• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 177
  • 3
  • Tagged with
  • 180
  • 146
  • 69
  • 64
  • 63
  • 54
  • 54
  • 48
  • 45
  • 42
  • 39
  • 39
  • 33
  • 33
  • 32
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Estudo da dinâmica de transição de fases em ligas de Ge2Sb2Te5

Galves, Lauren Aranha January 2014 (has links)
Este trabalho tem por objetivo o estudo experimental das modificações do sistema GST (Ge2Sb2Te5) via implantação de íons de Al e Mn. Tal material é caracterizado pela acentuada diferença de suas propriedades físicas, em especial reetividade e resistividade, entre as fases amorfa e cristalina. A caracterização deste sistema bem como o estudo de suas fases amorfa e cristalina, desempenha papel promissor no desenvolvimento de mídias de armazenamento. Duas séries de amostras foram confeccionadas para este projeto. A primeira foi composta de filmes de GST de 180 nm depositados sobre uma camada de 5 _m de SiO2 com um substrato de Si. A segunda série abrangeu duas espessuras de GST, 55 nm e 130 nm, depositados em um substrato de Si com óxido nativo. Além dos diferentes elementos, energias e fluências de implantação comparou-se também as alterações que a espessura provocou nas medidas. Através de técnicas de RBS, XRD e medidas de reetividade investigou-se de que modo a implantação alterava as propriedades óticas de filmes de GST. Inicialmente, as mudanças geradas no estado amorfo e no estado cristalino para cada filme foram medidas, observando-se o surgimento de oscilações nos espectros de refletância para certas fluências de implantação. Outra etapa do trabalho baseou-se no estudo da evolução térmica da refletância, a qual permitiu a observação da temperatura de transição de fase para cada filme e o intervalo de temperaturas necessário para que ocorresse a cristalização. / The aim of this work is to experimentally study the modi cations of the GST system (Ge2Sb2Te5) via Al and Mn ionic implantation. Such material is characterized by a remarkable di erence in its physical properties, especially the re ectivity and resistivity, between the crystalline and amorphous phases. The characterization of this system, as well as the study of its cristalline and amorphous phases, plays a promising role in the development of new storage medias. Two series of samples were designed for this project. The rst one was composed of 180 nm GST lms deposited on a 5 m SiO2 layer with a Si substrate under it. The second serie covered two di erent thickness of GST, 55 nm and 130 nm, deposited in a Si substrate with native oxide. Besides the di erent elements, energies and implantation uencies, it was also compared the e ects in the measurements resulting from changing the thickness. By means of RBS techniques, XRD and measurements of re ectivity, it was investigated how the ionic implantation modi es the optical properties of GST lms. Initially, the changes induced in the amorphous and cristalline phases for each lm were measured, whereupon the outcome of oscillations in the re ectivity spectra for certain uencies could be observed. The other stage of the work was based on the study of the re ectivity thermal evolution, wich allowed one to observe the temperature of the phase separation for each lm, as well as the range of temperatures necessary for the crystallization process to take place.
132

Influência de bolhas de hélio e da microestrutura sobre a evolução térmica de filmes de alumínio implantados com cobre

Camacho, Cristiano Sabóia January 2002 (has links)
Este trabalho apresenta os resultados de um estudo sistemático sobre as influências do tamanho de grão de filmes finos de Al e da implantação de íons de He sobre a evolução térmica de distribuições de átomos de Cu e formação de precipitados de Al-Cu. Filmes finos de Al depositados sobre substrato de SiO2/Si através de dois processos diferentes foram implantados com íons de Cu+ e He+ produzindo uma solução sólida supersaturada de Al-Cu (≈ 2,5 a 3,5 at. %) e nano-bolhas de He. Os valores de energia dos íons foram escolhidos de tal forma a produzirem uma camada rica em Cu e He na região a aproximadamente 100nm da superfície. Tais filmes foram tratados termicamente em alto-vácuo nas temperaturas de 200ºC e 280ºC por tempos de 0,5h e 2h. Os filmes foram analisados por Retroespalhamento Rutherford, para determinação do perfil de concentração dos átomos de Cu, e por Microscopia Eletrônica de Transmissão, para determinação da microestrutura do Al e dos sistemas de nano-partículas Al-Cu e Al-He. Os resultados experimentais mostraram que a evolução térmica da distribuição dos átomos de Cu e a formação de precipitados de Al-Cu são significativamente afetadas pela configuração e tamanho de grão do filme de Al e pelas implantações de He. O presente estudo mostrou que existe uma forte correlação entre o fluxo de vacâncias e a estabilidade da microestrutura de filmes finos de Al (Al/SiO2/Si) implantados com íons de Cu+ e He+ e tratados termicamente. A possibilidade de controlar os fluxos de vacâncias através de configurações da microestrutura dos filmes de Al é, portanto, um tema de grande interesse tecnológico relacionado a durabilidade das interconexões metálicas de dispositivos microeletrônicos.
133

