• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Multifunktionsfeldeffekttransistoren zur Strömungs-, Chemo- und Biosensorik in Lab on a Chip-Systemen

Truman Sutanto, Pagra 09 January 2008 (has links) (PDF)
In dieser Arbeit wird eine neue Methode und ein neuartiges FET -Sensorelement zum Nachweis von Flüssigkeitsbewegungen vorgestellt, das zudem bei Bedarf auch als Chemo- oder Biosensor fungieren kann. Das Einsatzspektrum von FET-basierten Sensoren in Lab on a Chip-Systemen wird dadurch entscheidend erweitert. Bei dem entwickelten FET-Sensor Bauelement handelt es sich um einen normally-on n-leitenden Dünnschichtfeldeffekttransistor mit Ti-Au-Kontakten, basierend auf Silicon-on-Insulator- Substraten, wobei das natürliche Oxid des Siliziumfilms als Schnittstelle zum Elektrolyten bzw. zur Flüssigkeit verwendet wird. Der mit 10exp16 Bor Atomen pro cm³ p-dotierte Siliziumdünnfilm hat eine Dicke von nur 55 nm und ist durch eine 95 nm dicke Siliziumdioxidschicht vom darunterliegenden Siliziumsubstrat von 600 µm Dicke elektrisch isoliert. Aufgrund der geringen Schichtdicke durchdringt die feldempfindliche Raumladungs- bzw. Verarmungszone die gesamte Dünnschicht, so dass durch Anlegen einer Backgatespannung am Substrat der spezifische Widerstand und die Empfindlichkeit des Bauelements eingestellt werden können. Grundlegende ISFET-Funktionalitäten wie die Empfindlichkeit auf Änderungen der Ionenstärke und des pH-Wertes werden nachgewiesen und ein ENFET-Glukosesensor realisiert. Zudem wird im Hinblick auf die Separation von Emulsionen der Nachweis erbracht, dass die Benetzung mit Hexan und Toluol eine Änderung der spezifischen Leitfähigkeit bewirkt, und die Empfindlichkeit des Bauelements nach Beschichtung mit einem hydrophoben Methacrylatcopolymerfilm erhalten bleibt. Hinsichtlich der Verwendung des FET-Sensor Bauelements zum Nachweis von Flüssigkeitsbewegungen wird zunächst ein theoretisches Modell entwickelt, dessen Kernaussage ist, dass sich in einem rechteckigen Kanal der relative Bedeckungsgrad mit Flüssigkeit direkt proportional zum Drainstrom des FET-Sensors verhält. Basierend auf diesem theoretischen Modell, welches experimentell belegt wird, können mittels eines einzelnen FET-Sensors Füllstand und Füllgeschwindigkeit bzw. bei bekannter Füllgeschwindigkeit Kapillarvolumen und Kapillargeometrie bestimmt werden. Abweichungen von der direkten Proportionalität erlauben zudem, Rückschlüsse auf die Benetzungseigenschaften der Kapillaren und die Dynamik an der Halbleitergrenzfläche zu ziehen. Ist ein Sensorelement vollständig mit Flüssigkeit bedeckt, wird mittels Lösungsmitteltropfen als Markerobjekten die Strömungsgeschwindigkeit bestimmt. Ändert sich die Ionenkonzentration im Elektrolyten als Funktion der Strömungsgeschwindigkeit, so kann die Strömungsgeschwindigkeit durch Messung der Ionenkonzentration mittels FET-Sensor ebenfalls ermittelt werden. Als wichtigster Demonstrator für