251 |
Robots in Hospitals : How could a robot in a hospital look like?Linge, Simon January 2019 (has links)
Hospitals are crucial aspects of society, run by incredible people that dedicate their life to caring for others. However, there are several tasks that are vital to a hospitals operation that do not require an empathic competence. One such tasks is the continuous resupply of consumable items needed to maintain necessary hygiene levels. The Pluto concept act as a helping hand to the assistant nurses, relieving them and enabling them to spend more time with the patients and emphasizes their empathic, inherently human capabilities. The chief motivation is that nurses value the interaction with the patients the most in their work, which is also their primary task. However, they are charged with so many menial tasks that they have little time to care for their patients.
|
252 |
Multibody dynamics model of a full human body for simulating walkingKhakpour, Zahra 05 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Khakpour, Zahra M.S.M.E., Purdue University, May 2017. Multibody Dynamics Model of A Full Human Body For Simulating Walking, Major Professor: Hazim El-Mounayri.
Bipedal robotics is a relatively new research area which is concerned with creating walking robots which have mobility and agility characteristics approaching those of humans. Also, in general, simulation of bipedal walking is important in many other applications such as: design and testing of orthopedic implants; testing human walking rehabilitation strategies and devices; design of equipment and facilities for human/robot use/interaction; design of sports equipment; and improving sports performance & reducing injury. One of the main technical challenges in that bipedal robotics area is developing a walking control strategy which results in a stable and balanced upright walking gait of the robot on level as well as non-level (sloped/rough) terrains.
In this thesis the following aspects of the walking control strategy are developed and tested in a high-fidelity multibody dynamics model of a humanoid body model:
1. Kinematic design of a walking gait using cubic Hermite splines to specify the motion of the center of the foot.
2. Inverse kinematics to compute the legs joint angles necessary to generate the walking gait.
3. Inverse dynamics using rotary actuators at the joints with PD (Proportional-Derivative) controllers to control the motion of the leg links.
The thee-dimensional multibody dynamics model is built using the DIS (Dynamic Interactions Simulator) code. It consists of 42 rigid bodies representing the legs, hip, spine, ribs, neck, arms, and head. The bodies are connected using 42 revolute joints with a rotational actuator along with a PD controller at each joint. A penalty normal contact force model along with a polygonal contact surface representing the bottom of each foot is used to model contact between the foot and the terrain. Friction is modeled using an asperity-based friction model which approximates Coulomb friction using a variable anchor-point spring in parallel with a velocity dependent friction law.
In this thesis, it is assumed in the model that a balance controller already exists to ensure that the walking motion is balanced (i.e. that the robot does not tip over).
A multi-body dynamic model of the full human body is developed and the controllers are designed to simulate the walking motion. This includes the design of the geometric model, development of the control system in kinematics approach, and the simulation setup.
|
253 |
Mitigating Harmful Algal Blooms using a Robot SwarmSchroeder, Adam January 2018 (has links)
No description available.
|
254 |
The Design and Development of Experimental Mobile Kinematic Chain RobotsStanley, Joshua January 2022 (has links)
No description available.
|
255 |
LOCOMOTION CONTROL EXPERIMENTS IN COCKROACH ROBOT WITH ARTIFICIAL MUSCLESChoi, Jongung 31 May 2005 (has links)
No description available.
|
256 |
Computer simulation of the dynamics and control of an energy-efficient robot legCheng, Fan-Tien January 1982 (has links)
No description available.
|
257 |
Omnidirectional Quadruped Robot / Multidirektionell Fyrbent RobotStenow, Samuel, Lindenfors, Simon January 2021 (has links)
There are a lot of quadruped robots in the world, but few are omnidirectional. Therefore this thesis describes the production and design process of such a robot. Examining earlier quadruped robots determined that a central microcontroller is required to control it, and servo motors are used to power the robots joints. Reaserch also determined the base of the mathematical methods used. Additionally, there are multiple types of sprawling gaits, ranging from statically stable to dynamically stable. In this project astatically stable gait is used. The thesis illustrates the mathematical models used to define the omnidirectional movement, and describes the code used to implement it. The result is a robot that can move omnidirectionally, both normally and upside down. The results show that there is a deviation depending upon the direction, but it is small. The main advantage of omnidirectionallity is the ability to change movement direction without stopping or turning. It also enables directional adjustment without requiring any steps. / Det här projektet gick ut på att skapa en krypande fyrbent robot som kan gå i alla riktningar utan att rotera runt sitt eget centrum. Det finns idag redan ett stort antal olika fyrbenta robotar, men få kan gå i alla riktningar. Därav så beskriver den här rapporten framtagningen och designprocessen för en sådan robot. Undersökning av fyrbenta robotar visade att en mikrokontroller är nödvändigför att kontrollera roboten och servomotorer bör användas för att driva lederna. Förstudeierna gav även basen för de matematiska modellerna som används for rörelserna, samt vetskapen om ett flertal olika typer av gångstilar, allt från statiskt stabil till dynamiskt stabil. I det här projektet beskrivs de matematiska modellerna som används för att definiera rörelsen i alla riktningar och hur dessa appliceras i programmeringen av roboten. Resultatet blev en robot som kan gå i alla riktningar utan att rotera runt sitt centrum, både normalt och uppochner. Detta ger möjligheten att byta rörelse riktning utan att behöva stanna eller vända sig, samt möjliggör även riktnings korrektioner utan att kräva extra steg.
