• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 6
  • Tagged with
  • 16
  • 16
  • 10
  • 9
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Silver and/or mercury doped thioarsenate and thiogermanate glasses : Transport, structure and ionic sensibility / Verres thioarsénate et thiogermanate dopés à l'argent et/ou au mercure : Transport, structure et sensibilité ionique

Zaiter, Rayan 11 December 2018 (has links)
Le but de ce travail de thèse consiste à étudier les propriétés physico-chimiques des verres chalcogénures afin de pouvoir les utiliser comme membranes de capteurs chimiques destinés pour le dosage des ions Hg²⁺. Dans un premier temps, les propriétés macroscopiques des systèmes vitreux AgY-As₂S₃ (Y = Br, I), HgS-GeS₂, AgI-HgS-As₂S₃ et AgI-HgS-GeS₂, telles que les densités et les températures caractéristiques (Tg et Tc) ont été mesurées et analysées selon les compositions des verres. Puis, dans un second temps, les propriétés de transport ont été étudiés à l'aide de la spectroscopie d'impédance complexe d'une part, ou d'autre part, par des mesures de la résistivité. Ces dernières montrent que les verres de chalcogénures dopés à l'halogénure d'argent présentent deux différents régimes de transports au-dessus du seuil de percolation xc ≈ 30 ppm : (i) domaine de percolation critique, et (ii) domaine contrôlé par modificateur. Vient ensuite la troisième partie, elle consiste à déchiffrer les relations composition/structure/propriété grâce à plusieurs études structurales. Des mesures par spectroscopie Raman, par diffraction de neutrons et de rayons X haute énergie, par diffusion des neutrons sous petits angles (SANS), ainsi que des modélisations RMC/DFT et AMID ont été réalisées. Enfin, la dernière partie de ce travail était une étude préliminaire des caractéristiques des nouveaux capteurs chimiques. Il a été consacré à l'étude des relations entre la composition et la sensibilité des membranes ainsi qu'aux limites de détection qui les définissent. / The aim of the thesis is to study the physicochemical properties of the silver halide doped chalcogenide glasses for the possibility to use them as chemical sensors for quantitative analysis of Hg²⁺ ions. First, the macroscopic properties of AgY-As₂S₃ (Y = Br, I), HgS-GeS₂, AgI-HgS-As₂S₃ and AgI-HgS-GeS₂ glassy systems such as the densities and the characteristic temperatures (Tg and Tc) were measured and analyzed according to the glass compositions. Second, the transport properties were studied using complex impedance and dc conductivity. Measurements show that the silver halide doped chalcogenide glasses exhibit two drastically different ion transport regimes above the percolation threshold at xc ≈ 30 ppm : (i) critical percolation, and (ii) modifier-controlled regimes. Third, to unveil the composition/structure/property relationships, various structural studies were carried out. Raman spectroscopy, high-energy X-ray diffraction, neutron diffraction and small-angle neutron scattering experiments, together with RMC/DFT and AMID modelling were employed. Finally, the last part was a preliminary study of the characteristics of new chemical sensors. It was devoted to study the relationship between the membranes' composition and sensitivity but also detection limits.
