• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 6
  • 5
  • 1
  • Tagged with
  • 21
  • 11
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Síntese, caracterização e aplicação do alfa-hidróxido de níquel associado a óxido de grafeno reduzido como sensor voltamétrico / Synthesis, characterization and application of alpha-nickel hydroxide associated with graphene oxide and reduced graphene oxide as a voltammetric sensor

Silva, Aleckson Souto 18 June 2018 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-27T14:20:48Z No. of bitstreams: 2 Dissertação - Aleckson Souto Silva - 2018.pdf: 4136117 bytes, checksum: 733a03156cbc3f72a6ac8bc4daff6b54 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-27T14:36:23Z (GMT) No. of bitstreams: 2 Dissertação - Aleckson Souto Silva - 2018.pdf: 4136117 bytes, checksum: 733a03156cbc3f72a6ac8bc4daff6b54 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-07-27T14:36:23Z (GMT). No. of bitstreams: 2 Dissertação - Aleckson Souto Silva - 2018.pdf: 4136117 bytes, checksum: 733a03156cbc3f72a6ac8bc4daff6b54 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-06-18 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / The present work aims to the development of voltammetric sensors based on α-Ni(OH) 2 /GO and α- Ni(OH) 2 /rGO nanocomposites for detection and determination of uric acid, paracetamol and ascorbic acid by differential pulse voltammetry. For this, nanostructured nickel hydroxide stabilized in the alpha polymorphic form associated with graphene oxide (GO) or reduced graphene oxide (rGO) were synthesized and characterized. The method used for synthesis of α- Ni(OH) 2 was Tower’s modified, for oxidized graphite was that of Hummers and reduced graphene oxide was that of Stankovich. X-ray diffractometry, confocal Raman spectroscopy, cyclic voltammetry, transmission electron microscopy, infrared spectroscopy and thermogravimetric analysis were used to characterize the synthesized nanomaterials. The presence of graphene oxide and reduced graphene oxide with nickel hydroxide was confirmed by the results. The nickel hydroxide/graphene composites arouse great interest for the development of electrochemical sensors due to their good cost-effectiveness, biocompatibility and high catalytic effect. The thin films of α-Ni(OH) 2 /GO and α-Ni(OH) 2 /rGO showed better electrical properties compared to thin film of α-Ni (OH) 2 and it can be attributed to the increase in surface area and electrical conductivity. Through the differential pulse voltammetry, α-Ni(OH) 2 /GO and α-Ni(OH) 2 /rGO films presented good linear relationship between peak current and uric acid, ascorbic acid and paracetamol concentrations in the range concentration of 0.099 mmol.L -1 – 1.38 mmol.L -1 , with linear coefficients higher than 0.993 and detection limit lower than 2,645x10 -5 mol.L -1 for uric acid, 2,080x10 -5 mol. L -1 for ascorbic acid and 4.248x10 -5 mol. L -1 for paracetamol. / Este trabalho tem como objetivo o desenvolvimento de sensores voltamétricos baseados em nanocompósitos de α-Ni(OH) 2 /GO e α-Ni(OH) 2 /rGO para detecção e determinação de ácido úrico, paracetamol e ácido ascórbico através da voltametria de pulso diferencial. Para isso, hidróxido de níquel nanoestruturado e estabilizado na fase polimórfica alfa associado a óxido de grafeno (GO)ou óxido de grafeno reduzido (rGO) foram sintetizados e caracterizados. O método utilizado para a síntese do α-Ni(OH) 2 foi o de Tower modificado, o óxido de grafeno foi o de Hummers e o óxido de grafeno reduzido foi o de Stankovich. Para a caracterização dos nanomateriais sintetizados foram empregados a difratometria de raios-X, espectroscopia Raman confocal, voltametria cíclica, microscopia eletrônica de transmissão, espectroscopia no infravermelho e análises termogravimétricas. Sendo confirmados através dos resultados a presença de óxido de grafeno e óxido de grafeno reduzido junto ao hidróxido de níquel. Os compósitos de hidróxido de níquel/grafeno despertam grande interesse para o desenvolvimento de sensores eletroquímicos, devido a sua boa relação custo-benefício, biocompatibilidade e alto efeito catalítico. Os filmes finos de α-Ni(OH) 2 /GO e α-Ni(OH) 2 /rGO apontaram melhores propriedades elétricas compara ao filme fino de α-Ni(OH) 2 podendo ser atribuído ao aumento da área superficial e aumento da condutividade elétrica. Através da voltametria de pulso diferencial os filmes α-Ni(OH) 2 /GO e α- Ni(OH) 2 /rGO apresentaram boa relação linear entre a corrente de pico e a concentração de ácido úrico, ácido ascórbico e paracetamol na faixa de concentração de 0,099 mmol.L -1 – 1,38 mmol.L -1 , com coeficientes lineares superiores a 0,993 e limite de detecção inferiores a 2,645x10 -5 mol.L -1 para o ácido úrico, 2,080x10 -5 mol.L -1 para o ácido ascórbico e 4,288x10 -5 para o paracetamol.
12

Electrocatalytic Studies Using Layered Transition Metal Thiphosphates, Metal Chalcogenides and Polymers