|
258 |
Probabilistic Topologies with Applications in Security and Resilience of Multi-Robot SystemsWehbe, Remy 12 July 2021 (has links)
Multi-robot systems (MRSs) have gained significant momentum as of late in the robotics
community as they find application in tasks such as unknown environment exploration,
distributed surveillance, and search and rescue. Operating robot teams in real world environments introduces a notion of uncertainty into the system, especially when it comes to the
ability of the MRS to reliably communicate. This poses a significant challenge as a stable
communication topology is the backbone of the team's ability to coordinate. Additionally,
as these systems continue to evolve and integrate further into our society, a growing threat
of adversarial attackers pose the risk of compromising nominal operation. As such, this dissertation aims to model the effects of uncertainty in communication on the topology of the
MRS using a probabilistic interaction model. More specifically we are interested in studying
a probabilistic perspective to those topologies that pertain to the security and resilience of
an MRS against adversarial attacks. Having a model that is capable of capturing how probabilistic topologies may evolve over time is essential for secure and resilient planning under
communication uncertainty. As a result, we develop probabilistic models, both exact and
approximate, for the topological properties of system left-invertibility and (r, s)-robustness
that respectively characterize the security and resilience of an MRS. In our modeling, we
use binary decision diagrams, convolutional neural networks, matroid theory and more to
tackle the problems related to probabilistic security and resilience where we find exact solutions,
calculate bounds, solve optimization problems, and compute informative paths for
exploration. / Doctor of Philosophy / When robots coordinate and interact together to achieve a collaborative task as a team,
we obtain what is known as a multi-robot system or MRS for short. MRSs have several
advantages over single robots. These include reliability through redundancy, where several
robots can perform a given task in case one of the robots unexpectedly fails. The ability to
work faster and more efficiently by working in parallel and at different locations. And taking
on more complex tasks that can be too demanding for a single robot to complete. Unfortunately,
the advantages of MRSs come at a cost, they are generally harder to coordinate, the
action of one robot often depends on the action of other robots in the system, and they are
more vulnerable to being attacked or exploited by malicious attackers who want to disrupt
nominal operation. As one would expect, communication plays a very important roles in
coordinating a team of robots. Unfortunately, robots operating in real world environments
are subject to disturbances such as noise, obstacles, and interference that hinders the team's
ability to effectively exchange information. In addition to being crucial in coordination, effective
information exchange plays a major role in detecting and avoiding adversarial robots.
Whenever misinformation is being spread in the team, the best way to counter such adversarial
behavior is to communicate with as much well-behaving robots as possible to identity
and isolate inconsistencies. In this dissertation we try to study how uncertainty in communication
affects a system's ability to detect adversarial behavior, and how we can model such
a phenomenon to help us account for these uncertainties when designing secure and resilient
multi-robot systems.
|
259 |
Design of moral interactions for service robots in public environments / 公共空間で活動するサービスロボットのためのモラルインタラクションのデザインSachi, Natasha Edirisinghe 25 March 2024 (has links)
京都大学 / 新制・課程博士 / 博士(情報学) / 甲第25433号 / 情博第871号 / 新制||情||146(附属図書館) / 京都大学大学院情報学研究科社会情報学専攻 / (主査)教授 神田 崇行, 教授 伊藤 孝行, 教授 緒方 広明 / 学位規則第4条第1項該当 / Doctor of Informatics / Kyoto University / DFAM
|
260 |
Methods and Metrics for Human Control of Multi-Robot TeamsAnderson, Jeffrey D. 15 November 2006 (has links) (PDF)
Human-controlled robots are utilized in many situations and such use is becoming widespread. This thesis details research that allows a single human to interact with a team of robots performing tasks that require cooperation. The research provides insight into effective interaction design methods and appropriate interface techniques. The use of team-level autonomy is shown to decrease human workload while simultaneously improving individual robot efficiency and robot-team cooperation. An indoor human-robot interaction testbed was developed at the BYU MAGICC Lab to facilitate experimentation. The testbed consists of eight robots equipped with wireless modems, a field on which the robots move, an overhead camera and image processing software which tracks robot position and heading, a simulator which allows development and testing without hardware utilization and a graphical user interface which enables human control of either simulated or hardware robots. The image processing system was essential for effective robot hardware operation and is described in detail. The system produced accurate robot position and heading information 30 times per second for a maximum of 12 robots, was relatively insensitive to lighting conditions and was easily reconfigurable. The completed testbed was utilized to create a game for testing human-robot interaction schemes. The game required a human controlling three robots to find and tag three robot opponents in a maze. Finding an opponent could be accomplished by individual robots, but tagging an opponent required cooperation between at least two robots. The game was played by 11 subjects in five different autonomy modes ranging from limited robot autonomy to advanced individual autonomy with basic team-level autonomy. Participants were interrupted during the game by a secondary spatial reasoning task which prevented them from interacting with the robots for short periods of time. Robot performance during that interruption provided a measure of both individual and team neglect tolerance. Individual robot neglect tolerance and performance did not directly correspond to those quantities at the team level. The interaction mode with the highest levels of individual and team autonomy was most effective; it minimized game time and human workload and maximized team neglect tolerance.
|
Page generated in 0.0483 seconds