12

Tailoring the mesoscopic structure and orientation of semicrystalline and liquid-crystalline polymers : from 1D- to 2D-confinement / Adapter la structure mésoscopique et l'orientation des polymères semi-cristallins et des polymères de cristaux liquides : confinement à 1D et 2D

Odarchenko, Yaroslav 15 November 2012 (has links)
Le contrôle de la microstructure des matériaux organiques est crucial pour des applications pratiques telles que la photonique, la biomédecine ou encore le domaine très dynamique de l'électronique organique. Les études récentes ont montré une possibilité de contrôler la structure des polymères à l'échelle nanométrique en utilisant l'auto-assemblage supramoléculaire sous confinement spatial. Bien que de nombreuses études ont déjà été effectuées dans ce domaine, plusieurs questions essentielles restent ouvertes. En particulier, il est important de comprendre comment les différents processus de formation structurale tels que la cristallisation, la formation d`une phase cristal liquide et la séparation de phases se déroulent sous confinement. Dans le présent travail, nous abordons l'effet du confinement à 1D et à 2D sur la formation de la structure pour une variété de systèmes, y compris les copolymères segmentés de poly(éther-ester-amide) (PEEA), les polymères cristaux liquides (CL) dont la chaîne principale appartient à la famille des poly(di-n-alkylsiloxane)s et des copolymères à bloc cristaux-liquides /semicristallins formés par complexation de poly(2-vinylpyridine-b-oxyde d'éthylène) (P2VP-PEO) avec un ligand cunéiforme, l'acide 4'-(3'',4'',5''-tris(octyloxy) benzamido) propanoïque. Pour être capable de traiter de façon adéquate la morphologie complexe de ces systèmes sous confinement, le travail a été effectué en utilisant une batterie de méthodes expérimentales. Les techniques principales opérationnelles dans l'espace direct et réciproque que nous avons employées sont décrites dans le chapitre 2. [...] / Controlling the micro-structure of organic materials is crucial for a variety of practical applications such as photonics, biomedicine or the rapidly growing field of organic electronics. Recent studies have shown a possibility of tailoring the polymer structure on the nanoscale using supramolecular self-assembly under spatial confinement. Despite extensive studies already performed in this field, many questions remain open. In particular, it will be important to understand how different structure formation processes such as crystallization, LC-phase formation, microphase separation, and others occur under confinement. In the present work, we address the effect of 1D- and 2D-confinement on the structure formation for a variety of systems including segmented poly(ether-ester-amide) (PEEA) copolymers, main-chain liquid-crystalline (LC) polymers belonging to the family of poly(di-n-alkylsiloxane)s and liquid-crystalline/semicrystalline block copolymers formed through complexation of poly (2-vinylpyridine-b-ethylene oxide) (P2VP-PEO) with a wedge-shaped ligand, 4'-(3'',4'',5''-tris(octyloxy) benzamido) propanoic acid. In order to reveal the morphological diversity of the studied systems under confinement, the work was carried out on bulk materials and on thin films employing a battery of experimental methods. The main experimental techniques operational in direct and reciprocal space applied in my work are described in chapter 2. [...]
13

The regulation and induction of clathrin-mediated endocytosis through a protein aqueous-aqueous phase separation mechanism

Bergeron-Sandoval, Louis-Philippe 12 1900 (has links)
La morphologie des cellules et leurs interactions avec l’environnement découlent de divers procédés mécaniques qui contribuent à la richesse et à la diversité de la vie qui nous entoure. À titre d’exemple, les cellules mammifères se conforment à différentes géométries en fonction de l’architecture de leur cytosquelette tandis que les bactéries et les levures adoptent une forme circulaire par turgescence. Je présente, dans cette thèse, la découverte d’un mécanisme de morphogénèse supplémentaire, soit la déformation de surface cellulaire via l’assemblage de protéines par démixtion de phases aqueuses non miscibles et l’adhésion entre les matériaux biologiques. J’expose de façon spécifique comment ce mécanisme régule le recrutement et le mouvement dynamique des protéines qui induisent l’invagination de la membrane plasmique lors de l’endocytose clathrine-dépendante (CME). Le phénomène de démixtion des protéines dans le cytoplasme est analogue à la séparation de phase de l’huile en solution aqueuse. Il constitue un mécanisme cellulaire important et conservé, où les protéines s’agglomèrent grâce aux interactions intermoléculaires qui supplantent la tendance du système à former un mélange homogène. Plusieurs exemples de compartiments cellulaires dépourvus de membrane se forment par démixtion de phase, tels que le nucléole et les granules de traitement de l’ARN [1-6]. Ces organes ou compartiments dénommés NMO, du terme anglais « non-membranous organelles », occupent des fonctions de stockage, de traitement