die Verwendung des FET-Sensors wird ein komplexes Lab on a Chip-System zur Separation von Emulsionen auf chemisch strukturierten Oberflächen entwickelt, bei dem der Separationsvorgang mittels FET-Sensorarray verfolgt werden kann. Zur einfachen Herstellung chemisch modifizierter Oberflächen für die Separationsexperimente werden die Abscheidung von nanoskaligen hydrophoben Methacrylatcopolymerfilmen und die selektive Fluorsilanisierung von Oberflächen sowie deren Lösungsmittelbeständigkeit in Wasser, Toluol und Aceton untersucht. Dabei zeigt sich, dass die Hydrophobie nach Lösungsmittelbehandlung weitestgehend erhalten bleibt, Wasserrückstände im Methacrylatfilm aber zu einer reversiblen Schichtdegradation führen können. Als Modellsystem werden Hexan-Wasser- bzw. Toluol-Wasser-Emulsionen verwendet, die auf Oberflächen getrennt werden, deren eine Seite hydrophil, und deren andere Seite hydrophob ist (Stufengradient). Der Separationsprozess beruht auf der großen Affinität des Wassers hin zu polaren Oberflächen, wobei das wenig selektive Lösungsmittel zur unpolaren Seite gedrängt wird. Zur Erlangung eines tieferen Verständnisses des Prozesses werden die Tropfenkoaleszenz und der Einfluss geometrischer Beschränkungen untersucht. Die Versuche werden sowohl auf offenen Oberflächen als auch im Spalt, unter Verwendung von hydrophilen und hydrophoben Oberflächen, durchgeführt. Es zeigt sich, dass sich die Dynamik der Tropfenkoaleszenz im Spalt umgekehrt zur Dynamik auf offenen Oberflächen verhält. Dies wird mittels eines hierzu entwickelten theoretischen Modells erklärt, welches die Minimierung der Oberflächenenergie und Hystereseeffekte einbezieht. Das Lab on a Chip-System schließlich besteht aus einem mit Siliziumnitrid beschichteten FET-Sensorchip, auf den eine Separationszelle aufgeklebt ist. Neben dem Einlass für die Emulsion ist ein weiterer Einlass vorhanden, durch den Salzsäure für eine pH-Reaktion zugegeben werden kann. Der gesamte Separationsprozess sowie die anschließende pH-Reaktion, lassen sich bequem am PC anhand der Änderung der Stromstärke der einzelnen Sensoren verfolgen und analysieren. Wichtige Ergebnisse hier sind: 1) Mittels eines quasi 1-dimensionalen Sensorarrays kann der Verlauf einer Flüssigkeitsfront in einem 2-dimensionalen Areal überwacht bzw. dargestellt werden. 2) Anhand der Signatur des Signalverlaufs bei pH-Änderung und Flüssigkeitsbewegung, können beide Prozesse unterschieden werden. Der Sensor kann also zum Nachweis von Flüssigkeitsbewegungen und zugleich als Chemosensor eingesetzt werden. Es wurde also nicht nur ein neuartiges, äußerst robustes, chemikalienbeständiges und biokompatibles Multifunktionssensorelement mit Abmessungen im Mikrometer- bis Millimeterbereich entwickelt, sondern auch eine neue Methode entwickelt, mit der es möglich ist, sowohl (bio-)chemische Reaktionen als auch die Bewegung von Flüssigkeiten in Lab on a Chip-Systemen nachzuweisen.
2

