• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 183
  • 13
  • 2
  • Tagged with
  • 200
  • 200
  • 112
  • 83
  • 51
  • 50
  • 34
  • 34
  • 32
  • 23
  • 23
  • 22
  • 21
  • 19
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Automação de diagnóstico para ensaios nao destrutivos magnéticos. / Automation of diagnostic for non-destrutive magnetic tests.

Ana Isabel Castillo Pereda 05 August 2010 (has links)
Este trabalho apresenta um método para o reconhecimento e a detecção automática dos diferentes valores ou graus de deformação plástica em Ensaios Não Destrutivos empregando o Ruído Magnético de Barkhausen. O método é baseado no uso de uma Rede Neural Probabilística que permite o diagnóstico automático dos diferentes valores de deformação plástica, conteúdo de carbono, estas medidas são procedentes das medições das amostras de placas de aço AISI 1006, 1050 e 1070, esta base de dados foi feita pelo grupo de pesquisadores do Laboratório de Dinâmica e Instrumentação LADIN da Escola Politécnica da USP, departamento da Mecânica. Os excelentes resultados da rede neural probabilística de detectar automaticamente os valores de deformação mostram a efetividade do desempenho da rede neural probabilística que tem um desempenho superior aos métodos não destrutivos tradicionais e que realmente esta nova tecnologia é uma excelente solução para o diagnóstico. / This work presents a method for automatic detection and recognition of different levels or degrees of plastic deformation in Non-Destructive Testing using the Magnetic Barkhausen Noise. The method is based on using a Probabilistic Neural Network that allows the automatic diagnosis of the different values of plastic deformation and carbon content. The measurements corresponds to samples of steel plates AISI 1006, 1050 and 1070, this database was made by the group of researchers from the Laboratory of Dynamics and Instrumentation LADIN the Polytechnic School of USP, Department of Mechanical Engineering. The results show the effectiveness of the probabilistic neural network to automatically detect plastic deformation levels as well as carbon content level. This method has a superior performance in comparison to traditional nondestructive methods.
132

Filtragem robusta de SNPs utilizando redes neurais em DNA genômico completo

Silva, Bruno Zonovelli da 25 June 2013 (has links)
Submitted by Renata Lopes (renatasil82@gmail.com) on 2017-02-24T15:10:56Z No. of bitstreams: 1 brunozonovellidasilva.pdf: 11306730 bytes, checksum: d7a7b13a1620f32d885d6b1e8852ae2b (MD5) / Approved for entry into archive by Adriana Oliveira (adriana.oliveira@ufjf.edu.br) on 2017-02-24T15:40:35Z (GMT) No. of bitstreams: 1 brunozonovellidasilva.pdf: 11306730 bytes, checksum: d7a7b13a1620f32d885d6b1e8852ae2b (MD5) / Made available in DSpace on 2017-02-24T15:40:35Z (GMT). No. of bitstreams: 1 brunozonovellidasilva.pdf: 11306730 bytes, checksum: d7a7b13a1620f32d885d6b1e8852ae2b (MD5) Previous issue date: 2013-06-25 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Com o crescente avanço das plataformas de sequenciamento genômico, surge a necessidade de modelos computacionais capazes de analisar, de forma eficaz, o grande volume de dados disponibilizados. Uma das muitas complexidades, variações e particularidades de um genoma são os polimorfismos de base única (single nucleotide polymorphisms - SNPs), que podem ser encontrados no genoma de indivíduos isoladamente ou em grupos de indivíduos de alguma população, sendo originados a partir de inserções, remoções ou substituições de bases. Alterações de um único nucleotídeo, como no caso de SNPs, podem modificar a produção de uma determinada proteína. O conjunto de tais alterações tende a provocar variações nas características dos indivíduos da espécie, que podem gerar alterações funcionais ou fenotípicas, que, por sua vez, implicam, geralmente, em consequências evolutivas nos indivíduos em que os SNPs se manifestam. Entre os vários desafios em bioinformática, encontram-se a descoberta e filtragem de SNPs em DNA genômico, etapas de relevância no pós-processamento da montagem de um genoma. Este trabalho propõe e desenvolve um método computacional capaz de filtrar SNPs em DNA genômico completo, utilizando genomas remontados a partir de sequências oriundas de plataformas de nova geração. O modelo computacional desenvolvido baseia-se em técnicas de aprendizado de máquina e inteligência computacional, com o objetivo de obter um filtro eficiente, capaz de classificar SNPs no genoma de um indivíduo, independente da plataforma de sequenciamento utilizada. / With the growing advances in genomic sequencing platforms, new developments on computational models are crucial to analyze, effectively, the large volume of data available. One of the main complexities, variations and peculiarities of a genome are single nucleotide polymorphisms (SNPs). The SNPs, which can be found in the genome of isolated individuals or groups of individuals of a specific population, are originated from inserts, removals or substitutions of bases. Single nucleotide variation, such as SNPs, can modify the production of a protein. Combination of all such modifications tend to determine variations on individuals characteristics of the specie. Thus, this phenomenon usually produces functional or phenotypic changes which, in turn, can result in evolutionary consequences for individuals with expressed SNPs. Among the numerous challenges in bioinformatics, the discovery and filtering of SNPs in genomic DNA is considered an important steps of the genome assembling post-processing. This dissertation has proposed and developed a computational method able to filtering SNPs in genome, using the genome assembled from sequences obtained by new generation platforms. The computational model presented is based on machine learning and computational intelligence techniques, aiming to obtain an efficient filter to sort SNPs in the genome of an individual, regardless of the sequencing platform adopted.
133

