Spelling suggestions: "subject:"seleção dde modelos"" "subject:"seleção dee modelos""
1 |
Padrões de variação na riqueza de espécies em gradientes altitudinais : uma revisão multi-taxonômicaBorges, Daniella Frensel de Moraes 07 1900 (has links)
Dissertação (mestrado)—Universidade de Brasília, Departamento de Ecologia, 2011. / Submitted by Shayane Marques Zica (marquacizh@uol.com.br) on 2011-10-03T19:36:09Z
No. of bitstreams: 1
2011_DaniellaFrenseldeMoraesBorges.pdf: 792351 bytes, checksum: 31e50bb6c9b27f7a77c4dc1f7cd2a2f6 (MD5) / Approved for entry into archive by LUCIANA SETUBAL MARQUES DA SILVA(lucianasetubal@bce.unb.br) on 2011-10-04T16:08:50Z (GMT) No. of bitstreams: 1
2011_DaniellaFrenseldeMoraesBorges.pdf: 792351 bytes, checksum: 31e50bb6c9b27f7a77c4dc1f7cd2a2f6 (MD5) / Made available in DSpace on 2011-10-04T16:08:50Z (GMT). No. of bitstreams: 1
2011_DaniellaFrenseldeMoraesBorges.pdf: 792351 bytes, checksum: 31e50bb6c9b27f7a77c4dc1f7cd2a2f6 (MD5) / Gradientes altitudinais são ambientes ideais para testar a generalidade de padrões na variação de riqueza de espécies. No presente estudo, reunimos dados da literatura sobre a distribuição de espécies de variados grupos taxonômicos ao longo desses gradientes com o objetivo de investigar o efeito da riqueza de espécies, da amplitude altitudinal, da latitude e do nível trófico associado sobre a detecção de padrões de variação na riqueza de espécies em gradientes altitudinais. Utilizamos a abordagem de seleção de modelos para detecção desses padrões. Usando o critério de Akaike, selecionamos fizemos uma seleção entre sete modelos plausíveis para a variação da riqueza de espécies com a altitude. A partir de um conjunto de 70 metacomunidades altitudinais, encontramos uma proporção semelhante de padrões de decréscimo (monotônico ou não) e de variação unimodal na riqueza de espécies. Os padrões gerais de variação na riqueza de espécies diferiram significativamente entre as classes de riqueza e nível trófico, mas não entre as classes de amplitude altitudinal e de latitude. Para o conjunto de dados selecionados, a relação altitude-riqueza é altamente dependente da riqueza registrada em cada metacomunidade. Tal dependência caracteriza-se por uma mudança de padrões de decréscimo monotônico para padrões de variação unimodal na riqueza de espécies com a altitude em estudos com maior número de espécies observadas. A partir desses resultados, discutimos a importância da escala nos estudos de gradientes altitudinais, assim como a influência das variáveis descritas e os possíveis mecanismos por trás dos padrões encontrados. _______________________________________________________________________________ ABSTRACT / Altitudinal gradients are ideal environments to test the generality of species richness patterns. In this study, we collected data from the literature about the species distribution along altitudinal gradients to investigate whether species richness, altitudinal range, latitude and associated trophic level are able to affect systematically the species richness patterns with altitude. By using a model selection approach, we selected among seven plausible models of species richness patterns with altitude using the Akaike information criteria. From a set of 70 altitudinal metacommunities, we found a similar proportion of two general patterns of species richness: decreasing (monotonic or not) and unimodal variation in species richness. The general patterns of species richness variation differed significantly between the classes of species richness and trophic level, but not between classes of altitudinal range and latitude. The more species are recorded along an altitudinal gradient, the more common are unimodal patterns of variation in species richness. From these results, we discussed the importance of scale in studies of altitudinal gradients, as well as the possible mechanisms behind these patterns.