et de modification chimique des molécules dans la cellule. J’explore ici les questions suivantes : est-ce que les NMO occupent d’autres fonctions à caractère morphologique ? Quels signaux cellulaires régulent la démixtion de phase des protéines dans la formation des NMO ? Fondée sur la physique mécanique du contact entre les matériaux, j’émets l’hypothèse que des compartiments cellulaires nanoscopiques, formés par démixtion de phase, génèrent des forces mécaniques par adhésion interfaciale. Le travail mécanique ainsi obtenu déforme le milieu cellulaire et les surfaces membranaires adjacents au NMO nouvellement créé. Le but de mon doctorat est de comprendre comment les cellules orchestrent, dans le temps et l’espace, la formation des NMO associés au CME et comment ceux-ci génèrent des forces mécaniques. Mes travaux se concentrent sur les mécanismes de démixtion de phase et d’adhésion de contact dans le processus d’endocytose chez la levure Saccharomyces cerevisiae. Pour enquêter sur le rôle des modifications post-traductionnelles dans ces mécanismes, nous avons premièrement analysé la cinétique de phosphorylation des protéines en conditions de stress. Mes résultats démontrent que le recrutement et la fonction de certaines protéines impliquées dans le CME se régulent via des mécanismes de phosphorylation. Outre les processus de contrôle post-traductionnel, nous avons élucidé le rôle des domaines de faible complexité dans l’assemblage de plusieurs protéines associées avec le CME. De concert avec les modifications de phosphorylation, des domaines d’interaction protéine-protéine de type PrD (du terme « prion-like domains ») modulent directement le recrutement des protéines au sein des NMO associés au CME. La nature intrinsèquement désordonnée de ces PrD favorise un mécanisme d’assemblage des protéines par démixtion de phase tel que postulé. Finalement, mes travaux confirment que la formation de ces NMO spécifiques génère des forces mécaniques qui déforment la membrane plasmique et assurent le processus de CME. D’un point de vue fondamental, mes recherches permettent de mieux comprendre l’évolution d’une stratégie cellulaire pour assembler des compartiments cellulaires sans membrane et pour fixer les dimensions biologiques associées au CME. De manière plus appliquée, cette étude a le potentiel de générer des retombées importantes dans la compréhension et le traitement de maladies neurodégénératives souvent associées à une séparation de phase aberrante et à la formation d’agrégats protéiques liés à la pathologie. / Evolution has resulted in distinct mechanical processes that determine the shapes of living cells and their interactions with each other and with the environment. These molecular mechanisms have contributed to the wide variety of life we observe today. For example, mammalian cells rely on a complex cytoskeleton to adapt specific shapes whereas bacteria, yeast and plants use a combination of turgor pressure and cell walls to have their characteristic bloated form. In this dissertation, I describe my discovery of an unforeseen additional mechanism of morphogenesis: protein aqueous-aqueous phase separation and adhesive contact between biomaterials as a simple and efficient ways for cells to organize internal matter and accomplish work to shape internal structures and surfaces. I specifically describe how a fundamental process of phospholipid membrane and membrane-embedded protein recycling, clathrin-mediated endocytosis (CME), is driven by this mechanism. Analogous to water and oil emulsions, proteins, and biopolymers in general, can phase separate from single to a binary aqueous phase. For proteins that de-mix from the bulk environment, the intermolecular interactions (or cohesive energy) that favors protein condensation only needs to overcome the low mixing entropy of the system and represents a conserved and energy efficient cellular strategy [2, 3, 7, 8]. So far, various examples of phase separated cellular compartments, termed non-membranous organelles (NMOs), have been discovered. These include the nucleoli, germ line P granules and P bodies, to name a few [1-6]. NMOs are involved in many conserved biological processes and can function as storage, bioreactor or signaling bodies. Cells use phase separation as a scheme to organize internal matter, but do NMOs occupy other complex functions, such as morphogenesis? What specific signals trigger protein phase separation? Based on mechanical contact theory, I proposed that hundreds of nanometer- to micron-scale phase separated bodies can deform the cellular environment, both cytoplasm and membranes, through interfacial adhesion. I studied how mechanical contact between a phase-separated protein fluid droplet and CME nucleation sites on membranes drive endocytosis in the model organism budding yeast, Saccharomyces cerevisiae. Specifically, this dissertation describes first, my investigations of post-translational modifications (phosphorylation) of several CME-mediating proteins and the implications of these modifications in regulating CME. I then describe how my efforts to