Projeto de um módulo de aquisição e pré-processamento de imagem colorida baseado em computação reconfigurável e aplicado a robôs móveis / A project of a module for acquisition and color image pre-processing based on reconfigurable computation and applied to mobile robots

Vanderlei Bonato 14 May 2004 (has links)
Este trabalho propõe um módulo básico de aquisição e pré-processamento de imagem colorida aplicado a robôs móveis, implementado em hardware reconfigurável, dentro do conceito de sistemas SoC (System-on-a-Chip). O módulo básico é apresentado em conjunto com funções mais específicas de pré-processamento de imagem, que são utilizadas como base para a verificação das funcionalidades implementadas no trabalho proposto. As principais funções realizadas pelo módulo básico são: montagem de frames a partir dos pixels obtidos da câmera digital CMOS, controle dos diversos parâmetros de configuração da câmera e conversão de padrões de cores. Já as funções mais específicas abordam as etapas de segmentação, centralização, redução e interpretação das imagens adquiridas. O tipo de dispositivo reconfigurável utilizado neste trabalho é o FPGA (Field-Programmable Gate Array), que permite maior adequação das funções específicas às necessidades das aplicações, tendo sempre como base o módulo proposto. O sistema foi aplicado para reconhecer gestos e obteve a taxa 99,57% de acerto operando a 31,88 frames por segundo. / This work proposes a basic module for a mobile robot color image capture and pre-processing, implemented in reconfigurable hardware based on SoC (System-on-a-Chip). The basic module is presented with a specifics image pre-processing function that are used as a base for verify the functionalities implemented in this research. The mains functions implemented on this basic module are: to read the pixels provide by the CMOS camera for compose the frame, to adjust the parameters of the camera control and to convert color space. The specifics image pre-processing functions are used to do image segmentation, centralization, reduction and image classification. The reconfigurable dispositive used in this research is the FPGA (Field-Programmable Gate Array) that permit to adapt the specific function according to the application needs. The system was applied to recognize gesture and had 99,57% rate of true recognition at 31,88 frames per second.
134

[pt] MODELAGEM HÍBRIDA WAVELET INTEGRADA COM BOOTSTRAP NA PROJEÇÃO DE SÉRIES TEMPORAIS / [en] MODELING HYBRID WAVELET INTEGRATED WITH BOOTSTRAP IN PROJECTION TEMPORAL SERIES