|
2 |
Aplicação do algorítmo genético no mapeamento de genes epistáticos em cruzamentos controlados / Application of genetic algorithm in the genes epistatic map in controlled crossingsOliveira, Paulo Tadeu Meira e Silva de 22 August 2008 (has links)
O mapeamento genético é constituído por procedimentos experimentais e estatísticos que buscam detectar genes associados à etiologia e regulação de doenças, além de estimar os efeitos genéticos e as localizações genômicas correspondentes. Considerando delineamentos experimentais que envolvem cruzamentos controlados de animais ou plantas, diferentes formulações de modelos de regressão podem ser adotados na identificação de QTLs (do inglês, quantitative trait loci), incluindo seus efeitos principais e possíveis efeitos de interação (epistasia). A dificuldade nestes casos de mapeamento é a comparação de modelos que não necessariamente são encaixados e envolvem um espaço de busca de alta dimensão. Para este trabalho, descrevemos um método geral para melhorar a eficiência computacional em mapeamento simultâneo de múltiplos QTLs e de seus efeitos de interação. A literatura tem usado métodos de busca exaustiva ou busca condicional. Propomos o uso do algoritmo genético para pesquisar o espaço multilocos, sendo este mais útil para genomas maiores e mapas densos de marcadores moleculares. Por meio de estudos de simulações mostramos que a busca baseada no algoritmo genético tem eficiência, em geral, mais alta que aquela de um método de busca condicional e que esta eficiência é comparável àquela de uma busca exaustiva. Na formalização do algoritmo genético pesquisamos o comportamento de parâmetros tais como: probabilidade de recombinação, probabilidade de mutação, tamanho amostral, quantidade de gerações, quantidade de soluções e tamanho do genoma, para diferentes funções objetivo: BIC (do inglês, Bayesian Information Criterion), AIC (do inglês, Akaike Information Criterion) e SSE, a soma de quadrados dos resíduos de um modelo ajustado. A aplicação das metodologias propostas é também considerada na análise de um conjunto de dados genotípicos e fenotípicos de ratos provenientes de um delineamento F2. / Genetic mapping is defined in terms of experimental and statistical procedures applied for detection and localization of genes associated to the etiology and regulation of diseases. Considering experimental designs in controlled crossings of animals or plants, different formulations of regression models can be adopted in the identification of QTL\'s (Quantitative Trait Loci) to the inclusion of the main and interaction effects between genes (epistasis). The difficulty in these approaches of gene mapping is the comparison of models that are not necessarily nested and involves a multiloci search space of high dimension. In this work, we describe a general method to improve the computational efficiency in simultaneous mapping of multiples QTL\'s and their interactions effects. The literature has used methods of exhausting search or conditional search. We consider the genetic algorithm to search the multiloci space, looking for epistatics loci distributed on the genome. Compared to the others procedures, the advantage to use such algorithm increases more for set of genes bigger and dense maps of molecular markers. Simulation studies have shown that the search based on the genetic algorithm has efficiency, in general, higher than the conditional search and that its efficiency is comparable to that one of an exhausting search. For formalization of the genetic algorithm we consider different values of the parameters as recombination probability, mutation probability, sample size, number of generations, number of solutions and size of the set of genes. We evaluate different objective functions under the genetic algorithm: BIC, AIC and SSE. In addition, we used the sample phenotypic and genotypic data bank. Briefly, the study examined blood pressure variation before and after a salt loading experiment in an intercross (F2) progeny.
|
3 |
Aplicação do algorítmo genético no mapeamento de genes epistáticos em cruzamentos controlados / Application of genetic algorithm in the genes epistatic map in controlled crossingsPaulo Tadeu Meira e Silva de Oliveira 22 August 2008 (has links)
O mapeamento genético é constituído por procedimentos experimentais e estatísticos que buscam detectar genes associados à etiologia e regulação de doenças, além de estimar os efeitos genéticos e as localizações genômicas correspondentes. Considerando delineamentos experimentais que envolvem cruzamentos controlados de animais ou plantas, diferentes formulações de modelos de regressão podem ser adotados na identificação de QTLs (do inglês, quantitative trait loci), incluindo seus efeitos principais e possíveis efeitos de interação (epistasia). A dificuldade nestes casos de mapeamento é a comparação de modelos que não necessariamente são encaixados e envolvem um espaço de busca de alta dimensão. Para este trabalho, descrevemos um método geral para melhorar a eficiência computacional em mapeamento simultâneo de múltiplos QTLs e de seus efeitos de interação. A literatura tem usado métodos de busca exaustiva ou busca condicional. Propomos o uso do algoritmo genético para pesquisar o espaço multilocos, sendo este mais útil para genomas maiores e mapas densos de marcadores moleculares. Por meio de estudos de simulações mostramos que a busca baseada no algoritmo genético tem eficiência, em geral, mais alta que