understand what was distinct about the proteins that are phosphorylated led me to propose their phase separation into droplets capable of driving invagination and vesicle formation from plasma membrane. I used fluorescence microscopy, mass spectrometry and micro rheology techniques to respectively determine the spatiotemporal dynamics, phosphorylation modifications and material properties of coalesced CME-mediating proteins. I further investigated how phase separation of these proteins might generate mechanical force. I demonstrate that changes in the phosphorylation of some endocytic proteins regulates their recruitment to CME nucleation sites. We achieved reliable predictions of functional phosphosites by combining information on the conservation of the post-translational modifications with analysis of the proportion of a protein that is dynamically phosphorylated with time. The same dynamically phosphorylated proteins were enriched for low amino acid compositional complexity “prion-like domains”, which we demonstrated were essential to these proteins undergoing aqueous-aqueous phase separation on CME nucleation sites. I then demonstrate how phase separated droplet can produce mechanical work to invaginate membranes and drive CME to completion. In summary, I have discovered a fundamental molecular mechanism by which phase separated biopolymers and membranes could apply work to shape each other. This mechanism determines the natural selection of spatial scale and material properties of CME. Finally, I discuss broader implications of this dissertation to mechanistic understandings of the origins of neurodegenerative diseases, which likely involve pathological forms of protein phase separation and/or aggregation.
14

Matériaux polymères fonctionnalisés à double porosité : conception et modélisation / Functionalized doubly porous polymeric materials : design and modeling

Ly, Hai Bang 02 October 2015 (has links)
Les matériaux polymères poreux font l'objet d'intenses recherches depuis de nombreuses années et présentent certains avantages importants par rapport à leurs homologues inorganiques, comme des propriétés mécaniques modulables, une fonctionnalisation aisée et surtout un coût de production plus faible. Au cours de la dernière décennie, les matériaux à double porosité ont attiré une attention particulière de la communauté scientifique car ces matériaux offrent de nouvelles perspectives intéressantes pour l'élaboration de matériaux durables. Le rôle de chaque niveau de porosité est différent et associé à des processus de transfert de masse distincts. Les macropores (~ 100 µm) permettraient l'écoulement de macromolécules ou de cellules à travers le matériau, tandis qu'un réseau nanoporeux (10-100 nm) serait dédié au passage de molécules plus petites, agissant ainsi comme un deuxième mécanisme de transport, en particulier lorsque des macropores sont totalement obstrués. La première partie de ce travail porte sur le développement d'approches polyvalentes et efficaces pour la préparation de matériaux à double porosité biocompatibles à base de poly(méthacrylate de 2-hydroxyéthyle) (PHEMA). La première approche a reposé sur l'utilisation de deux types distincts de gabarits porogènes, à savoir un macroporogène et un nanoporogène. Pour générer la macroporosité, soit des particules de NaCl ou des billes de PMMA, pouvant être fusionnées ou non, ont été utilisées afin de contrôler la morphologie l'interconnectivité des pores. Le nanoporosité a été obtenue en utilisant diverses quantités de différents solvants porogènes, générant ainsi une large gamme de distributions de tailles de pores pour ce second niveau de porosité. La seconde méthodologie a été fondée sur le procédé de séparation de phases induite thermiquement. Un mélange de co-solvants constitué de dioxane et d'eau a été utilisé pour solubiliser le PHEMA linéaire préalablement préparé, suivi par un processus de solidification par congélation du mélange de co-solvants / PHEMA, et sublimation consécutive des co-solvants pour produire les matériaux de PHEMA biporeux correspondants. Enfin, les matériaux à double porosité ont été valorisés à travers différentes réactions de fonctionnalisation en utilisant la chimie du carbonyldiimidazole, et l'immobilisation postérieure de nanoparticules d'or générées in-situ. De tels matériaux hybrides à double porosité se sont avérés être des supports catalytiques efficaces.Dans la deuxième partie, nous avons déterminé numériquement la perméabilité des matériaux à double porosité. La méthodologie a été fondée sur une approche à double changement d'échelle dans le cadre des théories d'homogénéisation périodique et sur des calculs de cellules élémentaires. Le premier changement d'échelle a consisté à déterminer une première perméabilité associée au réseau de nanopores. A cette échelle, les pores ont été saturés par un fluide visqueux obéissant aux équations de Stokes et le problème a été résolu par une approche classiques d'éléments finis ou en utilisant des techniques plus récentes à base de la transformée de Fourier rapide. À l'échelle mésoscopique, l'écoulement