RICARDO VELA DE BRITTO PEREIRA 31 March 2016 (has links)
[pt] Na previsão de séries temporais, alguns autores supõem que um método de previsão individual (por exemplo, um modelo ARIMA) produz resíduos (ou erros de previsão) semelhantes a um processo de ruído branco (imprevisível). No entanto, principalmente devido às estruturas de autodependência não mapeadas por um método preditivo individual, tal suposição pode ser facilmente violada na prática. Esta tese propõe um Previsor Híbrido Wavelet (PHW) que integra as seguintes técnicas: decomposição wavelet; modelos ARIMA; redes neurais artificiais (RNAs); combinação de previsões; programação matemática não linear e amostrador Bootstrap. Em termos gerais, o PHW proposto aqui é capaz de capturar, ao mesmo tempo, estruturas com autodependência linear por meio de uma combinação linear wavelet (CLW) de modelos ARIMA, (cujo ajuste numérico ótimo ocorre por programação matemática não linear) e não linear (usando uma RNA wavelet automática) exibidas pela série de tempo a ser predita. Diferentemente de outras abordagens híbridas existentes na literatura, as previsões híbridas produzidas pela PHW proposto levam em conta implicitamente, através da abordagem de decomposição wavelet, as informações oriundas da frequência espectral presentes na série temporal subjacente. Os resultados estatísticos mostram que a metodologia híbrida supracitada alcançou ganhos de precisão relevantes no processo preditivo de quatro séries de tempo diferentes bem conhecidas, quando se compara com outras meteorologistas competitivas. / [en] In time series analysis some authors presume that a single model (an ARIMA for instance) may yield white noise errors. However that assumption can be easily violated, especially in scenarios where unmapped auto dependency structures are present inside the series. With that being said, this thesis proposes a new approach called Hybrid Wavelet Predictor (HWP) which integrates the following techniques: Wavelet Decomposition, ARIMA models, Neural Networks (NN), Combined Prediction, Non-linear mathematical programming and Bootstrap Sampling. In a broad sense, the proposed HWP is able to capture not only the linear auto-dependent structures from ARIMA using linear wavelet combination (where its optimal numerical adjustment is made through non-linear mathematical programming), but also the non-linear structures by using Neural Network. Differently from others hybrid approaches known to date, the hybrid predictions given by HWP model take into account. Statistical tests show that the hybrid approach stated above increased the prediction s effectiveness by a significant amount when compared with four well known processes.
135

[en] THE USE OF DECISION TREES, NEURAL NETWORKS AND KNN SYSTEMS TO AUTOMATICALLY IDENTIFY BOX & JENKINS NON-SEASONAL AND SEASONAL STRUCTURES / [pt] UMA APLICAÇÃO DE ÁRVORES DE DECISÃO, REDES NEURAIS E KNN PARA A IDENTIFICAÇÃO DE MODELOS ARMA NÃO-SAZONAIS E SAZONAIS

LUIZA MARIA OLIVEIRA DA SILVA 19 December 2005 (has links)
[pt] A metodologia Box & Jenkins tem sido mais utilizada para fazer previsões do que outros métodos até então. Alguns analistas têm relutado, entretanto, em usar esta metodologia, em parte porque a identificação da estrutura adequada é uma tarefa complexa. O reconhecimento tanto dos padrões de comportamento das funções de autocorrelação quanto da autocorrelação parcial (teórica/estimada) dependem da série temporal através da qual é possível extraí-las. Uma vez obtidos os resultados, pode-se inferir qual o tipo de estrutura Box & Jenkins adequada para a série. A proposta do trabalho é desenvolver três novas metodologias de identificação automática das estruturas Box & Jenkins ARMA simples e/ou sazonais, identificar os filtros sazonal e linear da série de uma forma menos complexa. A primeira metodologia utiliza árvores de decisão, a segunda, redes neurais e a terceira, K-Nearest Neighbor (KNN). A estas metodologias serão utilizadas as estruturas Box & Jenkins sazonais de períodos 3, 4, 6 e 12 e não sazonais. Os resultados são aplicados a séries simuladas, bem como a séries reais. Como comparação, utilizou-se o método automático de identificação proposto no software FPW-XE. / [en] The Box & Jenkins is the most popular forecasting technique. However, some researchers have not embraced it because the identification of its structure is highly complex. The process of proper characterizing the properties of both autocorrelation functions and partial correlation (theoretical or estimated) depends on the time series from which they are being obtained. Given the results in question, it is possible to infer the proper Box & Jenkins structure for the time series being studied. For the reasons above, the goal of this dissertation is to develop three new methodologies to identifying, in an automatic fashion, the Box & Jenkins structure of an ARMA series. The methodologies identify, in a simpler manner, both the seasonal and linear filters of the series. The first methodology applies the decision tree. The second applies the neural networks. The third applies the K-Nearest Neighbor (KNN). In each of them the Box & Jenkins seasonal structures of 3, 4, 6 and 12 periods were used, as well as the nonseasonal structure. The results are applied to simulated and actual series. For comparison purposes, the automatic identification procedure of the software FPW-XE is also used.
136