Organische Feldeffekt-Transistoren: Modellierung und Simulation / Organic field-effect transistors: modeling and simulation

Lindner, Thomas 17 April 2005 (has links) (PDF)
Die vorliegende Arbeit befasst sich mit der Simulation und Modellierung organischer Feldeffekt-Transistoren (OFETs). Mittels numerischer Simulationen wurden detaillierte Untersuchungen zu mehreren Problemstellungen durchgeführt. So wurde der Einfluss einer exponentiellen Verteilung von Trapzuständen, entsprechend dem sogenannten a-Si- oder TFT-Modell, auf die Transistorkennlinien untersucht. Dieses Modell dient der Beschreibung von Dünnschicht-Transistoren mit amorphen Silizium als aktiver Schicht und wird teils auch für organische Transistoren als zutreffend angesehen. Dieser Sachverhalt wird jedoch erstmals in dieser Arbeit detailliert untersucht und simulierte Kennlinien mit gemessenen Kennlinien von OFETs verglichen. Insbesondere aufgrund der Dominanz von Hysterese-Effekten in experimentellen Kennlinien ist jedoch eine endgültige Aussage über die Gültigkeit des a-Si-Modells schwierig. Neben dem a-Si-Modell werden auch noch andere Modelle diskutiert, z.B. Hopping-Transport zwischen exponentiell verteilten lokalisierten Zuständen (Vissenberg, Matters). Diese Modelle liefern, abhängig von den zu wählenden Modellparametern, zum Teil ähnliche Abhängigkeiten. Möglicherweise müssen die zu wählenden Modellparameter selbst separat gemessen werden, um eindeutige Schlussfolgerungen über den zugrundeliegenden Transportmechanismus ziehen zu können. Unerwünschte Hysterese-Effekte treten dabei sowohl in Transistorkennlinien als auch in Kapazitäts-Spannungs- (CV-) Kennlinien organischer MOS-Kondensatoren auf. Diese Effekte sind bisher weder hinreichend experimentell charakterisiert noch von ihren Ursachen her verstanden. In der Literatur findet man Annahmen, dass die Umladung von Trapzuständen oder bewegliche Ionen ursächlich sein könnten. In einer umfangreichen Studie wurde daher der Einfluß von Trapzuständen auf quasistatische CV-Kennlinien organischer MOS-Kondensatoren untersucht und daraus resultierende Hysterese-Formen vorgestellt. Aus den Ergebnissen läßt sich schlussfolgern, dass allein die Umladung von Trapzuständen nicht Ursache für die experimentell beobachteten Hysteresen in organischen Bauelementen sein kann. Eine mögliche Erklärung für diese Hysterese-Effekte wird vorgeschlagen und diskutiert. In einem weiteren Teil der Arbeit wird im Detail die Arbeitsweise des source-gated Dünnschicht-Transistors (SGT) aufgezeigt, ein Transistortyp, welcher erst kürzlich in der Literatur eingeführt wurde. Dies geschieht am Beispiel eines Transistors auf der Basis von a-Si als aktiver Schicht, die Ergebnisse lassen sich jedoch analog auch auf organische Transistoren übertragen. Es wird geschlussfolgert, dass der SGT ein gewöhnlich betriebener Dünnschicht-Transistor ist, limitiert durch das Sourcegebiet mit großem Widerstand. Die detaillierte Untersuchung des SGT führt somit auf eine Beschreibung, die im Gegensatz zur ursprünglich verbal diskutierten Arbeitsweise steht. Ambipolare organische Feldeffekt-Transistoren sind ein weiterer Gegenstand der Arbeit. Bei der Beschreibung ambipolarer Transistoren vernachlässigen bisherige Modelle sowohl die Kontakteigenschaften als auch die Rekombination von Ladungsträgern. Beides wird hingegen in den vorgestellten numerischen Simulationen erstmalig berücksichtigt. Anhand eines Einschicht-Modellsystems wurde die grundlegende Arbeitsweise von ambipolaren (double-injection) OFETs untersucht. Es wird der entscheidende Einfluß der Kontakte sowie die Abhängigkeit gegenüber Variationen von Materialparametern geklärt. Sowohl der Kontakteinfluß als auch Rekombination sind entscheidend für die Arbeitsweise. Zusätzlich werden Möglichkeiten und Einschränkungen für die Datenanalyse mittels einfacher analytischer Ausdrücke aufgezeigt. Es zeigte sich, dass diese nicht immer zur Auswertung von Kennlinien herangezogen werden dürfen. Weiterhin werden erste Simulationsergebnisse eines ambipolaren organischen Heterostruktur-TFTs mit experimentellen Daten verglichen.
3

Electrical Characterisation of Ferroelectric Field Effect Transistors based on Ferroelectric HfO2 Thin Films

Yurchuk, Ekaterina 16 July 2015 (has links) (PDF)
Ferroelectric field effect transistor (FeFET) memories based on a new type of ferroelectric material (silicon doped hafnium oxide) were studied within the scope of the present work. Utilisation of silicon doped hafnium oxide (Si:HfO2) thin films instead of conventional perovskite ferroelectrics as a functional layer in FeFETs provides compatibility to the CMOS process as well as improved device scalability. The influence of different process parameters on the properties of Si:HfO2 thin films was analysed in order to gain better insight into the occurrence of ferroelectricity in this system. A subsequent examination of the potential of this material as well as its possible limitations with the respect to the application in non-volatile memories followed. The Si:HfO2-based ferroelectric transistors that were fully integrated into the state-of-the-art high-k metal gate CMOS technology were studied in this work for the first time. The memory performance of these devices scaled down to 28 nm gate length was investigated. Special attention was paid to the charge trapping phenomenon shown to significantly affect the device behaviour.

Page generated in 0.0351 seconds