du fluide a obéi aux équations de Stokes dans les macropores et aux équations de Darcy dans le solide perméable. Le problème de cellules élémentaires couplant les équations de Darcy et Stokes a été résolu par la méthode des éléments finis afin de calculer la perméabilité macroscopique finale. Dans cette optique, nous avons développé une méthode fondée sur une formulation variationnelle mixte qui a été mise en œuvre en prenant différents éléments dans les domaines de solide et fluide. Divers exemples 2D et 3D sont fournis pour illustrer la précision et la capacité des méthodes numériques proposées pour calculer la perméabilité macroscopique des matériaux biporeux / Polymer-based porous materials have been the subject of intense research for many years and present some important advantages over their inorganic counterparts, such as tunable mechanical properties, ease to be functionalized, and especially lower production cost. Over the last decade, materials with dual porosity have attracted a particular attention from the scientific community, as these peculiar materials offer new interesting perspectives for engineering sustainable materials. The role of each porosity level is different and associated with distinct mass transfer processes. Macropores (~100 µm) would allow macromolecules and cells flow through the material, while a nanoporous network (10-100 nm) would be dedicated to the passage of smaller molecules, thus acting as a second transport mechanism, especially when macropores are totally clogged. The first part of this work addresses the development of versatile and effective approaches to biocompatible doubly porous poly(2-hydroxyethyl methacrylate) (PHEMA)-based materials. The first approach relied on the use of two distinct types of porogen templates, i.e. a macroporogen and a nanoporogen. To generate the macroporosity, either NaCl particles or PMMA beads that could be fused or not, were used in order to control the pore morphology and interconnectivity of the materials. The nanoporosity was obtained by using various amounts of different porogenic solvents, thus generating a wide range of pore size distributions for this second porosity level. The second methodology was based on the thermally-induced phase separation process. A co-solvent mixture constituted of dioxane and water was used to solubilize previously prepared linear PHEMA, followed by a solidification process by freezing the co-solvents/PHEMA mixture, and subsequent sublimation of the co-solvents to generate the corresponding biporous PHEMA materials. Finally, advantage of doubly porous materials was taken through different functionalization reactions using carbonyldiimidazole chemistry, and further immobilization of in-situ generated gold nanoparticles. Such hybrid doubly porous materials proved to act as efficient catalytic supports. In the second part, we numerically determined the permeability of doubly porous materials. The methodology was based on a double upscaling approach in the field of periodic homogenization theories and on unit cell calculations. The first upscaling consisted in the determination of a first permeability associated with the array of nanoscopic pores. At this scale, the pores were saturated by a viscous fluid obeying the Stokes equations and the problem was solved by means of standard Finite-Element approaches or using more recent techniques based on Fast Fourier Transform. At the mesoscopic scale, the fluid flow obeyed the Stokes equations in the macropores and the Darcy equations in the permeable solid. The unit cell problem coupling Darcy and Stokes equations was solved by the Finite Element method in order to compute the final macroscopic permeability. To this purpose, we developed a method based on a mixed variational formulation which was implemented by taking different elements in the solid and fluid regions. Various 2D and 3D examples were provided to illustrate the accuracy and the capacity of the proposed numerical methods to compute the macroscopic permeability of biporous materials
15

Influence d'une contrainte mécanique sur le vieillissement d'alliages Fe-Cr / Influence of a mechanical load on the ageing of Fe-Cr alloys

Dahlström, Alexander 19 September 2019 (has links)
L’acier inoxydable est un alliage important pour le développement technique d’une société moderne; cela a été découvert au début du 20ème siècle. Cependant, leur système d'alliage de base, Fe-Cr, est affecté par une lacune de miscibilité à basse température (<600 °C) présent dans le diagramme de phases. Les alliages présentant une lacune de miscibilité dans leur diagramme de phase ont tendance à se décomposer. Ce phénomène également connu sous le nom de "fragilisation à 475 °C", est d’une importance technique, car la décomposition modifie les propriétés mécaniques de ces alliages; dans ce cas présente, par la perte de ductilité et de résistance aux chocs. La tendance à la décomposition augmente avec la diminution de la température, ce qui limite la température de service supérieure à environ 300 °C, limitant ainsi la durée de vie de ces