[en] INFERENCE OF THE QUALITY OF DESTILLATION PRODUCTS USING ARTIFICIAL NEURAL NETS AND FILTER OF EXTENDED KALMAN / [pt] INFERÊNCIA DA QUALIDADE DE PRODUTOS DE DESTILAÇÃO UTILIZANDO REDES NEURAIS ARTIFICIAIS E FILTRO DE KALMAN ESTENDIDO

LEONARDO GUILHERME CAETANO CORREA 19 December 2005 (has links)
[pt] Atualmente cresce o interesse científico e industrial na elaboração de métodos de controle não lineares. Porém, estes modelos costumam ter difícil implementação e um custo elevado até que se obtenha uma ferramenta de controle confiável. Desta forma, estudos na área de métodos de apoio à decisão procuram desenvolver aplicações inteligentes com custos reduzidos, capazes de executar controles industriais avançados com excelentes resultados, como no caso da indústria petroquímica. Na destilação de derivados de petróleo, por exemplo, é comum fazer uso de análises laboratoriais de amostras para identificar se uma substância está com suas características físico-químicas dentro das normas internacionais de produção. Além disso, o laudo pericial desta análise permite regular os instrumentos da planta de produção para que se consiga um controle mais acurado do processo e, conseqüentemente, um produto final com maior qualidade. Entretanto, apesar da análise laboratorial ter maior acurácia nos resultados que avaliam a qualidade do produto final, exige, às vezes, muitas horas de análise, o que retarda o ajuste dos equipamentos de produção, reduzindo a eficiência do processo e aumentando o tempo de produção de certos produtos, que precisam ter sua composição, posteriormente, corrigida com outros reagentes. Outra desvantagem está relacionada aos custos de manutenção e calibração dos instrumentos localizados na área de produção, pois, como estes equipamentos estão instalados em ambientes hostis, normalmente sofrem uma degradação acelerada, o que pode gerar leituras de campo erradas, dificultando a ação dos operadores. Em contrapartida, dentre os métodos inteligentes mais aplicados em processos industriais químicos, destacam-se as redes neurais artificiais. Esta estrutura se inspira nos neurônios biológicos e no processamento paralelo do cérebro humano, tendo assim a capacidade de armazenar e utilizar o conhecimento experimental que for a ela apresentado. Apesar do bom resultado que a estrutura de redes neurais gera, existe uma desvantagem relacionada à necessidade de re-treinamento da rede quando o processo muda seu ponto de operação, ou seja, quando a matériaprima sofre algum tipo de mudança em suas características físico-químicas. Como solução para este problema, foi elaborado um método híbrido que busca reunir as vantagens de uma estrutura de redes neurais com a habilidade de um filtro estocástico, conhecido por filtro de Kalman estendido. Em termos práticos, o filtro atua em cima dos pesos sinápticos da rede neural, atualizando os mesmos em tempo real e permitindo assim que o sistema se adapte constantemente às variações de mudança de processo. O sistema também faz uso de pré-processamentos específicos para eliminar ruídos dos instrumentos de leitura, erros de escalas e incompatibilidade entre os sinais de entrada e saída do sistema, que foram armazenados em freqüências distintas; o primeiro em minutos e o segundo em horas. Além disso, foram aplicadas técnicas de seleção de variáveis para melhorar o desempenho da rede neural no que diz respeito ao erro de inferência e ao tempo de processamento. O desempenho do método foi avaliado em cada etapa elaborada através de diferentes grupos de testes utilizados para verificar o que cada uma delas agregou ao resultado final. O teste mais importante, executado para avaliar a resposta da metodologia proposta em relação a uma rede neural simples, foi o de mudança de processo. Para isso, a rede foi submetida a um grupo de teste com amostras dos sinais de saída somados a um sinal tipo rampa. Os experimentos mostraram que o sistema, utilizando redes neurais simples, apresentou um resultado com erros MAPE em torno de 1,66%. Por outro lado, ao utilizar redes neurais associadas ao filtro de Kalman estendido, o erro