aquela de um método de busca condicional e que esta eficiência é comparável àquela de uma busca exaustiva. Na formalização do algoritmo genético pesquisamos o comportamento de parâmetros tais como: probabilidade de recombinação, probabilidade de mutação, tamanho amostral, quantidade de gerações, quantidade de soluções e tamanho do genoma, para diferentes funções objetivo: BIC (do inglês, Bayesian Information Criterion), AIC (do inglês, Akaike Information Criterion) e SSE, a soma de quadrados dos resíduos de um modelo ajustado. A aplicação das metodologias propostas é também considerada na análise de um conjunto de dados genotípicos e fenotípicos de ratos provenientes de um delineamento F2. / Genetic mapping is defined in terms of experimental and statistical procedures applied for detection and localization of genes associated to the etiology and regulation of diseases. Considering experimental designs in controlled crossings of animals or plants, different formulations of regression models can be adopted in the identification of QTL\'s (Quantitative Trait Loci) to the inclusion of the main and interaction effects between genes (epistasis). The difficulty in these approaches of gene mapping is the comparison of models that are not necessarily nested and involves a multiloci search space of high dimension. In this work, we describe a general method to improve the computational efficiency in simultaneous mapping of multiples QTL\'s and their interactions effects. The literature has used methods of exhausting search or conditional search. We consider the genetic algorithm to search the multiloci space, looking for epistatics loci distributed on the genome. Compared to the others procedures, the advantage to use such algorithm increases more for set of genes bigger and dense maps of molecular markers. Simulation studies have shown that the search based on the genetic algorithm has efficiency, in general, higher than the conditional search and that its efficiency is comparable to that one of an exhausting search. For formalization of the genetic algorithm we consider different values of the parameters as recombination probability, mutation probability, sample size, number of generations, number of solutions and size of the set of genes. We evaluate different objective functions under the genetic algorithm: BIC, AIC and SSE. In addition, we used the sample phenotypic and genotypic data bank. Briefly, the study examined blood pressure variation before and after a salt loading experiment in an intercross (F2) progeny.
|
4 |
Análise da cor da casca do mamão cv. Sunrise Solo por meio de modelo de regressão linear misto / Analysis of color peel of the papaya cv. Sunrise Solo through of the mixed linear regression modelNascimento, Caroline Oliveira do 30 May 2019 (has links)
O mamão (Carica papaya L.) tem importância destacada na fruticultura e se encontra entre os seis principais produtos que somam mais de 50% da produção nacional desse setor. O mamão tem uma maturação relativamente rápida. Visando aumentar o potencial de comércio e possivelmente diminuir as perdas pós-colheita, a análise de imagens digitais é um recurso tecnológico para avaliar a tonalidade e intensidade da cor da casca dos frutos no período de maturação, que serve de base para estabelecer modelos funcionais para mensurações realizadas num período de tempo. Nesse contexto tem como motivação um estudo longitudinal envolvendo a avaliação da intensidade e tonalidade da cor da casca do mamão da espécie Carica papaya L. no período de maturação. Para a análise dos dados é utilizada a metodologia dos modelos lineares de efeitos mistos e para selecionar os modelos que melhor se ajustavam aos dados, utilizou-se teste da razão de verossimilhanças e teste F, em um método de seleção top-down. Verifica-se que modelo polinomial quadrático com efeito aleatório em todos os parâmetros descreve de maneira satisfatória a variável tonalidade. Para a variável intensidade obteve-se um modelo polinomial cúbico para os efeitos aleatórios e apenas o intercepto como parâmetro de efeito fixo. As análises de diagnóstico confirmaram o ajuste satisfatório dos modelos. / The papaya (Carica papaya L.) has important importance in fruticulture and is among the six main products that add up to more than 50% of the national production of this sector. Papaya has a relatively rapid maturation. In order to increase commercial potential and possibly reduce post-harvest losses, digital image analysis is a technological tool to evaluate the color tone and intensity of fruit peel during the maturation period, which serves as the basis for establishing functional models for measurements performed over a period of time. In this context it has as motivation a longitudinal study involving the evaluation of the intensity and color tone of the shell of the papaya of the species Carica papaya L. in the maturation period. For the analysis of the data the methodology of the linear models of mixed effects is used and to select the models that best fit the data, was used a test of the likelihood ratio and test F, in a method of selection top-down. It can be verified that the quadratic polynomial model with random effect in all the parameters describes in a satisfactory way the variable tonality. For the intensity variable we obtained a cubic polynomial model for the random effects and only the intercept as a fixed effect parameter. Diagnostic analyzes confirmed the satisfactory fit of the models.