alliages. Étant donné que la fragilisation peut provoquer une défaillance soudaine de ces alliages, cet aspect nuit à leur utilisation en tant que composants structurels dans les secteurs du transport et de l’énergie. La décomposition des alliages Fe-Cr pose un défi aux techniques de caractérisation traditionnelles, car les variations de composition se produisent à l'échelle nanométrique. Par conséquent, la sonde atomique tomographique de pointe a été utilisée pour étudier ces variations de composition à l'échelle atomique en 3D. La modélisation atomistique corrélative a été utilisée pour améliorer davantage la compréhension du processus de décomposition dans ces alliages ; ce modèle était basé sur la théorie de la fonction de densité atomique. Pour émuler la décomposition améliorée du matériau, causée par la température et/ou une charge externe, la décomposition dans ce projet est stimulée par une température de service supérieure à la normale. Dont la nécessité de connaître la limite exacte de la lacune de miscibilité. Ainsi, la nécessité d'évaluer la limite supérieure de température de cette décomposition dans le système Fe-Cr est née de résultats non concluants des analyses de la littérature existant. Par conséquent, un four de haute précision en combinaison avec une sonde atomique tomographique a été utilisé pour étudier la décomposition et l’agglomération dans le système Fe-Cr d’une manière plus précise que jamais. En outre, d’explorer en détail l’emplacement de la limite de la lacune de miscibilité. La décomposition de ces alliages au cours du vieillissement modifie les propriétés mécaniques. Ainsi, en raison de leur utilisation en tant que composants structurels, le comportement de décomposition dû au vieillissement a été étudié, ainsi que le vieillissement dû à la charge externe. Cette dernière situation se rencontre également dans des applications réelles pendant le service, émulées par le vieillissement dû à la pression en utilisant une simple force de traction. Afin d'examiner en détail l'effet de la pression externe, l'orientation du grain par rapport à la direction de traction a été prise en compte lors d'un simple vieillissement thermique et lors de l’application d’une force de traction continue. Ainsi, l'orientation cristallographique et les niveaux de charge ont été pris en compte pour leur effet sur le processus de décomposition/dégradation. / Stainless steel is an important alloy for the technical development of a modern society, they were discovered in the early 20th century. However, their base alloying system, Fe-Cr, is affected by a low temperature (<600°C) miscibility gap present in the phase diagram. Alloys with a miscibility gap in their phase diagram tend to decompose. This phenomenon is also known as the “475°C embrittlement”, it is of technical importance as decomposition alters the mechanical properties of these alloys, in this specific case, by loss of ductility and impact toughness. The tendency to decompose increases with decreasing temperature, restricting the upper service temperature to around 300°C and limiting the service lifetime of these alloys. Because embrittlement can cause sudden failure of these alloys, this phenomenon is detrimental to their use as structural components in transportation and energy industry. The decomposition of Fe-Cr alloys poses a challenge for traditional characterisation techniques, as composition variations occur at the nanoscale. Therefore, the state-of-the-art atom probe tomography have been utilised to study these composition variations at the atomic scale in 3D. Correlative atomistic modelling has been used to further enhance the understanding of the decomposition process in these alloys, this model was based on atomic density function theory. To emulate enhanced decomposition of the material, caused by temperature and/or an external load, decomposition in this work is stimulated by a higher than the normal service temperature. Hence, a need to know the exact limit of the miscibility gap. Thus, a need to evaluate the upper-temperature limit of this decomposition in the Fe-Cr system arose from inconclusive results in the literature. Hence, a high precision furnace in combination with atom probe was utilised to study decomposition and clustering in the Fe-Cr system more accurately than ever before. Furthermore, to explore in detail the location of the limit of the miscibility gap. The decomposition of these alloys during ageing alter the mechanical properties. Thus, due to their use as structural components, the decomposition behaviour during ageing was investigated, as well as ageing during external load. This last situation is also encountered in real applications during service, mimicked by stress-ageing using a simple tensile force. In order to in detail investigate the effect of the external stress, grain orientation with respect to the tensile direction was considered during simple thermal ageing, and during the constantly applied tensile force. Thus, crystallographic orientation and load levels were considered for their effect on the decomposition process.