Formação de nanopartículas de Sn e PbSe via implantação iônica em Si(100)

Marcondes, Tatiana Lisbôa January 2009 (has links)
O silício (Si) é o material mais utilizado na fabricação de dispositivos microeletrônicos e fotovoltaicos devido às suas excelentes propriedades físicas e ao alto grau de desenvolvimento das tecnologias de produção alcançadas pela indústria. Conseqüentemente, materiais compatíveis com o Si são alternativas importantes para ampliar o desempenho e a funcionalidade das próximas gerações de dispositivos. O principal objetivo desse trabalho foi estudar sistematicamente a formação de nanopartículas de Sn e de PbSe via implantação iônica seguida de tratamentos térmicos (síntese por feixe de íons), em substrato de silício com orientação (100). Três tipos de substratos foram considerados: substrato sem defeitos, substratos contendo sistemas de bolhas de Ne e substratos contendo cavidades vazias. A formação de nanopartículas de estanho (Sn) foi tomada como caso modelo para otimizar os parâmetros do processo de síntese por feixe de íons. O sistema composto PbSe é interessante por ser semicondutor de gap direto, sendo potencialmente útil para o desenvolvimento de dispositivos optoeletrônicos e fotovoltaicos integrados com o Si. A caracterização estrutural das amostras foi realizada através de técnicas de análise por feixes de íons, como o Retroespalhamento Rutherford (RBS), RBS em direção canalizada, detecção de partículas por recuo elástico (ERD) e através da técnica de Microscopia Eletrônica de Transmissão (TEM). Os principais pontos estudados foram: (i) os efeitos sobre o processo de síntese de nanoppartículas causados pela amorfização da matriz durante a implantação de íons de Sn+, Pb+ e Se+; (ii) o desenvolvimento de estratégias de como evitar a amorfização através do aquecimento do substrato; (iii) a perda de material implantado durante tratamentos térmicos de alta temperatura realizados após a implantação; (iv) a decomposição de cavidades e de bolhas e das próprias nanopartículas inerente ao auto-bombardeamento iônico durante as implantações; (v) o processo de nucleação de precipitados em sítios heterogêneos como discordâncias, cavidades e bolhas; (vi) e a formação de nanopartículas em diferentes tipos de substrato. Através da implantação de elementos muito pouco solúveis em uma matriz, espera-se a formação de nanopartículas dispersas de uma segunda fase pura (sem reagir com elementos da matriz). Neste sentido, os resultados obtidos são interessantes. Primeiro, no caso do Sn, apresentamos evidências da formação de estruturas nanoscópicas de alta estabilidade térmica, afetando o processo de nucleação e formação das fases α-Sn (semicondutora) ou β-Sn (metálica) usuais para sistemas massivos. Obtivemos a formação preferencial da fase β-Sn, e não obtivemos evidência da formação de ligas Sn-Si ou a fase α-Sn que podem ser obtidas através de processos de não equilíbrio como a co-deposição por epitaxia de feixe molecular. Por outro lado, no caso da co-implantação com íons de Pb+ e Se+, os resultados mostram ser possível formar sistemas dispersos de nanopartículas de PbSe com estequiometria e estruturas previstas em diagrama de equilíbrio para sistemas massivos. Por fim, a presença de cavidades e bolhas, apesar de influenciar na distribuição em tamanho das nanopartículas, não representa uma vantagem específica como centro de segregação e nucleação preferencial de impurezas no Si. Isso contradiz conceitos da literatura referentes ao aprisionamento de impurezas bolhas ou cavidades, usualmente considerados como técnicas para purificação de matriz, e aplicados na confecção de dispositivos microeletrônicos e fotovoltaicos. / Due to its favourable physical properties and the high development degree achieved on industrial processes, Si is the most used substrate material for microelectronic and photovoltaic devices. As a consequence, materials compatible with the Si technology are very important to improve the performance and functionality of advanced devices. This work focuses on ion beam synthesis of dispersed second phase Sn or PbSe nanoparticles (NPs) in three types of Si (001) substrates: pristine ones, substrates containing voids and substrates containing Ne bubbles. The formation of Sn NPs is considered as a model case for the optimization of the ion beam synthesis process. PbSe is a direct band gap semiconducting compound and present potential interest for optoelectronic and/or photovoltaic applications. The samples were characterized by ion beam analysis methods, including Rutherford backscattering (RBS), channelling (RBS/C) and Elastic Recoil Detection (ERD), as well as by Transmission Electron Microscopy (TEM). The main investigated points comprise: i) substrate amorphization effects on the formation of NPs; ii) the development of strategies to avoid self amorphization by means of substrate heating; iii) material losses by evaporation during post-implantation hightemperature treatments; iv) the decomposition of bubbles and voids during the implantation of the metallic species; v) the effects of heterogeneous sites on the NPs nucleation and growth; vi) the formation of NPs systems on the different substrates. Implantation of element with very low solubility generally leads to the formation of pure dispersed second phase particles, instead of alloyed systems with substrate atoms. In this sense, interesting results were obtained. First, for Sn, there are evidences that rather thermally stable nanoscopic structures were formed, thus retarding the formation of the usual α-Sn (semiconducting) and β-Sn (metallic) phases predicted for equilibrium bulk systems. In addition, after high temperature treatments, only β-Sn NPs were obtained, instead of α-Sn or α-(Sn-Si) alloys as reported by molecular epitaxy co-deposition methods. On the other hand, co-implantation of Pb+ and Se+ ions lead to the formation of PbSe NPs presenting the same stoichiometry and phase as predicted by thermal equilibrium phase diagrams for bulk systems. Finally, the presence of voids or bubbles, in spite of their influence on the NPs size distributions, does not contribute significantly for the NP system formation. The present findings contrast with literature impurity gettering concepts usually related to bubbles or voids.
134