|
5 |
Modelos de regressão sobre dados composicionais / Regression model for Compositional dataCamargo, André Pierro de 09 December 2011 (has links)
Dados composicionais são constituídos por vetores cujas componentes representam as proporções de algum montante, isto é: vetores com entradas positivas cuja soma é igual a 1. Em diversas áreas do conhecimento, o problema de estimar as partes $y_1, y_2, \\dots, y_D$ correspondentes aos setores $SE_1, SE_2, \\dots, SE_D$, de uma certa quantidade $Q$, aparece com frequência. As porcentagens $y_1, y_2, \\dots, y_D$ de intenção de votos correspondentes aos candidatos $Ca_1, Ca_2, \\dots, Ca_D$ em eleições governamentais ou as parcelas de mercado correspondentes a industrias concorrentes formam exemplos típicos. Naturalmente, é de grande interesse analisar como variam tais proporções em função de certas mudanças contextuais, por exemplo, a localização geográfica ou o tempo. Em qualquer ambiente competitivo, informações sobre esse comportamento são de grande auxílio para a elaboração das estratégias dos concorrentes. Neste trabalho, apresentamos e discutimos algumas abordagens propostas na literatura para regressão sobre dados composicionais, assim como alguns métodos de seleção de modelos baseados em inferência bayesiana. \\\\ / Compositional data consist of vectors whose components are the proportions of some whole. The problem of estimating the portions $y_1, y_2, \\dots, y_D$ corresponding to the pieces $SE_1, SE_2, \\dots, SE_D$ of some whole $Q$ is often required in several domains of knowledge. The percentages $y_1, y_2, \\dots, y_D$ of votes corresponding to the competitors $Ca_1, Ca_2, \\dots, Ca_D$ in governmental elections or market share problems are typical examples. Of course, it is of great interest to study the behavior of such proportions according to some contextual transitions. In any competitive environmet, additional information of such behavior can be very helpful for the strategists to make proper decisions. In this work we present and discuss some approaches proposed by different authors for compositional data regression as well as some model selection methods based on bayesian inference.\\\\
|
6 |
Avaliação e seleção de modelos em detecção não supervisionada de outliers / On the internal evaluation of unsupervised outlier detectionMarques, Henrique Oliveira 23 March 2015 (has links)
A área de detecção de outliers (ou detecção de anomalias) possui um papel fundamental na descoberta de padrões em dados que podem ser considerados excepcionais sob alguma perspectiva. Uma importante distinção se dá entre as técnicas supervisionadas e não supervisionadas. O presente trabalho enfoca as técnicas de detecção não supervisionadas. Existem dezenas de algoritmos desta categoria na literatura, porém cada um deles utiliza uma intuição própria do que deve ser considerado um outlier ou não, que é naturalmente um conceito subjetivo. Isso dificulta sensivelmente a escolha de um algoritmo em particular e também a escolha de uma configuração adequada para o algoritmo escolhido em uma dada aplicação prática. Isso também torna altamente complexo avaliar a qualidade da solução obtida por um algoritmo/configuração em particular adotados pelo analista, especialmente em função da problemática de se definir uma medida de qualidade que não seja vinculada ao próprio critério utilizado pelo algoritmo. Tais questões estão inter-relacionadas e se referem respectivamente aos problemas de seleção de modelos e avaliação (ou validação) de resultados em aprendizado de máquina não supervisionado. Neste trabalho foi desenvolvido um índice pioneiro para avaliação não supervisionada de detecção de outliers. O índice, chamado IREOS (Internal, Relative Evaluation of Outlier Solutions), avalia e compara diferentes soluções (top-n, i.e., rotulações binárias) candidatas baseando-se apenas nas informações dos dados e nas próprias soluções a serem avaliadas. O índice também é ajustado estatisticamente para aleatoriedade e extensivamente avaliado em vários experimentos envolvendo diferentes coleções de bases de dados sintéticas e reais. / Outlier detection (or anomaly detection) plays an important role in the pattern discovery from data that can be considered exceptional in some sense. An important distinction is that between the supervised and unsupervised techniques. In this work we focus on unsupervised outlier detection techniques. There are dozens of algorithms of this category in literature, however, each of these algorithms uses its own intuition to judge what should be considered an outlier or not, which naturally is a subjective concept. This substantially complicates the selection of a particular algorithm and also the choice of an appropriate configuration of parameters for a given algorithm in a practical application. This also makes it highly complex to evaluate the quality of the solution obtained by an algorithm or configuration adopted by the analyst, especially in light of the problem of defining a measure of quality that is not hooked on the criterion used by the algorithm itself. These issues are interrelated and refer respectively to the problems of model selection and evaluation (or validation) of results in unsupervised learning. Here we developed a pioneer index for unsupervised evaluation of outlier detection results. The index, called IREOS (Internal, Relative Evaluation of Outlier Solutions), can evaluate and compare different candidate (top-n, i.e., binary labelings) solutions based only upon the data information and the solution to be evaluated. The index is also statistically adjusted for chance and extensively evaluated in several experiments involving different collections of synthetic and real data sets.