16

Relaxation de la contrainte dans les hétérostructures Al(Ga)InN/GaN pour applications électroniques : modélisation des propriétés physiques et rôle de l'indium dans la dégradation des couches épitaxiales / Stress relaxation in Al(Ga)InN/GaN heterostructures for electronic applications : modeling of physical properties and role of indium in the degradation of epitaxial layers

Mohamad, Ranim 05 October 2018 (has links)
Pour la fabrication des transistors hyperfréquences de puissance à base de nitrures, l’alliage InAlN est considéré comme une meilleure barrière qu’AlGaN grâce à l’accord de maille pour une composition en indium voisine de 18 %. Ainsi le gaz d'électrons à deux dimensions (2DEG) est-il généré seulement par la polarisation spontanée dans une hétérointerface InAlN/GaN sans contrainte résiduelle pour une fabrication de transistors aux performances optimales. Cependant, durant sa croissance sur GaN, sa qualité cristalline se dégrade avec l’épaisseur et il se forme des défauts V au niveau de l’interface. Afin de déterminer les sources de ce comportement, nous avons mené une étude théorique par dynamique moléculaire et techniques ab initio pour analyser la stabilité et les propriétés des alliages des composés nitrures en nous focalisant particulièrement sur InAlN. L’analyse des diagrammes de phase a permis de montrer que cet alliage présente une large gamme d’instabilité en composition d’indium et un comportement différent d’InGaN sous compression avec une instabilité amplifiée sous forte pression. En déterminant la stabilité énergétique de la lacune d’azote en interaction avec l’indium, nous avons montré que ce défaut ponctuel autour duquel des atomes d’indium tendent à retrouver une longueur de liaison voisine de celle dans InN pouvait être un catalyseur pour la formation de clusters dans cet alliage. Ces clusters d’InN introduisent des niveaux donneurs profonds dans la bande interdite. En ce qui concerne les dislocations traversantes, nos résultats montrent qu’elles auront aussi tendance à capturer des atomes d’indium dans leur cœur pour minimiser leur énergie. Ainsi nous avons pu apporter les bases théoriques qui montrent que la lacune d’azote participe à la dégradation spontanée des couches d’InAlN et que les dislocations traversantes sont amenées à y participer en attirant les atomes d’indium et donc en renforçant la séparation de phase en leur voisinage. / For the fabrication of nitride-based power microwave transistors, the InAlN alloy is considered to be a better barrier than AlGaN thanks to the lattice match with GaN for an indium composition around 18%. Thus the two-dimensional electron gas (2DEG) is generated only by the spontaneous polarization at the AlInN/GaN heterointerface for a production of highest performance transistors. However, during its growth on GaN, its crystalline quality deteriorates with the thickness and V-defects are formed at the layer surface. To determine the sources of this behavior, we carried out a theoretical study by molecular dynamics and ab initio techniques to analyze the stability and the properties of alloys of nitride compounds, focusing particularly on InAlN. The analysis of the phase diagrams showed that this alloy has a wide zone of instability versus the indium composition and a different behavior with InGaN with amplified instability under high compressive strain. By determining the energetic stability of the nitrogen vacancy could be catalyst for forming clusters in this alloy. These InN clusters introduce deep donor levels inside the band gap. With regard to treading dislocations, our results show that they will also tend to capture indium atoms in their cores in order to minimize their energy. Thus, we have been able to provide a theoretical basis that show that the nitrogen vacancy participates in the spontaneous degradation of the AlInN layers and that the threading dislocations participate by attracting the indium atoms and thus reinforcing the separation of phase in their vicinity.

Page generated in 0.1464 seconds