Estudo do crescimento de filmes de carbono sobre silício devido à irradiação com feixes de H e He

Mörscbächer, Marcio José January 2001 (has links)
É bem conhecido que técnicas experimentais que fazem uso de feixes iônicos induzem sobre a superfície dos alvos irradiados o depósito de diversos tipos de impurezas. Este depósito é causado pelas interações entre o feixe de íons, as moléculas de gás residual no interior das câmaras de irradiação e a superfície da amostra. Apesar do fato deste processo poder alterar significativamente os parâmetros de irradiações, bem como afetar a análise de materiais tratados, os parâmetros experimentais que influenciam na deposição das impurezas ainda não são bem conhecidos e nem o depósito se encontra suficientemente quantificado. No presente trabalho relatamos um estudo quantitativo da deposição de carbono sobre amostras de Si (100) irradiadas com feixes de He e H. A deposição de carbono foi determinada em função da fluência de irradiação, variando diversos parâmetros experimentais, tais como: pressão na câmara de irradiação, temperatura do alvo, densidade de corrente do feixe, energia do feixe e o estado da carga do íon. Em todos os casos a análise das amostras irradiadas foi feita pela técnica de Retroespalhamento de Rutherford em direção Canalizada (RBS/C) e através da reação nuclear ressonante 12C(a, a´)12C na energia de 4265 keV. Os resultados experimentais mostram que se consegue minimizar a deposição de C através: a) da redução do tempo de irradiação, b) da redução da pressão na câmara de irradiação, c) do aumento da temperatura do alvo durante a irradiação e d) minimização do poder de freamento do íon no alvo.
135

Formação e estabilidade térmica de nanocavidades produzidas pela implantação de He em Si