|
7 |
Seleção de modelos cópula-GARCH: uma abordagem bayesiana / Copula-Garch model model selection: a bayesian approachRossi, João Luiz 04 June 2012 (has links)
Esta dissertação teve como objetivo o estudo de modelos para séries temporais bivariadas, que tem a estrutura de dependência determinada por meio de funções de cópulas. A vantagem desta abordagem é que as cópulas fornecem uma descrição completa da estrutura de dependência. Em termos de inferência, foi adotada uma abordagem Bayesiana com utilização dos métodos de Monte Carlo via cadeias de Markov (MCMC). Primeiramente, um estudo de simulações foi realizado para verificar como os seguintes fatores, tamanho das séries e variações nas funções de cópula, nas distribuições marginais, nos valores do parâmetro de cópula e nos métodos de estimação, influenciam a taxa de seleção de modelos segundo os critérios EAIC, EBIC e DIC. Posteriormente, foram realizadas aplicações a dados reais dos modelos com estrutura de dependência estática e variante no tempo / The aim of this work was to study models for bivariate time series, where the dependence structure among the series is modeled by copulas. The advantage of this approach is that copulas provide a complete description of dependence structure. In terms of inference was adopted the Bayesian approach with utilization of Markov chain Monte Carlo (MCMC) methods. First, a simulation study was performed to verify how the factors, length of the series and variations on copula functions, on marginal distributions, on copula parameter value and on estimation methods, may affect models selection rate given by EAIC, EBIC and DIC criteria. After that, we applied the models with static and time-varying dependence structure to real data
|
8 |
Seleção de modelos lineares mistos utilizando critérios de informação / Mixed linear model selection using information criterionYamanouchi, Tatiana Kazue 18 August 2017 (has links)
O modelo misto é comumente utilizado em dados de medidas repetidas devido a sua flexibilidade de incorporar no modelo a correlação existente entre as observações medidas no mesmo indivíduo e a heterogeneidade de variâncias das observações feitas ao longo do tempo. Este modelo é composto de efeitos fixos, efeitos aleatórios e o erro aleatório e com isso na seleção do modelo misto muitas vezes é necessário selecionar os melhores componentes do modelo misto de tal forma que represente bem os dados. Os critérios de informação são ferramentas muito utilizadas na seleção de modelos, mas não há muitos estudos que indiquem como os critérios de informação se desempenham na seleção dos efeitos fixos, efeitos aleatórios e da estrutura de covariância que compõe o erro aleatório. Diante disso, neste trabalho realizou-se um estudo de simulação para avaliar o desempenho dos critérios de informação AIC, BIC e KIC na seleção dos componentes do modelo misto, medido pela taxa TP (Taxa de verdadeiro positivo). De modo geral, os critérios de informação se desempenharam bem, ou seja, tiveram altos valores de taxa TP em situações em que o tamanho da amostra é maior. Na seleção de efeitos fixos e na seleção da estrutura de covariância, em quase todas as situações, o critério BIC teve um desempenho melhor em relação aos critérios AIC e KIC. Na seleção de efeitos aleatórios nenhum critério teve um bom desempenho, exceto na seleção de efeitos aleatórios em que considera a estrutura de simetria composta, situação em que BIC teve o melhor desempenho. / The mixed model is commonly used in data of repeated measurements because of its flexibility to incorporate in the model the correlation existing between the observations measured in the same individual and the heterogeneity of variances of observations made over time. This model is composed of fixed effects, random effects and random error and with this in the selection of the mixed model it is often necessary to select the best components of the mixed model in such a way that it represents the data well. Information criteria are tools widely used in model selection, but there are not many studies that indicate how information criteria play out in the selection of fixed effects, random effects, and the covariance structure that makes up the random error. In this work, a simulation study was performed to evaluate the performance of the AIC, BIC and KIC information criteria in the selection of the components of the mixed model, measured by the TP (True positive Rate). In general, the information criteria performed well, that is, they had high TP rate in situations where the sample size is larger. In the selection of fixed effects and in the selection of the covariance structure, in almost all situations, the BIC criterion had a better performance in relation to the AIC and KIC criteria. In the selection of random effects no criterion had a good performance, except in the selection of Random effects in which it considers the compound symmetric structure, situation in which BIC had the best performance.
