiposa da base de
dados IRMA, com 233 casos normais, 66 benignos e 56 malignos. Como método de
tratamento da base de dados, foram estudados pesos ponderando a fronteira de
decisão das redes neurais. / According to the World Health Organization, breast cancer is the main cause of
death of women round the world. From the clinical point of view, mammography is
still the most effective diagnostic technology, given the wide diffusion of the use and
interpretation of these images. According the state-of-the-art lesions classification on
mammograms, wavelets have produced the best results from the viewpoint of
precision, when used as a preprocessing step that decomposes the original image
into approximation and detail images (vertical, horizontal and diagonal) in order to,
from these components images, extract shape or texture attributes. This work
proposes the decomposition Morphological-based in regions of interest on
mammograms. The proposed method is inspired on wavelets decomposition
employing nonlinear low-pass and high-pass filters, based on openings and closings,
which are constructed from classical morphological operators of erosion and dilation.
In this work, we propose approaches of classical morphology, replacing the
conditional branches, present in Mathematical Morphology, by arithmetic operations
of addition, subtraction and multiplication, computationally faster. The proposed work
compares the estimated run time of proposed arithmetic approximations and classical
morphological operations using Big-Oh notation and also the thesis uses notation
based on pipeline hardware architecture. In all real scenarios, our morphological
operations are faster than classical morphology. Also, by not employing hardware
unit in pipeline environment for treating conditional branches, the proposed
morphology approximation becomes a cheaper solution, occupies less space, more
propitious to miniaturization, consumes less power, and reduces the Control Unit
coding number. Then, our approaches of classical morphology are superior to
classical morphology in key requirements of hardware solution. Regarding the
classification, the proposed decomposition reaches an average performance of
84.65% in distinguishing normal, benign, and malignant cases. Classifiers are neural
networks ELM and SVM, classes are defined according American College of
Radiology criteria. They are employed 355 adipose breast images with 233 normal
cases, 66 benign and 56 malignant. As database processing method, weights were
studied considering the decision boundary of neural networks.
|
150 |
Implementação de uma rede neural em ambiente foundation fieldbus para computação de vazão simulando um instrumento multivariávelBorg, Denis 20 June 2011 (has links)
Esta dissertação propõe o desenvolvimento de uma rede neural artificial (RNA) direcionada a ambientes foundation fieldbus para realização do cálculo de vazão em dutos fechados. Para tanto, a metodologia proposta utiliza-se de medidas de pressão, temperatura e pressão diferencial, as quais normalmente estão disponíveis em plantas industriais. A principal motivação do emprego das redes neurais reside no seu baixo custo e simplicidade de implementação, o que possibilita o emprego de apenas blocos fieldbus padrões tornando a metodologia independente do fabricante. Foi utilizada uma rede perceptron multicamadas com algoritmo de treinamento backpropagation de Levenberg-Marquardt. O treinamento foi realizado numa programação elaborada para o software Matlab TM. A arquitetura da rede neural foi determinada por métodos empíricos variando-se o número de neurônios e de camadas neurais até se atingir um erro aceitável na prática. Após esses treinamentos foi desenvolvida uma programação para realizar os cálculos de vazão em um ambiente foundation fieldbus utilizando-se para tanto o software DeltaV TM do fabricante Emerson Process Management. Foram obtidos resultados com erro relativo médio de valor de vazão em torno de 1.43% para um primeiro cenário utilizando uma placa de orifício e ar como fluido, e de 0,073% para um segundo cenário utilizando uma placa de orifício e gás natural como fluido, com relação aos valores obtidos através do instrumento multivariável 3095MV TM do fabricante Rosemount. Os valores de erro encontrados validam o método desenvolvido nessa dissertação. / This dissertation proposes the development of an artificial neural network (ANN) directed to foundation fieldbus environment for calculation of flow in closed ducts. The proposed methodology uses measurements of pressure, temperature and differential pressure, which are usually available in industrial plants. The main motivation of the use of neural networks lies in their low cost and simplicity of implementation, which allows the use of standard fieldbus blocks by just making the method independent of the manufacturer. It was used a multilayer perceptron network with backpropagation training and algorithm from Levenberg-Marquardt. The training was programmed in the software Matlab TM. The architecture of the ANN was determined by empirical methods by varying the number of neurons and neural layers until it reaches an acceptable error. After such trainings, it was developed a program to perform the flow calculations in an foundation fieldbus environment using Emerson Process Management\'s DeltaV TM software. The results were obtained with an average relative error of flow rate of 1.43% for the first scenario using an orifice plate and air as a process fluid, and 0.073% for a second scenario using an orifice plate and natural gas as the fluid related to the values obtained from Rosemount 3095MV TM multivariable instrument. The values of error found validate the method developed in this dissertation.
|
Page generated in 0.0736 seconds