Silva, Douglas Langie da January 2004 (has links)
Nesta tese são apresentados os resultados de um estudo sistemático à respeito da formação e evolução térmica de nanocavidades de He em Si cristalino. O efeito da formação de nanocavidades de He no aprisionamento de impurezas em Si foi estudado inicialmente em distintas condições de fluência, temperatura e direção de implantação. Após as implantações, as amostras foram tratadas termicamente a 800°C e analisadas por espectroscopia de retroespalhamento Rutherford em condição de canalização (RBS/C), análise de detecção por recuo elástico (ERDA), espectroscopia por emissão de íons secundários (SIMS) e microscopia eletrônica de transmissão (TEM). Os resultados experimentais mostraram que implantações de He a temperatura ambiente (Ti=Tamb) levam à formação de defeitos numa região intermediária entre a superfície e a camada onde as bolhas se formam (Rp/2), sendo 5x1015He+cm-2 a fluência mínima para a observação do fenômeno. Sua origem foi atribuída à formação de pequenas cavidades nesta região. O mesmo não é observado em implantações a Ti=350°C devido ao efeito do recozimento dinâmico dos defeitos. Estes resultados mostraram a necessidade de um estudo mais profundo a respeito dos efeitos da temperatura de implantação (Ti) na formação de bolhas em Si. Este estudo foi feito a partir de implantações de He no intervalo de temperatura entre -196°C e 350°C, sendo a fluência e a energia de implantação de 2x1016He+cm-2 e 40keV respectivamente. O efeito da proximidade à superfície foi estudado com implantações a 15keV. As amostras foram analisadas pelas mesmas técnicas referidas anteriormente. Para o caso de implantações feitas a 40keV com Ti<Tamb bolhas planas são formadas após recozimento a 400°C por 600s. Recozimentos a 800°C durante o mesmo tempo levam ao colapso das estruturas planas e à formação de um sistema de cavidades esféricas cujas características são dependentes dos estágios iniciais de implantação. No intervalo onde Ti>Tamb pequenas bolhas são formadas durante a implantação juntamente com defeitos estendidos do tipo {311}. A formação destes defeitos é atribuida ao mecanismo de formação das bolhas baseado na emissão de átomos auto-intersticiais de Si. Distintos regimes são observados após recozimento entre 400°C e 800°C por 600s. Para Ti≤250°C observa-se a dissolução do sistema de cavidades e defeitos devido à interação mutua entre os sistemas. Para Ti>250°C cavidades esféricas e anéis de discordância são observados após recozimentos a 800°C. Finalmente, se observou que a energia de implantação (15keV) não afeta a morfologia do sistema de bolhas e defeitos formados. Porém a perda de He é cinco vezes menor que no caso de amostras implantadas a 40 keV na mesma fluência. Um mecanismo baseado na difusão aumentada por danos de irradiação é sugerido neste trabalho.
136

Estudo da perda de energia de Be, B e O em direções aleatórias e canalizadas de alvos de Si e determinação da respectiva contribuição Barkas

Araújo, Leandro Langie January 2004 (has links)
Neste trabalho de tese, foi estudada a perda de energia de íons de Be, B e O incidindo em direção aleatória e ao longo dos canais axiais <100> e <110> do Si. Os intervalos de energia nos quais as medidas experimentais foram realizadas variaram entre 0,5 e 10 MeV para Be, entre 0,23 e 9 MeV para B e entre 0,35 e 15 MeV para O. Posteriormente, o efeito do “straggling” (flutuação estatística da perda de energia) nas medidas em direção aleatória também foi analisado, para íons de Be e O, nas regiões de energia entre 0,8 e 5 MeV e 0,35 e 13,5 MeV, respectivamente. As medidas relacionadas à perda de energia em direção aleatória e ao “straggling” em função da energia dos íons foram realizadas combinando-se a técnica de retroespalhamento Rutherford (RBS) ao emprego de amostras de Si implantadas com marcadores de Bi. Os resultados relativos à perda de energia ao longo dos canais <100> e <110> do Si em função da energia dos íons foram obtidos através de medidas de RBS canalizado feitas em amostras tipo SIMOX (Separated by IMplanted OXygen). A perda de energia foi calculada teoricamente, através de três abordagens diferentes: a) a Aproximação de Convolução Unitária (UCA); b) o método não-linear baseado na seção de choque de transporte e na regra da soma de Friedel estendida (TCS-EFSR); c) a teoria binária. A combinação dos cálculos UCA com os resultados experimentais para a perda de energia canalizada de Be, B e O em Si permitiu isolar a contribuição do efeito Barkas para a perda de energia. Essa contribuição mostrou ser bastante grande, chegando a 45% do valor das outras contribuições para o caso do Be, 40% para o caso do B e 38% para o caso do O. Esses resultados são comparáveis aos previamente obtidos no Laboratório de Implantação Iônica da UFRGS para íons de He e Li. As teorias TCS-EFSR e binária permitiram o cálculo do efeito Barkas para a perda de energia devida aos elétrons de valência. Os resultados teóricos e experimentais para a contribuição Barkas total e relativa foram comparados e analisados em função da carga média e da energia dos íons para as energias de 300, 400, 500 e 700 keV/uma. O acordo teórico-experimental é razoável para as energias mais baixas, melhorando com o aumento da energia dos íons incidentes.
137

Otimização de fotocatalisadores nanoestruturados de TiO2 + Au para produção de H2