cai à metade, ficando em torno de 0,8%. Isto comprova que, além do filtro de Kalman não destruir a qualidade da rede neural original, ele consegue adaptá-la a mudanças de processo, permitindo, assim, que a variável de saída seja inferida adequadamente sem a necessidade de retreinamento da rede. / [en] Nowadays, scientific and industrial interest on the development of nonlinear control systems increases day after day. However, before these models become reliable, they must pass through a hard and expensive implementation process. In this way, studies involving decision support methods try to develop low cost intelligent applications to build up advanced industrial control systems with excellent results, as in the petrochemical industry. In the distillation of oil derivatives, for example, it is very common the use of laboratorial sample analysis to identify if a substance has its physical- chemistry characteristics in accordance to international production rules. Besides, the analyses results allow the adjustment of production plant instruments, so that the process reaches a thorough control, and, consequently, a final product with higher quality. However, although laboratory analyses are more accurate to evaluate final product quality, sometimes it demands many hours of analysis, delaying the adjustments in the production equipment. In this manner, the process efficiency is reduced and some products have its production period increased because they should have its composition corrected with other reagents. Another disadvantage is the equipments´ maintenance costs and calibration, since these instruments are installed in hostile environments that may cause unaccurate field measurements, affecting also operator´s action. On the other hand, among the most applied intelligent systems in chemical industry process are the artificial neural networks. Their structure is based on biological neurons and in the parallel processing of the human brain. Thus, they are capable of storing and employing experimental knowledge presented to it earlier. Despite good results presented by neural network structures, there is a disadvantage related to the need for retraining whenever the process changes its operational point, for example, when the raw material suffers any change on its physical-chemistry characteristics. The proposed solution for this problem is a hybrid method that joins the advantages of a neural network structure with the ability of a stochastic filter, known as extended Kalman filter. This filter acts in the synaptic weights, updating them online and allowing the system to constantly adapt itself to process changes. It also uses specific pre-processing methods to eliminate scale mistakes, noises in instruments readings and incompatibilities between system input and output, which are measured with different acquisition frequencies; the first one in minutes and the second one in hours. Besides, variable selection techniques were used to enhance neural network performance in terms of inference error and processing time. The method´s performance was evaluated in each process step through different test groups used to verify what each step contributes to the final result. The most important test, executed to analyse the system answer in relation to a simple neural network, was the one which simulated process changes. For that end, the network was submitted to a test group with output samples added to a ramp signal. Experiments demonstrated that a system using simple neural networks presented results with MAPE error of about 1,66%. On the other hand, when using neural networks associated to an extended Kalman filter, the error decreases to 0,8%. In this way, it´s confirmed that Kalman filter does not destroy the original neural network quality and also adapts it to process changes, allowing the output inference without the necessity of network retraining.
137

[pt] PREVISÃO DA CURVA DE PRODUÇÃO PARA PROJETO EXPLORATÓRIO UTILIZANDO REDES NEURAIS ARTIFICIAIS / [en] PRODUCTION FORECAST FOR EXPLORATORY PROJECT USING ARTIFICIAL NEURAL NETWORKS