Mukherjee, Debdyuti January 2017 (has links) (PDF)
The ever increasing demand for energy due to over consumption of non-renewable fossil fuels has emphasized the need for alternate, sustainable and efficient energy conversion and storage systems. In this direction, electrochemical energy conversion and storage systems involving various fundamental electrochemical redox processes such as hydrogen evolution (HER), oxygen reduction (ORR), oxygen evolution (OER), hydrogen oxidation (HOR) reactions and others become highly important. Electrocatalysts are often used to accelerate the kinetics of these reactions. Platinum (Pt), ruthenium oxide and iridium oxide (RuO2 and IrO2) are known to be the state of the art catalysts for several of these reactions due to favouarable density of states (DOS) near the Fermi level, binding energy with the reactant species, chemical inertness etc. Apart from HER, OER and ORR, chlorine evolution reaction (Cl-ER) is another industrially important reaction associated with water purification, disinfection, bleaching, chemical weapons and pharmaceuticals. Dimensionally stable anodes (RuO2/IrO2 mixed with TiO2 on Ti) are the most commonly used catalysts for this process. Issues related to surface poisoning, corrosion and cost of the catalysts, in addition to selectivity and specificity towards a particular reaction are various aspects to be addressed. For example, Pt is not very specific for ORR in presence of methanol in addition to high cost and corrosion in certain media. On the other hand, DSA can efficiently catalyze both OER and Cl-ER, and hence there is overlap of the two processes in the potential range available. There is an on going search for efficient, cost-effective, stable catalysts that possess high specificity for a particular redox reaction. Towards this goal, the present study explores certain layered (phospho)chalcogenides for catalyzing HER, ORR, OER and Cl-ER. The present thesis is structured in two parts, where the first part explores the multi-functional catalytic aspects of new classes of compounds based on layered transition metal mixed chalcogenides (MoS2(1-x)Se2x) and ternary phosphochalcogenides (FePS3, FePSe3 and MoPS). In addition, lithium insertion and desinsertion has been studied with the aim of using the layered materials for rechargeable batteries. The second part of the thesis explores organic electrode materials with active carbonyl groups such as rufigallol, polydihydroxyanthrachene succinic anhydride (PDASA) as battery electrodes. Additionally, covalently functionalized transition metal phthalocyanines with reduced graphene oxide are studied as counter electrodes in dye sensitized solar cells (DSSCs). MoS2(1-x)Se2x (x = 0 to 1) compositions are solid solutions of MoS2 and MoSe2 in different ratios. They crystallize in hexagonal structure with space group P63/mmc (D6h4) having Mo in trigonal prismatic coordination like the pristine counterparts. X-Ray diffraction studies reveal that Vegard’s law (figure 1a) is followed and hence complete miscibility of MoS2 and MoSe2 is established. MoS2(1-x)Se2x (x = 0 to 1) are layered in nature and the layers are held together by long range, weak van der Waal’s forces. This gives us the flexibility of exfoliation to produce corresponding few-layer materials (figure 1b). Figure 1. (a) Variation of lattice parameter corresponding to (002) reflection of MoS2(1-x)Se2x with different x values. (b) Scanning electron micrograph of few-layer MoS2(1-x)Se2x (x = 0.5). The electrocatalytic activity of the few-layer sulphoselenides have been studied towards HER in aqueous 0.5 M H2SO4 and towards Cl-ER in 3 M aqueous NaCl (pH = 3) solution. The mixed chalcogenides exhibit very good activities for both HER and Cl-ER as compared to the activity of their pristine counter parts (i.e. MoS2 and MoSe2) (figures 2a and 2b). Electrocatalytic activity on different compositions reveal that MoS1.0Se1.0 exhibits the maximum activity. Additionally, it has been observed that MoS1.0Se1.0 shows high specificity for Cl-ER with negligible interference of OER. Figure 2. Voltammetric data for (a) hydrogen evolution reaction (in 0.5 M aqueous H2SO4) and (b) chlorine evolution reaction (in 3 M aqueous NaCl solution, pH = 3) on MoS2(1-x)Se2x (x = 0, 0.5, 1). Figure 3. (a) XRD pattern of MoS2(1-x)Se2x (x = 0.5) electrode after a cycle of Li insersion and deinsersion (red) along with as-synthesized material (black) (b) Cycling behaviour of rGO supported (black) and pristine (red) MoS2(1-x)Se2x (x = 0.5) as electrode in rechargeable lithium-ion battery. The equiatomic MoS1.0Se1.0 has also been studied as an anode material for rechargeable lithium batteries. The cyclic voltammogram and characterization after charge-discharge cycle (figure 3a) indicate intercalation of Li with in the layers followed by conversion type formation of Li-S and Li-Se type compounds. The pristine material shows continuous capacity fading while the composites of sulphoselenides functionalized with conducting carbon supports such as rGO, MWCNT, super P carbon, toray carbon show marked improvement in capacity as well as cycling behavior. The rGO functionalized MoS1.0Se1.0 reveals ~1000 mAh/g of stable specific discharge capacity for 500 cycles (figure 3b). In the next two chapters, new class of transition metal-based layered materials FePS3 and FePSe3, containing both P and chalcogen (S and Se) is indroduced for electrocatalysis. FePS3 crystallizes in monoclinic symmetry with an indirect band gap of ~1.55 eV while FePSe3 possesses rhombohedral crystal structure with comparatively low band gap (~1.3 eV) as shown in figure 4a. The FePS3 and FePSe3 have been exfoliated as has been done for MoS1.0Se1.0 (liquid exfoliation method) using acetone as the solvent. Stable colloids with few-layer nanosheets having lamellar morphology and lateral sizes of ~100 to 200 nm are obtained. Electrical characterization indicates that they are semiconducting and the conductivity of the Se analogue is ~50 times higher than that of the S analogue (figure 4b). Figure 