Machado, Guilherme Josué January 2012 (has links)
A possibilidade produzir hidrogênio (H2) a partir da quebra da molécula da água, usando a radiação solar, foi descoberta ha mais de 40 anos e nas ultimas décadas tem recebido grande atenção científica. A síntese de semicondutores nanoestruturados representam um avanço no uso como fotocatalisadores para a produção de H2 a partir da quebra da molécula da água, devido a alta área superficial. Dos semicondutores nanoestruturados desenvolvidos, o TiO2 apresenta grande interesse por se tratar de um material abundante, barato e altamente estável quimicamente. Por outro lado, o TiO2 apresenta uma atividade fotocatalítica limitada devido ao seu alto band gap (~3,2 eV), relativamente alto, e a rápida recombinação do par elétron-buraco gerado pela radiação UV. Neste sentido, a adição de nanopartículas (NPs) de Au ao TiO2 aparece como uma solução viável para aumentar a eficiência do semicondutor na reação de water splitting (WS). Os mecanismos envolvidos no aumento de eficiência na produção de H2 devido as inserção de NPs de Au ainda não estão totalmente entendidos. Atualmente existem dois modelos que descrevem o fenômeno: i) o Au atua como um "reservatório" para os fotoelétrons promovidos pelo processo de transferência de carga do semicondutor quando excitados com radiação UV, fazendo com que as reações de fotocatalíticas de geração de H2 ocorram na superfície das NPs de Au e ii) as NPs de Au apresentam ressonância de plasmon de superfície “injetando” elétrons na banda de condução (BC) do TiO2, assim aumentando a quantidade de elétrons disponíveis para formação do H2, fazendo com que a reação de produção de H2 ocorra na superfície do semicondutor. Neste trabalho são apresentados resultados inéditos da produção e caracterização nanotubos de TiO2 (NTs de TiO2) modificados com Au e utilizados como fotocatalisadores para a produção de H2 a partir do processo de WS. A discussão está centrada na modificação das propriedades do TiO2 através da adição de NPs de Au na estrutura e na superfície, através de dois métodos: i) implantação iônica e ii) sputtering. Os resultados relacionam a atividade fotocatalítica na produção de H2. dos fotocatalisadores em função da posição das NPs de Au. / The possibility to produce hydrogen (H2) from the water splitting using solar radiation, was discovered for more than 40 years and in recent decades has received great scientific attention. The synthesis of nanostructured semiconductor represent an advancement in use as photocatalysts for the production of H2 from the splitting of the water, due to high surface area. Developed nanostructured semiconductors, TiO2 has a great interest in the case of a material abundant, inexpensive and high chemical stability. On the other hand, has a low efficiency TiO2photocatalyst for the H2 production due to its high band gap (~ 3.2 eV) and the rapid recombinant electron-hole pair generated by UV radiation. In this sense, the addition of Au nanoparticles (NPs) to TiO2 appears as a viable solution to increase the efficiency of reaction in the semiconductor water splitting (WS). The mechanisms involved in increased efficiency in H2 because the insertion of Au NPs are not yet fully understood. Currently, there are two models that describe the phenomenon: i) the Au acts as a "reservoir" for the photoemission process promoted by the charge transfer of the semiconductor when excited with UV radiation, causing the reactions of photocatalytic H2generation occur in NPs Au surface and ii) Au NPs surface plasmon resonance "pumping" electrons in the TiO2conduction band (CB), thus increasing the amount of electrons available for the formation of H2, making the reaction H2 production occurs in the semiconductor surface. This work presents the results of the production and characterization of TiO2 nanotubes (TiO2TNs) Au-modified and used as photocatalysts for the H2 production by WS. The discussion is focused on modifying the properties of NTs by the addition of Au NPs in the TiO2 structure or surface by means of two methods: i) ion implantation and ii) sputtering, and comparing its photocatalytic activity influences the position of the NPs in the Au H2 production.
138