MONIQUE GOMES DE ARAUJO 19 January 2021 (has links)
[pt] A estimativa de produção de petróleo é um dos parâmetros essenciais para mensurar a economicidade de um campo e, para tanto, existem várias técnicas convencionais na área da engenharia de petróleo para predizer esse cálculo. Essas técnicas abrangem desde modelos analíticos simplificados até simulações numéricas mais complexas. Este trabalho propõem o uso de Redes Neurais Artificias (RNA) para prever uma curva de produção de óleo que mais se aproxime da obtida por um simulador numérico. A metodologia consiste na utilização da rede neural do tipo feedforward para a previsão da vazão inicial e da curva de produção ao longo de dez anos para um poço produtor de óleo. Essa metodologia tem aplicação prática na área da exploração, visto que, nessa fase, ainda há muita incerteza sobre a acumulação de petróleo e, portanto, os modelos de reservatório tendem a não ser complexos. Os resultados foram obtidos a partir do treinamento de RNAs com dados coletados do simulador numérico IMEX, cujas saídas foram posteriormente comparadas com os dados originais da simulação numérica. Foi possível obter uma precisão de 97 por cento na estimativa da vazão inicial do poço produtor de óleo. A previsão da curva de produção apresentou um erro percentual médio absoluto inferior a 10 por cento nos dois primeiros anos. Apesar dos valores de erro terem crescido ao longo dos últimos anos, eles são menores quando comparados com a metodologia de declínio exponencial e com a regressão linear múltipla. / [en] Production forecasting is one of the essential parameters to measure the economics of an oil field. There are several conventional techniques in petroleum engineering to estimate the production curve. They range from simplified analytical models to complex numerical simulations. This study proposes the use of Artificial Neural Networks (ANN) to predict an oil production curve that approximates to a numerical simulator curve. The methodology consists of using a feedforward neural network to predict the initial flow and the production forecast over ten years of an oil well. This methodology has practical application in the exploration area, since, at this stage, there is still much uncertainty about the oil accumulation, so the reservoir models tend not to be complex. The results were obtained from the ANN training with data collected from the numerical simulator IMEX, whose outputs were later compared with the original data of the numerical simulation. It was possible to get an estimate for the oil initial flow forecast with an accuracy of 97 percent. The production forecast had a mean absolute percentage error of less than 10 percent in the first two years. Despite the increasing error values over the years, they are smaller when compared to those obtained from the exponential decline and multiple linear regression.
138

[pt] ANOTAÇÃO MORFOSSINTÁTICA A PARTIR DO CONTEXTO MORFOLÓGICO / [en] MORPHOSYNTACTIC ANNOTATION BASED ON MORPHOLOGICAL CONTEXT

EDUARDO DE JESUS COELHO REIS 20 December 2016 (has links)
[pt] Rotular as classes gramaticais ao longo de uma sentença - part-ofspeech tagging - é uma das primeiras tarefas de processamento de linguagem natural, fornecendo atributos importantes para realizar tarefas de alta complexidade. A representação de texto a nível de palavra tem sido amplamente adotada, tanto através de uma codificação esparsa convencional, e.g. bagofwords; quanto por uma representação distribuída, como os sofisticados modelos de word-embedding usados para descrever informações sintáticas e semânticas. Um problema importante desse tipo de codificação é a carência de aspectos morfológicos. Além disso, os sistemas atuais apresentam uma precisão por token em torno de 97 por cento. Contudo, quando avaliados por sentença, apresentam um resultado mais modesto com uma taxa de acerto em torno de 55−57 por cento. Neste trabalho, nós demonstramos como utilizar n-grams para derivar automaticamente atributos esparsos e morfológicos para processamento de texto. Essa representação permite que redes neurais realizem a tarefa de POS-Tagging a partir de uma representação a nível de caractere. Além disso, introduzimos uma estratégia de regularização capaz de selecionar atributos específicos para cada neurônio. A utilização de regularização embutida em nossos modelos produz duas variantes. A primeira compartilha os n-grams selecionados globalmente entre todos os neurônios de uma camada; enquanto que a segunda opera uma seleção individual para cada neurônio, de forma que cada neurônio é sensível apenas aos n-grams que mais o estimulam. Utilizando a abordagem apresentada, nós geramos uma alta quantidade de características que representam afeições morfossintáticas relevantes baseadas a nível de caractere. Nosso POS tagger atinge a acurácia de 96, 67 por cento no corpus Mac-Morpho para o Português. / [en] Part-of-speech tagging is one of the primary stages in natural language processing, providing useful features for performing higher complexity tasks. Word level representations have been largely adopted, either through a conventional sparse codification, such as bag-of-words, or through a distributed representation, like the sophisticated word embedded models used to describe syntactic and semantic information. A central issue on these codifications is the lack of morphological aspects. In addition, recent taggers present per-token accuracies around 97 percent. However, when using a persentence metric, the good taggers show modest accuracies, scoring around 55-57 percent. In this work, we demonstrate how to use n-grams to automatically derive morphological sparse features for text processing. This representation allows neural networks to perform POS tagging from a character-level input. Additionally, we introduce a regularization strategy capable of selecting specific features for each layer unit. As a result, regarding n-grams selection, using the embedded regularization in our models produces two variants. The first one shares globally selected features among all layer units, whereas the second operates individual selections for each layer unit, so that each unit is sensible only to the n-grams that better stimulate it. Using the proposed approach, we generate a high number of features which represent relevant morphosyntactic affection based on a character-level input. Our POS tagger achieves the accuracy of 96.67 percent in the Mac-Morpho corpus for Portuguese.
139