4. (a) Catholuminescence of FePX3 ( X = S and Se) reveals the band gap of the material. Band gap of the S analogue is 1.52 eV and that of the Se analogue is 1.33 eV (b) Resistivity of FePX3 ( X = S and Se) as a function of temperature. The tri-functional electrocatalytic activities on rGO-few layer FePX3 (X = S and Se) have been evaluated for HER over a wide pH range (0.5 M H2SO4, 0.5 M KOH, phosphate Figure 5. Catalytic activity of rGO-few-layer FePX3 (X = S, Se) towards HER in (a) aqueous 0.5 M H2SO4 and (b) 3.5 wt % NaCl solutions. (c) ORR activity of the catalysts in oxygen saturated 0.5 M KOH (d) OER behaviour on the catalysts in 0.5 M KOH at a rotation speed of 1600 rpm. buffer, pH 7 and 3.5 % NaCl), ORR and OER in alkaline media (0.5 M KOH). The studies clearly reveal that both rGO-FePS3 and rGO-FePSe3 exhibit excellent HER activity in acidic media (figure 5a) with high stability. The HER studies in 3.5 wt % aqueous NaCl solution (figure 5b) suggests that the catalysts are effective in evolving hydrogen from sea-water environment. Studies on ORR activity (figure 5c) indicate that the rGO composites of both S and Se analogues follow 4-electron pathways to produce water as the final product. They are also found to be highly methanol tolerant. In the case of OER (figure 5d), XPS characterization of the electrodes after the voltammetric studies reveals the presence of very thin layer of Fe2O3 (not detectable by XRD). All the three reactions (HER, ORR and OER) catalyzed by the Se analogue are better than the S analogue (figure 5). This could be due to the low band gap and high conductivity of FePSe3 as compared to FePS3. The over potential to achieve 10 mAcm-2 current density is ~108 mV for rGO-few-layer FePS3 catalyst where in the case of rGO-few layer FePSe3, it is ~97 mV (table 1). Table 1. Catalytic activities of rGO-few layer FePS3 and rGO-few layer FePSe3 towards HER, ORR and OER. Reaction studied rGO-FePS3 rGO-FePSe3 HER (η @ 10mAcm-2) ~108 mV ~97 mV ORR (peak potential) ~0.81 V ~0.87 V OER (η @ 10mAcm-2) ~470 mV ~430 mV It is likely that there is a strong interaction between FePX3 (metal d-orbital) and rGO, as observed from the downward shift of Fe 2p peak in high resolution XPS studies. This interaction may extend the density of states of metal d-orbitals thereby improving the catalytic activities. The next chapter deals with molybdenum-based phosphosulphide compound (MoPS). Molybdenum-based phosphide catalysts have been explored recently as excellent catalysts for various electrochemical reactions such as HER. It is expected that the catalyst containing both S and P will show positive effects on catalytic activities due to the synergy between S and P. In the present study, P incorporated MoS2 is studied towards HER. The XRD pattern of the as-synthesized crystal suggests the presence of mixed phase of MoS2, MoP2 and MoP while the elemental mapping in microscopy indicates the ratio of Mo, P and S to be 1:1:1. The electrochemical HER in 0.5 M H2SO4 indicates that the activity is improved drastically as compared to bulk and few-layer MoS2. The next section explores the use of different organic electrode materials possessing active carbonyl groups for Li-storage studies. The advantage of the use of carbonyl-based compounds lies in the high reversible activity towards Li ion insersion and de-insersion. Rufigallol (figure 6a) exhibits very stable capacity of ~200 mAh/g (at C/20 rate) upto 500 Figure 6. (a) and (c) Schematic representation of rufigallol and poly-dihydroanthracene succinic anhydride (PDASA) respectively. (b) and (d) Cyclic behaviour of rufigallol (at C/20 rate) and PDASA (at 20 mAg-1 current rate) in Li-storage devices. (e) and (f) represent the coulombic efficiency of rufigallol (at C/20 rate) and PDASA (at 20 mAg-1 current rate) as a function of number of cycles. cycles along (figure 6b) and with very good rate capability. A triptycene-based mesoporous polymer, PDASA (figure 6c) is introduced and explored as efficient electrode material for Li-storage. PDASA exhibits very high capacity of ~1000 mAh/g at a current rate of 50 mA/g upto 1000 cycles (figure 6d). Even at very high current rates (3A/g) excellent cyclability is observed. The mechanistic details of lithium uptake and release are studied using various spectroscopic techniques. In both the cases the coulombic efficiency observed is ~80 to 90 % (figures 6e and f). Figure 7. (a) Digital photograph of the dye sensitized solar cell with rGO-Co-TAPc counter electrode. (b) Photoconversion efficiency of DSSCs with different counter electrodes as mentioned in the figure. (c) Photo conversion efficiency of Pt and rGO-Co-TAPc based DSSCs as function of storage time. (d) Schematic illustration of DSSC wherein the energy level of the counter electrodes and electrolyte are shown for different M-TAPcs. In a slightly different direction, metal phthalocyanine - rGO composites (rGO-M-TAPc; M = Co, Zn, Fe) have been explored as counter electrodes in DSSC. Figure 7a depicts the digital image of a DSSC constructed using rGO-Co-TAPc as the counter electrode. It has been observed that rGO-cobalt tetraamino phthalocyanine (rGO-Co-TAPc) counter electrode exhibits ~6.6 % of solar conversion efficiency (figure 7b) and is close to that of standard DSSC (Pt counter electrode) under identical experimental conditions and are highly stable (figure 7c). Other metal phthalocyanines show less efficiency and is analysed based on the relative positions of HOMO energy levels of the materials and the energy level of the redox system (I-/I3- system) as given in figure 7d. The thesis contains eight chapters on aspects discussed above along with summary and future perspectives given at the end. It is devided into various chapters in two sections, one comprising inorganic chalcogenide-based electrocatalysts and another comprising organic electrode materials. Appendix I discusses the Na-storage behaviour of MoS1.0Se1.0 and appendix II describes the Li-storage behaviour of rGO functionalized benzoquinone and diamino anthraquinone electrode materials.
13