Estudo da dinâmica de transição de fases em ligas de Ge2Sb2Te5

Galves, Lauren Aranha January 2014 (has links)
Este trabalho tem por objetivo o estudo experimental das modificações do sistema GST (Ge2Sb2Te5) via implantação de íons de Al e Mn. Tal material é caracterizado pela acentuada diferença de suas propriedades físicas, em especial reetividade e resistividade, entre as fases amorfa e cristalina. A caracterização deste sistema bem como o estudo de suas fases amorfa e cristalina, desempenha papel promissor no desenvolvimento de mídias de armazenamento. Duas séries de amostras foram confeccionadas para este projeto. A primeira foi composta de filmes de GST de 180 nm depositados sobre uma camada de 5 _m de SiO2 com um substrato de Si. A segunda série abrangeu duas espessuras de GST, 55 nm e 130 nm, depositados em um substrato de Si com óxido nativo. Além dos diferentes elementos, energias e fluências de implantação comparou-se também as alterações que a espessura provocou nas medidas. Através de técnicas de RBS, XRD e medidas de reetividade investigou-se de que modo a implantação alterava as propriedades óticas de filmes de GST. Inicialmente, as mudanças geradas no estado amorfo e no estado cristalino para cada filme foram medidas, observando-se o surgimento de oscilações nos espectros de refletância para certas fluências de implantação. Outra etapa do trabalho baseou-se no estudo da evolução térmica da refletância, a qual permitiu a observação da temperatura de transição de fase para cada filme e o intervalo de temperaturas necessário para que ocorresse a cristalização. / The aim of this work is to experimentally study the modi cations of the GST system (Ge2Sb2Te5) via Al and Mn ionic implantation. Such material is characterized by a remarkable di erence in its physical properties, especially the re ectivity and resistivity, between the crystalline and amorphous phases. The characterization of this system, as well as the study of its cristalline and amorphous phases, plays a promising role in the development of new storage medias. Two series of samples were designed for this project. The rst one was composed of 180 nm GST lms deposited on a 5 m SiO2 layer with a Si substrate under it. The second serie covered two di erent thickness of GST, 55 nm and 130 nm, deposited in a Si substrate with native oxide. Besides the di erent elements, energies and implantation uencies, it was also compared the e ects in the measurements resulting from changing the thickness. By means of RBS techniques, XRD and measurements of re ectivity, it was investigated how the ionic implantation modi es the optical properties of GST lms. Initially, the changes induced in the amorphous and cristalline phases for each lm were measured, whereupon the outcome of oscillations in the re ectivity spectra for certain uencies could be observed. The other stage of the work was based on the study of the re ectivity thermal evolution, wich allowed one to observe the temperature of the phase separation for each lm, as well as the range of temperatures necessary for the crystallization process to take place.
139

Implantação iônica de oxigênio em silício

Cima, Carlos Alberto January 2001 (has links)
Foi estudada a produção de danos cristalográficos em silício por implantação de íons de oxigênio empregando-se doses na faixa de 1 x 1016 cm-2 a 4x 1017 cm-2 , energias entre 90 keV e 240 keV e temperaturas do substrato entre 25°C e 600°C. Os efeitos destas implantações sobre a estrutura cristalina foram determinados por espectroscopia de retroespalhamento de Rutherford (RBS), microscopia eletrônica de transmissão (TEM) e difração de Raios-X de alta resolução (HRXRD). O padrão de acumulação de danos sofre uma transição em ~200°C, com o deslocamento da região de máxima danificação da profundidade correspondente à maior deposição de energia por colisões nucleares para uma profundidade próxima ao alcance médio projetado dos íons. Abaixo de 200°C, a implantação iônica produz uma camada amorfa normalmente enterrada no substrato cristalino. Acima desta temperatura, não há formação de camada amorfa, mas observa-se a existência de duas regiões bem distintas. Na primeira delas, próxima da superfície, a densidade e a acumulação de danos são extremamente baixas mesmo para doses de oxigênio relativamente altas, ao passo que na segunda, centrada em torno do alcance projetado, detecta-se a presença de uma grande concentração de defeitos de natureza intersticial. Experimentos adicionais, utilizando íons de nitrogênio, neônio e magnésio em condições similares de dose, energia e temperatura, forneceram um quadro comparativo para a implantação de íons leves em alta temperatura. A produção de danos também é afetada pelas propriedades químicas dos íons, seja pela participação destes na formação de compostos, sob a forma de precipitados na matriz cristalina, seja pela sua associação a estruturas de defeitos. Verificou-se que a deformação mecânica da rede provocada pela implantação iônica depende da temperatura do substrato, energia, dose e da espécie química do íon implantado, podendo variar de uma deformação positiva de magnitude relativamente baixa, associada à expansão da distância interplanar, até um elevado valor de deformação negativa (de contração). A descrição das técnicas experimentais e dos dados obtidos numa extensa série de experiências constituem o núcleo deste trabalho científico. Os dois últimos capítulos, contudo, são devotados à análise dos resultados experimentais e à discussão das conclusões. / The production of damage in crystalline silicon by implantation of oxygen ions at elevated temperatures has been studied employing doses in the range of 1 x 1016 cm-2 to 4x1017 cm-2 • The ion energy was varied from 90 keV to 240 keV and the substrate temperature, held constant during the implantation, comprised the range from room temperature to 600°C. The effects of the implantation on the crystalline structure were monitored using three different experimental techniques : Rutherford backscattering spectrometry (RBS), transmission electron microscopy (TEM) and high resolution x-ray diffraction (HRXRD). The damage accumulation shows a transition around 200°C, since the region of maximum damage shifts from the maximum deposited energy depth to a depth near the mean projected range of the implanted ions. Below 200°C, the ion implantation creates a buried amorphous layer in the crystalline substrate. Above this temperature threshold, no amorphous layer is formed, but there are two distinct regions in the silicon samples. In the first one, dose to the surface, the damage accumulation is very low, even at relatively high oxygen doses. The second region, located around the mean projected range depth, is caracterized by a high concentration of interstitial type defect structures. Additional experiments, using nitrogen, neon and magnesium ions with implantation conditions similar to those of oxygen ions, provided a comparative picture of damage and strain accumulation by implantation with light mass ions at elevated temperatures. The damage production is affected by the chemical properties of the ions, which can participate in a variety of processes, such as the precipitation of compounds in the crystalline matrix and the formation of defective structures. The mechanical deformation dueto the ion implantation was found to be dependent on the substrate temperature, energy, dose and chemical species of the ion. The strain calculated values may vary from a relatively low positive deformation, associated with an increase in the distance between crystalline planes, to a high value of negative deformation (of contraction). The description of the data obtained in an extensive series of experiments constitutes the core of this scientific work. The last two chapters are devoted to the analysis of the experimental results and to the presentation of some conclusions.
140

