• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 27
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 39
  • 15
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Producció i caracterització de variants de la regió C-terminal de la ribonucleasa A. Importància d'aquesta regió sobre l'estabilitat de l'enzim

Coll Constans, M. Gràcia 31 March 2000 (has links)
Bovine pancreatic ribonuclease A (RNase A, EC 3.1.27.5) has been extensively studied from the structural, mechanistic and functional points of view. Within the protein folding context, it constitutes a good model of study although a rather complicated one due to the presence in the native state of four disulphide bonds and the existence of two X-proline peptide bonds in cis conformation. Most of these studies has focused on the alteration of cysteine or proline residues to study, from a kinetic point of view, the formation of the disulphide bonds or the characterization of the species present in the heterogeneous non-reduced unfolded state, respectively. In these work we have used site-directed mutagenesis to change the characteristics of a postulated chain folding initiation site (CFIS) in RNase A / La ribonucleasa A de pàncrees boví (RNasa A, EC 3.1.27.5) ha estat extensament estudiada des de punts de vista estructurals, mecanístics i funcionals. Dins del marc del plegament proteic, la RNasa A ha estat un bon model per als estudis de plegament/desplegament proteic, malgrat que força complicat a causa de la presència en l'estat natiu de quatre enllaços disulfur i l’existència de dos enllaços peptídics X-prolina en conformació cis. La major part d'aquests estudis s'han centrat en l'alteració de residus de cisteïna o de prolina per estudiar, des d'un punt de vista cinètic, la formació dels enllaços disulfur o la caracterització de les espècies presents en l'heterogeni estat desplegat de la proteïna amb els enllaços disulfur intactes, respectivament. En aquest treball hem utilitzat la mutagènesi dirigida per oligonucleòtid per canviar les característiques d'una regió de la RNasa A postulada com a iniciadora del plegament
32

The Drosophila GW protein, a posttranscriptional gene regulator that influences progression through mitosis

Schneider, Mary D. January 2009 (has links)
Thesis (Ph.D.)--University of Alberta, 2009. / A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy, Department of Cell Biology. Title from pdf file main screen (viewed on November 1, 2009). Includes 2 video recordings. Includes bibliographical references.
33

Regulation, structure and folding of enzymes /

Bond, Christopher J. January 2000 (has links)
Thesis (Ph. D.)--University of Washington, 2000. / Vita. Includes bibliographical references (leaves 97-104).
34

Biological synthesis of metallic nanoparticles and their interactions with various biomedical targets

Sennuga, Afolake Temitope January 2012 (has links)
The synthesis of nanostructured materials, especially metallic nanoparticles, has accrued utmost interest over the past decade owing to their unique properties that make them applicable in different fields of science and technology. The limitation to the use of these nanoparticles is the paucity of an effective method of synthesis that will produce homogeneous size and shape nanoparticles as well as particles with limited or no toxicity to the human health and the environment. The biological method of nanoparticle synthesis is a relatively simple, cheap and environmentally friendly method than the conventional chemical method of synthesis and thus gains an upper hand. The biomineralization of nanoparticles in protein cages is one of such biological approaches used in the generation of nanoparticles. This method of synthesis apart from being a safer method in the production of nanoparticles is also able to control particle morphology. In this study, a comparative biological synthesis, characterization and biomedical effects of metallic nanoparticles of platinum, gold and silver were investigated. Metallic nanoparticles were biologically synthesized using cage-like (apoferritin), barrel-like (GroEL) and non-caged (ribonuclease) proteins. Nanoparticles generated were characterized using common techniques such as UV-visible spectroscopy, scanning and transmission electron microscopy, inductively coupled optical emission spectroscopy, Fourier transform infra-red spectroscopy and energy dispersion analysis of X-rays (EDAX). Nanoparticles synthesised biologically using apoferritin, GroEL and RNase with exhibited similar chemical and physical properties as thoses nanoparticles generated chemically. In addition, the metallic nanoparticles fabricated within the cage-like and barrel-like cavities of apoferritin and GroEL respectively, resulted in nanoparticles with relatively uniform morphology as opposed to those obtained with the non-caged ribonuclease. The enzymatic (ferroxidase) activity of apoferritin was found to be greatly enhanced with platinum (9-fold), gold (7-fold) and silver (54-fold) nanoparticles. The ATPase activity of GroEL was inhibited by silver nanoparticles (64%), was moderately activated by gold nanoparticles (47%) and considerably enhanced by platinum nanoparticles (85%). The hydrolytic activity of RNase was however, lowered by these metallic nanoparticles (90% in Ag nanoparticles) and to a higher degree with platinum (95%) and gold nanoparticles (~100%). The effect of synthesized nanoparticles on the respective enzyme activities of these proteins was also investigated and the potential neurotoxic property of these particles was also determined by an in vitro interaction with acetylcholinesterase. Protein encapsulated nanoparticles with apoferrtin and GroEL showed a decreased inhibition of acetylcholinesterase (<50%) compared with nanoparticles attached to ribonuclease (>50%). Thus, it can be concluded that the cavities of apoferitin and GroEL acted as nanobiofactories for the synthesis and confinement of the size and shape of nanoparticles. Furthermore, the interior of these proteins provided a shielding effect for these nanoparticles and thus reduced/prevented their possible neurotoxic effect and confirmed safety in their method of production and application. The findings from this study would prove beneficial in the application of these nanoparticles as a potential drug/drug delivery vehicle for the prevention, treatment/management of diseases associated with these enzymes/proteins.
35