A Low-Temperature Printing Technology for Fabricating Electrically Conductive Structures and Devices Using Plasma-Activated Stabilizer-Free Inks

Sui, Yongkun 28 August 2019 (has links)
No description available.
14

Mechanistic Understanding of Growth and Directed Assembly of Nanomaterials

Kundu, Subhajit January 2015 (has links) (PDF)
When materials approach the size of few nanometers, they show properties which are significantly different from their bulk counterpart. Such unique/improved properties make them potential candidate for several emerging applications. At the reduced dimension, controlling the shape of nanocrystals provides an effective way to tune several material properties. In this regard, wet chemical synthesis has been established as the ultimate route to synthesize nanocrystals at ultra-small dimensions with excellent control over the morphology. However, the use of surfactant poses a barrier into efficient realization of its application as it requires a clean interface for better performance. Exercise of available cleaning protocols to clean the surface often leads to coarsening of the nanoparticles due to their inherent high surface curvature. For anisotropic nanomaterials, rounding of the shape is an additional problem. Anchoring nanomaterials onto substrates provides an easy way to impart stability. In this thesis, ultrathin Au nanowires, that are inherently unstable, have been shown to grow over a wide variety of substrates by in-situ functionalization. Use of nanomaterials as device component holds promise into miniaturization of electronics. But device fabrication in such cases require manipulation of nanomaterials with enhanced control. Dielectrophoresis offers an easy way to assemble nanomaterials in between contact pads and hence evolved as a promising tool to fabricate device with a good level of precision. Herein, directed assembly of ultrathin Au nanowires by dielectrophoresis, has been shown as an efficient strategy to fabricate devices based on the wires. Combining more than one nanocrystal, to form a heterostructure, often has the advantage of synergism and/or multifunctionality. Therefore, synthesis of heterostructure is highly useful in enhancing and/or adding functionalities to nanomaterials. There are several routes available in literature for synthesis of heterostructures. Newer strategies are being evolved to further improve performance in an application specific way. In that regard, a good understanding of mechanism of formation is crucial to form the desired product with the required functionality. For example, Au due to high electron affinity has been known to undergo reduction rather than cation exchange with chalcogenides. In this thesis, it has been shown that the final product depends on the delicate balance of reaction conditions and the system under study using CdS-Au as the model system. In yet another case, PdO nanotubes have been shown to form, on reaction of PdCl2 with ZnO at higher starting ratio of the precursors. In-situ generation of HCl provides an effective handle for tuning of the product from the commonly expected hybrid to hollow. Graphene has evolved as a wonder material due to its wide range of practical applications. Its superior conductivity with high flexibility has made it an important material in the field of nanoelectronics. In this thesis, an interesting case of packed crumpled graphene has been shown to sense a wide variety of strain/pressure which has applications in day to day life. The study reported in the thesis is organized as follows: Chapter 1 presents a general introduction to nanomaterials followed by the review of the available strategies to synthesize various 1D nanomaterials. Subsequently, a section on the classification of hybrid followed by the different synthetic protocols adopted in literature to synthesize them, have been provided. A review on the available methodologies for directed assembly of nanomaterials has been presented. Chapter 2 provides a summary of the materials synthesized and the techniques used for characterization of the materials. A brief description of all the synthetic strategy adopted has been provided. The basic principle of all the characterization techniques used, has been explained. A section explaining the principle of dielectrophoresis has also been presented. Chapter 3 presents a general method to grow ultrathin Au nanowires over a variety of substrates with different nature, topography and rigidity/flexibility. Ultrathin nanowires of Au (~2 nm in diameter) are potentially useful for various catalytic, plasmonic and device applications. Extreme fragility on polar solvent cleaning was a limitation in realizing the applications. Direct growth onto substrate was an alternative but poor interfacial energy of Au with most commercial substrates lead to poor coverage. In this chapter, in-situ functionalization of the substrates have been shown to improve Au nucleation dramatically which lead to growth of dense, networked nanowires over large area. Catalysis and lithography-free device fabrication has been demonstrated. Using the same concept of functionalization, SiO2 coating of the nanowires have been shown. A comparative study of thermal stability of these ultrafine Au nanowires in the uncoated and coated form, has been presented. Chapter 4 demonstrates an ultrafast device fabrication strategy with Au nanowires using dielectrophoresis. While dense growth of Au nanowires is beneficial for some applications, it is not so for some others. For example, miniaturization of electronics require large number of devices in a small area. Therefore, there is a need for methods to manipulate nanowires so as to place them in the desired location for successful fabrication of device with them. In this chapter, dielectrophoresis has been used for assembling nanowires in between and at the sides of the contact pads. Alignment under different conditions lead to an understanding of the forces. Fabrication of a large number of devices in a single experiment has been demonstrated. Chapter 5 presents a simple route to synthesize CdS-Au2Sx hybrid as a result of cation-exchange predominantly. Au due to high electron affinity has been shown in literature to undergo reduction rather than cation exchange with CdS. In this chapter, it has been shown that cation exchange may be a dominant product. The competition between cation exchange and reduction in the case of CdS-Au system has been studied using EDS, XRD, XPS and TEM. Thermodynamic calculation along with kinetic analysis show that the process may depend on a delicate balance of reaction conditions and the system under study. The methodology adopted, is general and may be applied to other systems. Chapter 6 presents an one pot, ultrafast microwave route to synthesize PdO hollow/hybrid nanomaterials. The common strategy to synthesize hollow nanomaterials had been by nucleation of the shell material on the core and subsequent dissolution of the core. In this chapter, a one step method to synthesize hollow PdO nanotubes, using ZnO nanorods as sacrificial template, has been shown. By tuning the ratio of the PdCl2 (PdO precursor) to ZnO, ZnO-PdO hybrid could be obtained using the same method. The PdO nanotubes synthesized could be converted to Pd nanotubes by NaBH4 treatment. Study of thermal stability of the PdO nanotubes has been carried out. Chapter 7 demonstrates a simple strategy to sense a variety of strain/pressure with taped crumpled graphene. Detection of ultralow strain (10-3) with high gauge factor is challenging and poorly addressed in literature. Taped crumpled graphene has been shown to detect such low strain with high gauge factor (> 4000). An ultra-fast switching time of 20.4 ms has been documented in detection of dynamic strain of frequency 49 Hz. An excellent cyclic stability for >7000 cycles has been demonstrated. The same device could be used to detect gentle pressure pulses with consistency. Slight modification of the device configuration enabled detection of high pressure. Simplicity of the device fabrication allowed fabrication of the device onto stick labels which could be pasted on any surface, for instance, floor. Hard pressing, stamping with feet and hammering shocks do not alter the base resistance of the device, indicating that it is extremely robust. Sealed arrangement of the graphene allowed operation of the device under water in detection of water pressure. Presence of trapped air underneath the tape enabled detection of air pressure both below and above atmospheric pressure.
15

Hybrid polyoxometalate@M NP photosensitized systems for the generation of photocurrent or for the generation of dihydrogen / Systèmes hybrides polyoxométallate@M NP photosensibilisés pour la génération de photocourant ou la génération du dihydrogène