Estudo das propriedades luminescentes e estruturais de nanopartículas (Si, Ge, Eu e Tb) produzidas por implantação a quente

Bregolin, Felipe Lipp January 2012 (has links)
Neste trabalho, investigamos o comportamento da emissão de fotoluminescência (PL) e a evolução estrutural de diferentes sistemas de nanopartículas em função dos parâmetros utilizados em sua obtenção. O mecanismo básico de emissão de PL desses sistemas torna possível enquadrálos em dois grupos básicos. No primeiro caso (Ge implantado em SiO2 e Si implantado em Si3N4), a origem da PL emitida é devido à presença de centros de defeitos radiativos localizados majoritariamente na interface das nanopartículas com a matriz. No segundo (Tb e Eu implantados em SiO2), a PL tem sua origem em transições eletrônicas de níveis atômicos dos íons de Terras Raras implantados. Para o sistema de nanopartículas de Ge imersas em SiO2, íons de Ge foram implantados com uma energia de 120 keV em um filme de SiO2 de 320 nm de espessura, mantido a uma temperatura constante entre RT e 350 ℃. A fluência implantada foi de 0,3 a 2,2 x 1016 Ge/cm². Posteriormente, as amostras foram submetidas a um tratamento térmico a 900 ℃ em uma atmosfera de N2 por 15 a 120 min, para a formação das nanopartículas bem como a passivação dos defeitos presentes no óxido, produzidos durante a implantação. Como consequência, duas bandas de PL foram observadas, uma centrada em 310 nm e a outra, com uma intensidade de PL muito superior à primeira, em 390 nm. Dentre as diferentes combinações de fluência e temperatura de implantação e tempo de recozimento, foi observado que a maior intensidade de PL obtida foi das amostras implantadas a 350 ℃ com 1,2 x 1016 Ge/cm² e recozidas por 2 h. Nessas condições, a intensidade de PL obtida foi cerca de 4,5 vezes superior a resultados publicados anteriormente. Medidas de microscopia eletrônica de transmissão (TEM) revelaram que, nessas condições, foram formadas nanopartículas com um tamanho médio menor que as obtidas através da implantação a temperatura ambiente RT. Medidas de espectroscopia por retroespalhamento de Rutherford (RBS) evidenciam que os átomos de Ge implantados não difundem significativamente para as interfaces, apesar do recozimento a alta temperatura ao qual as amostras foram submetidas, no entanto, é observado um pequeno estreitamento no perfil de concentração, devido à nucleação das nanopartículas durante o recozimento. Com relação ao sistema de Si em Si3N4, íons de Si foram implantados em um filme de Si3N4 de 340 nm de espessura, com uma energia de 170 keV, com os substratos mantidos a uma temperatura constante entre RT e 400 ℃. A fluência implantada variou de 0,5 a 2,0 x 1017 Si/cm². Posteriormente, as amostras foram submetidas a tratamentos térmicos em uma faixa de temperaturas de 350 a 900 ℃, em diferentes atmosferas (N2, Argônio e forming gas) e por tempos que variaram de 15 a 120 min. A intensidade máxima de PL foi obtida para amostras implantadas com 1 x 1017 Si/cm² a 200 ℃ e recozidas a 475 ℃ por tempos de 30 a 120 min. Os resultados das medidas de TEM indicam a presença de nanopartículas de Si amorfo em toda a extensão do filme. No que diz respeito ao sistema de Terras Raras (Tb e Eu) implantados em SiO2, os íons foram introduzidos na matriz pela implantação realizada a uma energia de 100 keV e uma fluência de 3 x 1015 íons/cm², mantendo a temperatura do substrato entre RT e 350 ℃. Mesmo em amostras como implantadas (sem recozimento) foi observada uma intensa emissão de PL. Medidas de TEM revelaram a formação de nanopartículas para as amostras implantadas a quente. Posteriormente, as amostras foram tratadas termicamente por 1 h em atmosferas de N2, O2 e argônio em uma faixa de temperaturas de 500 a 800 ℃. Medidas de PL mostram que a temperatura de recozimento ideal é 500 ℃ para ambos os tipos de íons implantados. Para o Tb, a melhor temperatura de implantação foi 200 ℃, e a atmosfera de recozimento não influiu nos resultados observados. Para o Eu, a temperatura de implantação não teve papel significativo na PL após os