[pt] MODELOS COM MÚLTIPLOS REGIMES PARA SÉRIES TEMPORAIS: LIMIARES, TRANSIÇÕES SUAVES E REDES NEURAIS / [en] REGIME-SWITCHING MODELS: THRESHOLDS, SMOOTH TRANSITIONS, AND NEURAL NETWORKS

MARCELO CUNHA MEDEIROS 30 November 2005 (has links)
[pt] O objetivo desta tese é apresentar modelos mais flexíveis com troca de regimes, combinando as idéias provenientes dos modelos com limiar, com transição suave e redes neurais. Os modelos aqui discutidos possuem múltiplos regimes e a transição entre eles é controlada por uma combinação linear de variáveis conhecidas. Um procedimento de modelagem, baseada no trabalho de Teräsvirta e Lin (1993), Eiterheim e Teräsvirta (1996), e Rech, Teräsvirta e Tschernig (1999), consistindo das etapas de especificação, estimação e avaliação, foi desenvolvido, desta forma possibilitando ao analista de séries temporais escolher entre diferentes alternativas durante o processo de modelagem. / [en] The goal of this thesis is to propose more flexible regime-switching models combining the ideas from the SETAR, STAR, and ANN specifications. The models discussed in this thesis are models with multi-regimes and with the transition between regimes controlled by a linear combination of known variables. A modelling cycle procedure, based on the work of Teräsvirta and Lin (1993), Eitrheim and Teräsvirta (1996), and Rech, Teräsvirta and Tschernig (1999), consisting of the stages of model specification, parameter estimation, and model evaluation, is developed allowing the practitioner to choose among different alternatives during the modelling cycle. Monte-Carlo simulations and real applications are used to evaluate the performance of the techniques developed here and they suggested that the theory is useful and the proposed models thus seems to be an effective tool for the practicing time series analysts.
140

[pt] MODELAGEM USANDO INTELIGÊNCIA ARTIFICIAL PARA ESTUDAR O PRÉ-TRATAMENTO DE BIOMASSA LIGNOCELULÓSICA / [en] MODELLING USING ARTIFICIAL INTELLIGENCE TO STUDY THE PRETREATMENT OF LIGNOCELLULOSIC BIOMASS