Zang, Dejin 26 September 2016 (has links)
Différents systèmes polyoxométallates@M-colorants ont été réalisés dans cette thèse pour électrochimique dégagement d'hydrogène catalytique et génération photocourant.• Des films hybrides, basés sur des interactions électrostatiques entre une porphyrine tetracationique et des nanoparticules stabilisées par des POMs du type POM@Pt sur ITO, ont été formés par la méthode dite couche par couche et ont été utilisés pour la génération de H2 ou de photocourant. • Pour améliorer le transfert de charge entre les nanoparticules POM@M et le substrat, la réduction de l'oxyde de graphène a été réalisée pour former des systèmes hybrides rGO/POM@Pt. Le dégagement d'hydrogène a été mesuré.• Les copolymères polycationiques bis-porphyrine ont également été obtenus par électropolymérisation avec des espaceurs bis-pyridinium. Par réaction de métathèse, l’incorporation avec divers POM de type Keggin ou des nanoparticules du type POM@Ag ont ensuite été realise. Leurs performances photovoltaïques ont ensuite été étudiées.• Enfin des films hybrides PEDOT dopés avec des nanoparticules du type POM@M ont également été fabriqués. Les performances photovoltaïques ont été examinés montrant une forte amélioration sous illumination dans le domaine du visible. L’ensemble de ces matériaux hybrides ont montré des propriétés intéressantes pour des applications photovoltaïques et la conversion d'énergie. / Polyoxometalates@M NPs-dyes molecular hybrid systems were realized in this thesis for electrochemical catalytic hydrogen evolution and photocurrent generation. • First, hybrid films, based on electrostatic interactions between the tetracationic porphyrin and POMs@Pt NPs composites on ITO slides, were formed by the so called Layer-by-Layer method for HER and photocurrent generation.• To improve the charge transfer between POMs@M NPs and the substrate, reduced graphene oxide was introduced to form rGO/POMs@Pt NPs hybrid systems. Hydrogen evolution was measured after dropping this composites onto the surface of glassy carbon electrodes.• Polycationic bis-porphyrin copolymers have been also obtained by an electropolymerization leading to the formation of new bis-porphyrin copolymers with pyridinium as spacers. Incorporation with various Keggin type POMs or POMs@Ag was then achieved, their photovoltaic performances were also studied.• POMs@M NPs doped PEDOT hybrids films have been also fabricated. The photovoltaic performances has been examined showing particularly strong enhancement under visible light. In conclusion, these polyoxometalates based hybrids materials have shown interesting properties for photovoltaic application and energy conversion.
16

Design, Fabrication and Thermal packaging of WBG power devices

Talesara, Vishank January 2022 (has links)
No description available.
17

Biocompatibility of Carbon Nanomaterials: Materials Characterization and Cytotoxicity Evaluation

Zhu, Lin 21 August 2012 (has links)
No description available.
18

Electrochemical and Photoelectrochemical Investigations of Co, Mn and Ir-Based Catalysts for Water Splitting