Computational Studies On Eosinophil Associated Ribonucleases : Insights Into Dynamics And Catalysis Through Molecular Dynamics Simulations

Sanjeev, B S 09 1900 (has links) (PDF)
No description available.
36

Accumulation and Turnover of 23S Ribosomal RNA in Azithromycin-Inhibited Ribonuclease Mutant Strains of Escherichia Coli

Silvers, Jessica A., Champney, W. Scott 01 October 2005 (has links)
Ribosomal RNA is normally a stable molecule in bacterial cells with negligible turnover. Antibiotics which impair ribosomal subunit assembly promote the accumulation of subunit intermediates in cells which are then degraded by ribonucleases. It is predicted that cells expressing one or more mutated ribonucleases will degrade the antibiotic-bound particle less efficiently, resulting in increased sensitivity to the antibiotic. To test this, eight ribonuclease-deficient strains of Escherichia coli were grown in the presence or absence of azithromycin. Cell viability and protein synthesis rates were decreased in these strains compared with wild type cells. Degradation of 23S rRNA and recovery from azithromycin inhibition were examined by 3H-uridine labeling and by hybridization with a 23S rRNA specific probe. Mutants defective in ribonuclease II and polynucleotide phosphorylase demonstrated hypersensitivity to the antibiotic and showed a greater extent of 23S rRNA accumulation and a slower recovery rate. The results suggest that these two ribonucleases are important in 23S rRNA turnover in antibiotic-inhibited E. coli cells.
37

Understanding the Cleavage Characteristics of Ribonucleases Cusativin and MC1 used in RNA Modification Mapping

Thakur, Priti January 2021 (has links)
No description available.
38

Degradation of 23S rRNA in Azithromycin-Treated Ribonuclease Mutants of <em>Escherichia coli</em>.

Silvers, Jessica A. 18 December 2004 (has links) (PDF)
Azithromycin, a macrolide antibiotic, specifically binds to the 50S ribosomal subunit of bacterial ribosomes and inhibits translation. Azithromycin also prevents 50S ribosomal subunit assembly by binding to a 50S ribosomal subunit precursor particle. When exposed to azithromycin, several ribonucleases in wild-type Escherichia coli cells degrade antibiotic-bound 50S precursor particles. Presumably, cells expressing one or more mutated ribonucleases will degrade the antibiotic-bound precursor less efficiently, resulting in increased sensitivity to the antibiotic. To test this, eight ribonucleaseûdeficient strains of Escherichia coli were grown in the presence or absence of azithromycin. Cell viability, growth rates, and protein synthesis rates were measured. Degradation of 23S rRNA was examined by hybridization with a 23S specific probe. Ribonuclease II and polynucleotide phosphorylase mutants demonstrated hypersensitivity to the antibiotic and showed a greater extent of 23S rRNA accumulation, suggesting that these two ribonucleases are important for 23S rRNA turnover in azithromycin-treated Escherichia coli.
39