|
9 |
Seleção de modelos de tempos com longa-duração para dados de finançasGranzotto, Daniele Cristina Tita 22 February 2008 (has links)
Made available in DSpace on 2016-06-02T20:06:02Z (GMT). No. of bitstreams: 1
2168.pdf: 2430677 bytes, checksum: b8736c04a1812cc46846524a7e5aec92 (MD5)
Previous issue date: 2008-02-22 / Financiadora de Estudos e Projetos / Os modelos de análise de sobrevivência com fração de cura incorporam a heterogeneidade de duas populações (suscept´ıveis e imunes ao evento de interesse) e são
conhecidos na literatura como modelos de longa-duração. Com o objetivo de exemplificar a aplicabilidade dos modelos de longa-duração em dados da área de finanças, trabalhou-se com o modelo proposto por Berckson e Gage usando-se para isto os modelosWeibull e log-logístico. Estudou-se a adequabilidade dos modelos e métodos para seleção e verificação de ajuste. Um estudo de simulação foi realizado com o propósito de testar a medida de distância entre curvas como alternativas às métricas usuais e também verificar o comportamento destas métricas em diferentes situações
de percentuais de censura e tamanhos de amostras. Neste estudo verificou-se que, uma métrica simples como a medida de distância entre curvas, é capaz de selecionar o modelo mais apropriado aos dados na presença de longa-duração e grandes carteiras de clientes.
|
10 |
Seleção de modelos lineares mistos utilizando critérios de informação / Mixed linear model selection using information criterionTatiana Kazue Yamanouchi 18 August 2017 (has links)
O modelo misto é comumente utilizado em dados de medidas repetidas devido a sua flexibilidade de incorporar no modelo a correlação existente entre as observações medidas no mesmo indivíduo e a heterogeneidade de variâncias das observações feitas ao longo do tempo. Este modelo é composto de efeitos fixos, efeitos aleatórios e o erro aleatório e com isso na seleção do modelo misto muitas vezes é necessário selecionar os melhores componentes do modelo misto de tal forma que represente bem os dados. Os critérios de informação são ferramentas muito utilizadas na seleção de modelos, mas não há muitos estudos que indiquem como os critérios de informação se desempenham na seleção dos efeitos fixos, efeitos aleatórios e da estrutura de covariância que compõe o erro aleatório. Diante disso, neste trabalho realizou-se um estudo de simulação para avaliar o desempenho dos critérios de informação AIC, BIC e KIC na seleção dos componentes do modelo misto, medido pela taxa TP (Taxa de verdadeiro positivo). De modo geral, os critérios de informação se desempenharam bem, ou seja, tiveram altos valores de taxa TP em situações em que o tamanho da amostra é maior. Na seleção de efeitos fixos e na seleção da estrutura de covariância, em quase todas as situações, o critério BIC teve um desempenho melhor em relação aos critérios AIC e KIC. Na seleção de efeitos aleatórios nenhum critério teve um bom desempenho, exceto na seleção de efeitos aleatórios em que considera a estrutura de simetria composta, situação em que BIC teve o melhor desempenho. / The mixed model is commonly used in data of repeated measurements because of its flexibility to incorporate in the model the correlation existing between the observations measured in the same individual and the heterogeneity of variances of observations made over time. This model is composed of fixed effects, random effects and random error and with this in the selection of the mixed model it is often necessary to select the best components of the mixed model in such a way that it represents the data well. Information criteria are tools widely used in model selection, but there are not many studies that indicate how information criteria play out in the selection of fixed effects, random effects, and the covariance structure that makes up the random error. In this work, a simulation study was performed to evaluate the performance of the AIC, BIC and KIC information criteria in the selection of the components of the mixed model, measured by the TP (True positive Rate). In general, the information criteria performed well, that is, they had high TP rate in situations where the sample size is larger. In the selection of fixed effects and in the selection of the covariance structure, in almost all situations, the BIC criterion had a better performance in relation to the AIC and KIC criteria. In the selection of random effects no criterion had a good performance, except in the selection of Random effects in which it considers the compound symmetric structure, situation in which BIC had the best performance.
|
Page generated in 0.2118 seconds