Irshad, Ahamed M January 2016 (has links) (PDF)
Synopsis of thesis entitled “Electrochemical and Photoelectrochemical Investigations of Co, Mn and Ir-based Catalysts for Water Splitting” by Ahamed Irshad M (SR No: 02-01-02-10-11-11-1-08823) under the supervision of Prof. N. Munichandraiah, Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore (India), for the Ph.D. degree of the Institute under the Faculty of Science. Hydrogen is considered as the fuel for future owing to its high gravimetric energy density and eco-friendly use. In addition, H2 is an important feedstock in Haber process for ammonia synthesis and petroleum refining. Although, it is the most abundant element in the universe, elemental hydrogen is not available in large quantities on the planet. Consequently, H2 must be produced from its various chemical compounds available on earth. Currently, H2 is produced in large scale from methane by a process called steam-methane reforming (SMR). This process releases huge amount of CO2 into atmosphere as the by-product causing serious environmental issues. The development of alternate clean methods to generate H2 is a key challenge for the realization of hydrogen economy. Production of H2 gas by water splitting using electricity or sunlight is known. Low cost, high natural abundance and carbon neutrality make water as the best source of hydrogen. Thermodynamically, splitting of H2O needs 237 kJ mol-1 of energy, which corresponds to 1.23 V according to the equation, ΔG = -nFE. However, commercial electrolyzers usually operate between 1.8 to 2.1 V, due to the need of large overvoltage. The high overvoltage and subsequent energy losses are mainly associated with the sluggish kinetics of oxygen evolution reaction (OER) at the anode and hydrogen evolution reaction (HER) at the cathode. The overvoltage can be considerably reduced using suitable catalysts. Hence, the design and development of stable, robust and highly active catalysts for OER and HER are essential to make water splitting efficient and economical. Attempts in the direction of preparing several novel OER and HER catalysts, physicochemical characterizations and their electrochemical or photoelectrochemical activity are described in the thesis. A comprehensive review of the literature on various types of catalysts, thermodynamics, kinetics and mechanisms of catalysis are provided in the Chapter 1 of the thesis. Chapter 2 furnishes a brief description on various experimental techniques and procedures adopted at different stages of the present studies. Chapter 3 explains the results of the studies on kinetics of deposition and stability of Nocera’s Co-phosphate (Co-Pi) catalyst using electrochemical quartz crystal microbalance (EQCM). The in-situ mass measurements during CV experiments on Au electrode confirm the deposition of Co-Pi at potential above 0.87 V vs. Ag/AgCl, 3 M KCl (Fig.1a and b). The catalyst is found to deposit via a nucleus mediated process at a rate of 1.8 ng s-1 from 0.5 mM Co2+ in 0.1 M neural phosphate solution at 1.0 V. Further studies on the potential and electrolyte dependent stability of the Co-Pi suggest that the catalyst undergoes severe corrosion at high overpotential and in non-buffer electrolytes. Current/ Fig.1 (a) Cyclic voltammograms and (b) mass variations vs. potential of Au-coated quartz crystal in 0.1 M potassium phosphate buffer solution (pH 7.0) containing 0.5 mM Co(NO3)2 Chapter 4 deals with the electrochemical deposition of a novel OER catalyst, namely, Co-acetate (Co-Ac) from a neutral acetate electrolyte containing Co2+ ions. Use of acetate solution instead of phosphate avoids the solubility limitations and helps to get thick layer of the catalyst in a short time from concentrated Co2+ solutions. In addition, the Co-Ac is found to be catalytically superior to Co-Pi (Fig. 2a). It is also observed that the Co-Ac catalyst undergoes ion exchange with electrolyte species during electrolysis in phosphate buffer solution, which results in the formation of a hybrid Co-Ac-Pi catalyst (Fig. 2b). The presence of both acetate and phosphate ions in the catalyst and their synergistic catalytic effect enhance the OER activity. Fig.2. (a) Linear sweep voltammograms of Co-Ac in (i) phosphate and (ii) acetate electrolytes, and that of Co-Pi in (iii) acetate and (iv) phosphate electrolytes. (b) SEM image showing the formation of two layers of the catalysts after electrolysis in phosphate solution. In Chapter 5, high OER activity of an electrodeposited amorphous Ir-phosphate (Ir-Pi) is investigated. The catalyst is prepared by the anodic polarization of a carbon paper electrode in neutral phosphate solution containing Ir3+ ions (Fig. 3). The Ir-Pi film deposited on the electrode has Ir and P in an approximate ratio of 1:2 with Ir in an oxidation state higher than +4. Phosphate ions play a major role for both the electrochemical deposition process and its catalytic activity towards OER. The Ir-Pi catalyst is superior to similarly deposited IrO2 and Co-Pi catalysts both in terms of onset potential and current density at any potential in the OER region. Tafel measurements and pH dependence studies identify the formation of a high energy intermediate during oxygen evolution. Fig.3. (a) Cyclic voltammograms during the Ir-Pi deposition and (b) SEM image of Ir-Pi on C. Chapter 6 is on the preparation of a composite of Mn-phosphate (MnOx-Pi) and reduced graphene oxide (rGO) and its utilization as an OER catalyst. The composite is prepared by the simultaneous electrochemical reduction of KMnO4 and graphene oxide (GO) in a phosphate solution (pH 7.0). Various analytical techniques such as TEM, XPS, Raman spectroscopy, etc. confirm the formation of a composite (Fig. 4) and electrochemical studies indicate the favourable role of rGO towards OER. Under identical conditions, MnOx-Pi-rGO gives 6.2 mA cm-2 at 2.05 V vs. RHE whereas it is only 2.9 mA cm-2 for MnOx-Pi alone. However, the catalyst is not very stable during OER which is ascribed to slow oxidation of Mn3+ in the catalyst. Fig.4. (a) Raman spectrum and (b) TEM image of MnOx-Pi-rGO. In Chapter 7, an amorphous Ni-Co-S film is prepared by a potentiodynamic deposition method using thiourea as the sulphur source. The electrodeposit is used as a catalyst for the HER in neutral phosphate solution. The composition of the catalyst and the HER activity are tuned by varying the ratio of concentrations of Ni2+ and Co2+. The bimetallic Ni-Co-S catalyst exhibits better HER activity than both Ni-S and Co-S (Fig. 5a). Under optimized deposition conditions, Ni-Co-S requires just 150 mV for the onset of HER and 10 mA cm-2 is obtained for 280 mV overpotential. The Ni-Co-S shows two different Tafel slopes, indicating two different potential dependent HER mechanisms (Fig. 5b). Presence of two different catalytic sites which contribute selectively in different potential regions is proposed. Fig.5. (a) Linear sweep voltammograms of HER at 1 mV s-1 in 1 M phosphate solutions (pH 7.4) using (i) Ni-S, (ii) Co-S and (c) Ni-Co-S. (b) Tafel plot of Ni-Co-S showing two Tafel slopes. Photoelectrochemical OER using ZnO photoanode and Co-acetate (Co-Ac) cocatalyst is studied in Chapter 8 of the thesis. Randomly oriented crystalline ZnO nanorods are prepared by the electrochemical deposition of Zn(OH)2 followed by heat treatment at 350 ºC in air. Co-Ac is then photochemically deposited onto ZnO nanorods by UV illumination in the presence of neutral acetate buffer solution containing Co2+ ions. The hybrid Co-Ac-ZnO shows higher photoactivity in comparison with bare ZnO towards PEC water oxidation (Fig. 6). Co-Ac acts as a cocatalyst and reduces the charge carrier recombination at the electrode/electrolyte interface. Fig.6. (a) Linear sweep voltammograms of ZnO under (i) dark and (ii) light conditions, and that of Co-Ac-ZnO in (iii) dark and (iv) light in 0.1 M phosphate (pH 7.0) electrolyte. Chapter 9 deals with PEC water oxidation using α-Fe2O3 photoanode and Ir-phosphate (Ir-Pi) cocatalyst. α-Fe2O3 is prepared by direct heating of Fe film in air which in turn is deposited by the electrochemical reduction of Fe2+. Thickness of the film as well as calcination temperature is carefully optimized. In order to further enhance the OER kinetics, Ir-Pi is electrochemically deposited onto α-Fe2O3. Under optimized conditions, Ir-Pi deposited α-Fe2O3 shows around 3 times higher photocurrent than that of bare α-Fe2O3 at 1.23 V vs. RHE (Fig. 7). Ir-Pi acts as a cocatalyst for OER and reduces the photogenerated charge carrier recombination. Fig.7. Photocurrent variation of α-Fe2O3 electrode at 1.23 V vs. RHE for (i) front and (ii) back side illuminations, against Ir-Pi deposition time. The thesis ends with a short summary and future prospectus of studies described in the thesis. The research work presented in the thesis is carried out by the candidate as the part of Ph.D. program. Some of the results have already been published in the literature and some manuscripts are under preparation. A list of publications is included at the end of the thesis. It is anticipated that the studies reported in the thesis will constitute a worthwhile contribution.
19