recozimentos. Todavia, a atmosfera de recozimento teve um papel chave. Amostras implantadas em N2 apresentaram uma larga banda de emissão de PL (de 370 a 840 nm). Para amostras recozidas em O2, uma larga banda de emissão na região do azul-verde foi observada, junto com linhas de emissão na região do vermelho. Medidas de PL a baixas temperaturas revelaram a influência da temperatura da amostra na intensidade da PL. / In the present work, we have studied the photoluminescence (PL) emission and the structural properties of two kinds of systems. In the first one (Ge implanted in SiO2 and Si implanted in Si3N4), the PL has its origin in radiative states localized mainly on the interface between the nanoparticles and the matrix. In the second one (Tb and Eu implanted into SiO2), the PL has its origin in the electronic transitions of the atomic energy levels of the implanted rare-earth ions. For the Ge in SiO2 system, Ge was implanted in a 320 nm SiO2 film with an energy of 120 keV and at temperatures ranging from RT up to 600 ℃. The implanted fluence was varied from 0.3 up to 2.2 x 1016 Ge/cm². In order to create the nanostructures, a 900 ℃ anneal was performed with times ranging from 15 to 120 min. As a consequence, two PL bands were observed, one at 305 nm and the second one with a much higher yield at 385 nm. From the different combinations of implanted fluence, implantation temperature and annealing time, we have observed that the most intense PL yield was obtained when the implantation temperature was of 350 ℃, the implanted fluence of 1.2 x 1016 Ge/cm² and the annealing time of 2 h. Under these conditions, the obtained PL yield was 4.5 times larger than the ones obtained at RT implantation. Transmission electron microscopy (TEM) observations indicate that under these conditions, smaller nanocrystals were obtained in comparison with the ones implanted at RT. The RBS results show that the Ge atoms do not diffuse significantly, despite the high temperature of annealing that the sample was submitted. However, a narrowing of the Ge distribution was observed as a result of the clustering process. Concerning the Si in Si3N4 system, the Si excess was introduced in a 340 nm thick Si3N4 matrix by a 170 keV implantation, performed at different temperatures, with fluences of 0.5 to 2 x 1017 Si/cm². The annealing temperature was varied between 350 and 900 ℃ in order to form the Si precipitates. PL measurements show the existence of two superimposed bands centered around 760 and 900 nm. The maximum PL yield was obtained at the following conditions: fluence of 1 x 1017 Si/cm², implantation temperature of 200 ℃, annealing temperature of 475 ℃. TEM observations show the formation of amorphous Si nanoclusters and their evolution with the annealing temperature. Concerning rare-earth ions (Tb and Eu) implanted in SiO2, the ions were introduced in the matrix by a 100 keV implantation performed at different temperatures, with a fluence of 3 x 1015 ions/cm². The as-implanted samples already present a strong PL emission, even before the thermal treatments. Also, nanoparticles were formed during the hot implantation process without further annealing, as revealed by TEM measurements. The annealing was performed for 1 h in atmospheres of N2, O2 or Ar, with temperatures that varied between 500 and 800 ℃. PL measurements show that the optimal annealing temperature is 500 ℃ for both types of ions. For Tb, the optimal implantation temperature was 200 ℃, and the annealing atmosphere did not influenced on the final results. For Eu, the implantation temperature did not play a significant influence in the PL after the thermal annealing. However, the annealing atmosphere played a key role. Samples annealed in N2 presented a broad PL band, ranging from 370 up to 840 nm. For samples annealed in O2, a broad PL band in the blue-green region was observed, together with emission lines in the red region of the spectra. Low temperature PL measurements show the influence of the sample temperature on the PL intensity.

Page generated in 0.095 seconds