Regulating with ribonucleases in Streptococcus pyogenes

Broglia, Laura 10 July 2020 (has links)
Bakterien haben eine Vielzahl an Strategien entwickelt, um sich an ständig wechselnde Umweltbedingungen anzupassen, darunter auch post-transkriptionelle regulatorische Mechanismen. Die Genexpression kann hierbei durch gezielten Abbau oder Stabilisierung von RNA durch Ribonukleasen (RNasen) reguliert werden. RNasen weisen je nach Spezies allerdings unterschiedliche Effekte auf Genexpression und bakterielle Physiologie, sowie verschiedene Strategien der Substraterkennung auf. Dies zeigt, dass unser Verständnis des RNA-Abbaus bei weitem nicht vollständig ist. Ziel dieser Arbeit ist es, die Eigenschaften und Funktionen der endoRNase Y des humanpathogenen Bakteriums Streptococcus pyogenes zu studieren. Um Einblick in Funktion und Spezifität dieser RNase zu gewinnen, wurden deren genomweite Schnittpositionen (“targetome”) mit Hilfe von RNA-Sequenzierung identifiziert. Zur weiteren Analyse des RNase Y-abhängigen RNA-Abbaus wurde dieses Ergebnis mit dem “targetome” der drei 3′-5′-Exoribonukleasen (ExoRNasen) PNPase, YhaM und RNase R verglichen. Schließlich wurden die Anforderungen für die Prozessierung durch RNase Y und deren Rolle in der Regulation von Virulenzgenen in vivo anhand der speB mRNA, die einen wichtigen Virulenzfaktor codiert, untersucht. Wir konnten in dieser Arbeit zeigen, dass RNase Y Substrate bevorzugt nach einem Guanosin schneidet und dieses Nukleosid essenziell für die Prozessierung der speB mRNA in vivo ist. Obwohl RNase Y die speB mRNA schneidet, unterstützen die Daten ein Modell nach dem RNase Y die Expression von speB auf transkriptioneller Ebene reguliert. Mit Hilfe des “targetome”-Vergleichs konnten wir ferner zeigen, dass RNase Y den RNA-Abbau in S. pyogenes initiiert und die dabei generierten 3′-Enden der RNA hauptsächlich von den 3′-5′-exoRNasen PNPase und/oder YhaM prozessiert werden. Zusammenfassend erweitern diese Erkenntnisse unser Verständnis der Funktionalität von RNase Y und des RNA-Abbaus in Gram-positiven Bakterien. / Bacteria have developed a plethora of strategies to cope with constantly changing environmental conditions, including post-transcriptional regulatory mechanisms. With this regard, regulation of gene expression can be achieved by either the rapid removal or stabilization of RNA molecules by ribonucleases (RNases). RNases exhibit species-specific effects on gene expression, bacterial physiology and different strategies of target recognition, indicating that our understanding of the RNA degradation machinery is not yet complete. The aim of this thesis was to investigate the features and functions of endoRNase Y from the strict human pathogen Streptococcus pyogenes. To gain insight into the role and specificity of this RNase, we identified RNase Y cleavage positions (i.e. targetome) genome-wide by RNA sequencing. Next, to investigate the RNA degradation pathway depending on RNase Y, we compared the RNase Y targetome with the ones of the three 3′-to-5′ exoribonuclease (exoRNases), namely PNPase, YhaM and RNase R. Finally, to dissect the requirements for RNase Y processing and to decipher the role of RNase Y in virulence gene regulation, we studied the impact of RNase Y on speB mRNA, encoding a major virulence factor. This study reveals that RNase Y preferentially cleaves RNAs downstream of a guanosine and for the first time we were able to show that the presence of a guanosine residue is essential for the processing of speB mRNA, in vivo. Although RNase Y cleaves the speB mRNA, our data underpin a model in which RNase Y-mediated regulation of speB expression occurs at the transcriptional level. Using the targetome comparative approach, we demonstrated that RNase Y initiates RNA decay in S. pyogenes and that the RNase Y-generated RNA 3′ ends are usually further trimmed by PNPase and/or YhaM. Overall, these findings increase our understanding of RNase Y functionality and RNA degradation in Gram-positive bacteria.

Page generated in 0.0531 seconds