Bio-inspired Materials : Antioxidant and Phosphotriesterase Nanozymes

Vernekar, Amit A January 2014 (has links) (PDF)
Bio-inspired or biomimetic chemistry deals with the replication of the nature’s fundamental processes, which can help in understanding the functioning of biological systems and develop novel applications. Although a large number of researchers worked towards the replication of natural synthetic pathways through biogenetic syntheses, enzyme mimicry by the small organic molecules and inorganic complexes emerged in leaps and bounds over the years. The development of biomimetic chemistry then continued in designing the molecules that can function like enzymes. And now, with the advent of nanotechnology, nanostructured materials have been shown to exhibit enzyme-like activities (nanozymes). Interestingly, the two distinct fields, biology and materials science, have been integrated to form an entirely new area of research that has captured a great attention. Along with the pronounced application of nanomaterials as drug delivery vehicles, anticancer agents, antimicrobials, etc., research is also focused on designing nanomaterials for the biomimetic applications. The thesis consists of five chapters. The first chapter provides a general overview of the recently discovered nanozymes that mimic heme-peroxidase, oxidase, superoxide dismutase, catalase, haloperoxidase and phosphatase. This chapter also deals with the nanozymes’ application in sensing and immunoassay, and as antioxidants, neuroprotective agents. The factors affecting the nanozymes’ activity and the challenges associated with them is also covered in this chapter. Chapter 2 is divided into two parts and it deals with the biomimetic properties of graphene-based materials. In part A, the remarkable peroxynitrite (PN) reductase and isomerase activities of hemin-functionalized reduced graphene oxide (rGO) is discussed. In part B, the activity of graphene oxide (GO) as peroxide substrate for the glutathione peroxidase (GPx) enzyme is discussed. In chapter 3, the oxidant material, V2O5, is shown to exhibit significant GPx-like antioxidant activity in its nano-form. Chapter 4 deals with the oxidase-like activity of MnFe2O4 nanooctahedrons for the antibody-free detection of major oxidative stress biomarker, carbonylated proteins. In chapter 5, the phosphotriesterase mimetic role of vacancy engineered nanoceria is discussed. instead of H2O2 for glutathione peroxidase (GPx) enzyme. As partial reduction of GO was observed when treated with GPx enzyme due to the fact that large sheet-like structures cannot be accessible to the active site, we studied the reaction with some GPx mimetics (Fig. 2). Varying the concentration of cofactor glutathione (GSH) required for the reaction, GPx mimic, ditelluride, could accomplish the reduction of GO following Michaelis-Menten kinetics. As the structure of GO is elusive and under active investigation, our study highlights the presence of peroxide linkages as integral part of GO other than hydroxyl, epoxy and carboxylic groups. This study also highlights an important fact that the modification of GO by biologically relevant compounds such as redox proteins must be taken into account when using GO for biomedical applications because such modifications can alter the fundamental properties of GO. Figure 2. The GO reductase and decarboxylase activities of GPx mimetic ditelluride compound, suggesting the presence of peroxide linkages on GO. In chapter 3, we have discussed about the novel antioxidant nanozyme that combats oxidative stress. During our attempts in the investigation of antioxidant nanozymes, we surprisingly noticed that the oxidant material, V2O5, shows significant GPx-like antioxidant activity in its nano-form. The Vn readily internalize in the cells and exhibit remarkable protective effects when challenged against reactive oxygen species (ROS). Although Vn has been shown to protect cells from ROS-induced damage, cells treated with bulk V2O5 and few vanadium complexes resulted in generation of ROS and severe toxicity. Detailed investigation on the mechanism of this interesting phenomenon Chapter 4 deals with the development of novel methodology for detection of biomarkers. Inspired by the use of antibodies and enzymes for detection of a specific antigen, we have shown for the first time that the nanozymes can entirely replace antibodies and enzymes in Enzyme-linked Immunosorbent Assays (ELISA). As a specific example, we focused on the antibody-free detection of chief oxidative stress biomarker, carbonylated proteins, as our target. To achieve this, we designed MnFe2O4 nanooctahedrons that can function as oxidase enzyme and form signaling point of detection. We functionalized MnFe2O4 nanooctahedrons with hydrazide terminating groups so that carbonylated proteins can be linked to nanozymes by hydrazone linkage (Fig. 4a). Treatment of various carbonylated proteins (hemoglobin (Hb), Myoglobin (Mb), Cytochrome c (Cyt c), RNase and BSA) coated in well plate with hydrazide-terminated MnFe2O4 nanooctahedrons and then with 3,3’,5,5’-tetramethylbenzidine substrate, resulted in instantaneous detection by well plate reader (Fig. 4b). Considering the challenges and difficulties associated with the conventional methods used to detect such modified proteins, this methodology opens up a new avenue for the simple, cost-effective, instantaneous and entirely antibody-free ELISA-type detection of carbonylated proteins. Our results provide a cumulative application of nanozymes’ technology in oxidative stress associated areas and pave a new way for direct early detection of post translational modification (PTM) related diseases. Figure 4. a) Nanozyme linked to the carbonylated protein coated on a plate through hydrazone linkage. b) General bar diagram showing detection of oxidized (carbonylated) proteins by nanozymes. Synopsis Figure 5. a) A cartoon view of surface of ceria showing vacancy. b) Zoomed portion of high resolution transmission electron microscopic image showing few vacancies on the surface of nanoceria. c) Catalytic mechanism of detoxification of paraoxon at the defect site. In the final chapter, chapter 5, we have discussed about the nanomaterial that can function as phosphotriesterase enzyme. Phosphotriesterase enzyme is a bacterial enzyme that is involved in the rapid hydrolysis of sarin gas-related deadly nerve agents such as paraoxon, parathion and malathion. When encountered with these orgnaophospatetriesters, living beings tend to undergo nerve shock to cause paralysis by inhibiting an extremely important enzyme called acetylcholine esterase. They are also known to cause severe oxidative stress problems and are associated with neurodegenerative disorders. Therefore, curbing the toxic effects and detoxification of these nerve agents is a world-wide concern and many research teams have focused their attention to address this important problem. Working on the development of nanozymes for important problems, we found that nanoceria, especially the vacancy engineered one (Fig. 5a,b), can serve as active mimic of phosphotriesterase enzyme in the presence of N-methylmorpholine (acting as a distal base histidine). Vacancy engineered nanoceria has been shown to catalyze the hydrolysis of high amounts of paraoxon quiet efficiently and within few minutes with very low activation energy and high kcat. Detailed mechanistic investigation revealed that the presence of both Ce(III) and Ce(IV) is very essential for detoxification activity (Fig. 5b). The vacancies on the surface of nanoceria, were the buried Ce(III) ions are directly exposed to the reaction environment, behave as hotspots or enzyme active sites for detoxification reaction (Fig. 5b).
20

Nanostructured Hybrids with Engineered Interfaces for Efficient Electro, Photo and Gas Phase Catalytic Reactions