JULIANA LIMA GUERHARD FIDALGO 09 June 2020 (has links)
[pt] Os polissacarídeos constituintes da biomassa lignocelulósica podem ser beneficiados através de processos industriais. Entretanto, para manipulá-los é necessário que a biomassa seja submetida ao processo de pré-tratamento. Esta é uma das etapas mais caras e relevantes para a disposição e aplicação das frações lignocelulósicas. O presente estudo consiste em uma investigação detalhada do processo de pré-tratamento da biomassa lignocelulósica com H2O2, a qual foi realizada através de tecnologias inteligentes que viabilizaram a otimização deste processo. Ferramentas de inteligência artificial revelam-se vantajosas na solução dos gargalos associados aos avanços tecnológicos. Possibilitam a modelagem matemática de um processo com máxima eficiência, otimizando sua produtividade, transformando dados experimentais em informações úteis e demonstrando as infinitas possibilidades das relações das variáveis envolvidas. As variáveis independentes estudadas foram a temperatura (25 – 45 graus Celsius) e a concentração de peróxido de hidrogênio (1.5 – 7.5 porcento m/v). Técnicas analíticas qualitativas (Raman e FTIR) e quantitativa (Método de Klason) foram aplicadas para produzir um banco de dados referente a extração da lignina com H2O2, o qual foi utilizado no desenvolvimento de modelos neurais aplicando Redes Neurais Artificiais (ANN, do inglês Artificial Neural Networks) e Sistema de Inferência Adaptativa Neuro-Difusa (ANFIS, do inglês Adaptive neuro fuzzy inference system). E modelos polinomiais, os quais tiveram seus parâmetros estimados por Algoritmos Genéticos (GA, do inglês Genetic Algorithms). Os modelos desenvolvidos conseguiram predizer: o Teor de Lignina Extraída (porcento) por Espectroscopia Raman, o Teor de Lignina Oxidada (porcento) por FTIR, o Teor de Lignina Residual (porcento) pelo Método de Klason, e por último, dois modelos para a comparação da resposta analítica qualitativa com a resposta analítica quantitativa. Os modelos polinomiais, que tiveram seus parâmetros estimados por GA foram avaliados estatisticamente através da ANOVA e pelo coeficiente de correlação (R2). E os modelos neurais desenvolvidos foram avaliados pelo coeficiente de correlação (R2), número de parâmetros e índices de erro (SSE, MSE e RMSE). Para cada modelo polinomial e neural proposto, quando coerente, superfícies de resposta e curvas de contorno foram plotadas permitindo a identificação da região operacional mais indicada para a realização do pré-tratamento com H2O2. Dentre as estratégias inteligentes propostas, os modelos desenvolvidos com ANN mostraram-se mais eficientes para as predições relacionadas à extração da lignina. / [en] Industrial processes benefit the polysaccharides constituting the lignocellulosic biomass. However to manipulate them it is necessary that the biomass is submitted to the pre-treatment process. This is one of the most expensive and relevant steps for the arrangement and application of lignocellulosic fractions. The present study consists of a detailed investigation of the pretreatment process of lignocellulosic biomass with H2O2, applying intelligent technologies that enabled the optimization of this process. Artificial intelligence tools prove to be advantageous in solving the bottlenecks associated with technological advances. They enable the mathematical modeling of a process with maximum efficiency, optimizing its productivity, transforming experimental data into useful information and demonstrating the infinite possibilities of the relationships of the variables involved. The independent variables studied were the temperature (25-45 Celsius degrees) and the concentration of hydrogen peroxide (1.5 - 7.5 percent m / v). Qualitative analytical techniques (Raman and FTIR) and quantitative (Klason method) were applied to produce a database for the extraction of lignin with H2O2, which was used in the development of neural models applying Artificial Neural Networks (ANN) and Adaptive Neuro-Fuzzy Inference System (ANFIS). And polynomial models, which had their parameters estimated by Genetic Algorithms (GA). The models developed were able to predict: the Extracted Lignin Content (percent) by Raman Spectroscopy, the Oxidized Lignin Content (percent) by FTIR, the Residual Lignin Content (percent) by the Klason Method, and lastly, two models for the comparison of the qualitative analytical response with the quantitative analytical response. The polynomial models, which had their parameters estimated by GA, were statistically evaluated using ANOVA and correlation coefficient (R2) evaluated the polynomial models developed by GA statistically. And the neural models developed were evaluated by the coefficient of correlation (R2), number of parameters and error indexes (SSE, MSE and RMSE). For each proposed polynomial and neural model, when coherent, response surfaces and contour curves were plotted allowing the identification of the most suitable operational region for the pretreatment with H2O2. Among the proposed intelligent strategies, the models developed with ANN proved to be more efficient for the predictions related to lignin extraction.

Page generated in 0.0809 seconds