Leelavati, A January 2015 (has links) (PDF)
Catalysis using nanostructures has been a topic of substantial interest for fundamental studies and for practical applications in energy and environmental sectors. The growing demand for production of energy and in the cleaning of polluting hazardous vehicles/industrial wastes has led to several studies in catalysis. Despite the substantial growth of heterogeneous catalytic technologies in last decade, they are still far from reaching their full potential in terms of efficiency, selectivity as well as durability. It is often difficult to simultaneously tackle all the mentioned issues with single component catalysts. Most of these challenges are being overcome with heterostructures/supported hybrid catalysts by modifying their interfaces. The properties of heterostructures hybrids arises not only from the individual contributions of the individual components but also from strong synergetic effect arising from the interface. Engineering the interfaces provides pathways to promote the catalytic performance and hence has been explored. In this regard, we have focused on the progress in investigating the active interfaces that affect the performance of metal oxide-metal, semiconductor-metal and coupled semiconductor nanocatalyst hybrids. We explored a wide spectrum of their applications in photo catalytic, electrocatalytic as well as gas-phase reactions and highlighted the importance of the interface for overall performance. The entire study reported in the thesis is organized as follows: Chapter 1 is a general introduction of hybrid nanocatalyst and their role in wide spectra of catalytic reactions in photo/electro catalysis as well as gas-phase reactions. This chapter describes the motivation behind modulating the interface between two or more nanostructures to obtain multifunctional nanocatalysts. Nan catalysts to achieve high throughput with active interfaces are elaborated while indicating the role of morphology, internal induced state, charge transfer, geometric, support, as well as electronic effect for enhanced performance. Motivation behind specific nanocatalyst hybrid, synthesis routes as well as characterization techniques are detailed in the respective chapters. Specific details for different hybrids are described in the following chapters. Chapter 2 describes the synthesis of high dense ultrathin Au wires on ZnO nanorods for electrocatalytic oxidation of ethanol, where the prerequisite step is the formation of amine-modified support. Oleylamine modification not only serves to anchor Au nanowires on ZnO but also passivates surface defects of ZnO, which in turn enhances the photocurrent. In addition to the stability, the support induces electronic effect on Au nanowires, which facilitates redox process at low potential. Most importantly, the support promotes the activity of Au nanowires upon photoirradiation, and thus leading to synergy between electro and photooxidation current. This is of immense importance for photofuel cell technologies. Moreover, the method enabled the first time electrocatalysis on these nanowires that revealed ultrathin nanowires are potentially interesting systems for catalysis applications provided they are stabilized by a suitable support. Chapter 3 deals with the growth of ultrathin Au nanowires on metal oxide (TiO2) coupled with graphene hybrid support in order to overcome the low conductivity of metal oxide. Oleylamine, used for growth of Au nanowires simultaneously functionalizes the support and leads to room temperature GO reduction. With respect to catalytic activity, we also synthesized the binary counterparts (rGO/Au, TiO2/Au ultrathin nanowires) to delineate the contribution of each of the components to the overall electrocatalytic oxidation of ethanol. Comparative analysis of photo and electrocatalytic activity between the different binary and ternary hybrids provides interesting information. Both, electronic effect of TiO2 and electrical conductivity of rGO add their specific beneficial to the nanowires, leading to superior ternary system. Chapter 4 rGO supported ultrathin Au nanowires exhibits high electrocatalytic performance for oxidation of borohydride with a lower onset potential compared to rGO/Au nanoparticles. Electrochemical impedance spectroscopy measurements display abnormal inductive behavior of the synthesized hybrids, indicative of Au surface reactivation. DFT calculations indicate that the origin of the high activity stems from the shift in the position of the Au d-band center. Chapter 5 Different aspect ratio ZnO nanostructures are obtained by varying the solvothermal reaction time. We observed a direct correlation between observed photocatalytic activity, measured photocurrent and length of the ZnO nanorods. Furthermore, photoresponse of the high aspect ratio ZnO nanorods are improved by attaching Au nanoparticles, intimate contact of two components leads to band bending. Thus, the synthesized ZnO/Au heterostructure favors for prominent separation of photogenerated charge carriers. Chapter 6 TiO2 and PbO/TiO2 hybrids are synthesized via non–hydrolytic sol–gel combustion method. Hybrid exhibits higher photocatalytic activity for the degradation of dye than TiO2. The estimated photogenerated species reveals that the origin of enhanced activity stems from the direct oxidization of dye via photogenerated hole rather than radicals. The semiconductors are matched based on their band edge positions, for the formation of energetic radicals to degrade the pollutants. Based on this study, we infer that semiconductors should not neglected (for example Si) based on calculated mismatch of their valence band edges position for photooxidation reaction via radicals. Chapter 7 describes the Pd dopant associated band engineering, a strategy for tuning the optoelectronic properties of ZnO towards enhanced photocatalytic activity. Incorporated Pd heterocation induces internal energy states within the ZnO band gap. The created energy level leads to trends mismatch between photocatalytic activity and measured photocurrent. Formed energy level arrests the photogenerated electrons, which make them not contribute for the photocurrent generation. Hence, the isolated photogenerated hole efficiently oxidizes the pollutants through hydroxyl radicals, and thus leads to enhanced photocatalytic activity. Chapter 8 employed Pd-substituted zinc stannate for CO oxidation as heterogeneous catalyst for the first time. Compared with SnO2 support, zinc stannate based materials exhibits abnormal sudden light-off profiles at selective temperatures. On the basis of DRIFT studies under relevant conditions, we find that the initially formed product gets adsorbed over the catalyst surface. It leads to the accumulation of carbonates as a consequence, both lattice oxygen mobility and further CO interactions are disabled. As soon as Sn redox nature dominates over the accumulated carbonates, this leads to sudden release of lattice oxygen, and thus leads to a sudden full conversion. Therefore, choosing the suitable support material greatly influences the nature of the light-off CO oxidation profile. Chapter 9 Although, reducible oxide supported gold nanostructures exhibits the highest CO oxidation activity; they still suffer from problems such as limited selectivity towards CO in the presence of H2. Both ex-situ and in-situ experiments demonstrate that, Au nanoparticles supported on Zn2SnO4 matrix selectively oxidizes CO. DRIFT experiments revealed that the involvement of OH groups leads to the formation of hydroxycarbonyl under PROX conditions. Chapter 10 This chapter discusses the conclusions for the previous chapters and highlights the possibilities for future scope for the developed nanocatalysts hybrids for energy and environmental applications.

Page generated in 0.0497 seconds