51 |
Platinum(II) Terpyridyls: Excited State Engineering and Solid-State Vapochromic/Vapoluminescent MaterialsMuro, Maria Luisa 30 June 2009 (has links)
No description available.
|
52 |
Development of Multifunctional Nanoparticles: From Synthesis to Theranostic ApplicationsOzkaya Ahmadov, Tevhide 03 June 2016 (has links)
No description available.
|
53 |
A study of photodynamic damage to the DNA replication systemZhao, Ran January 2009 (has links)
No description available.
|
54 |
Synthesis and Characterization of Ruthenium and Manganese Mono- and BimetallicComplexes towards the Photoactivated Release of Therapeutic MoleculesPickens, Rachael 16 September 2022 (has links)
No description available.
|
55 |
INSIGHTS INTO PHOTODYNAMIC THERAPY AND ITS DOSIMETRY USING A DYNAMIC MODEL FOR ALA-PDT OF NORMAL HUMAN SKINLIU, BAOCHANG 10 1900 (has links)
<p>Photodynamic therapy (PDT) is a rapidly developing clinical treatment modality involving a light-activatable photosensitizer, tissue oxygen and light of an appropriate wavelength to generate cytotoxic reactive molecular species - primarily singlet oxygen (<sup>1</sup>O<sub>2</sub>). Singlet oxygen readily reacts with surrounding biomolecules leading to different biological effects and subsequent therapeutic outcomes. Over the last decades, many standard PDT treatments have been approved worldwide to treat different medical conditions ranging from a variety of cancer conditions to age-related macular degeneration (AMD). Meanwhile, many active clinical trials and pre-clinical studies are underway for other clinical indications. The therapeutic outcomes of PDT are difficult to predict reliably even with many years of research. The fundamental cause for this is the inherent complexity of PDT mechanisms. As PDT involves three main components, the outcomes of PDT are determined by the combination of all components. Each component varies temporally and spatially during PDT, and the variations are mutually dependent on each other. Moreover, components such as the photosensitizer can have great variations in their initial distribution among patients even before PDT treatment. Given this, no well accepted standard PDT dose metric method has been recognized in clinics, although different approaches including explicit, implicit and direct dosimetry have been studied. To tackle the inherently complicated PDT mechanism in order to provide insights into PDT and PDT dosimetry, a theoretical one-dimensional model for aminolevulinic acid (ALA) induced protoporphyrin IX (PpIX)-PDT of human skin was developed and is presented in this thesis. The model incorporates major photophysical and photochemical reactions in PDT, and calculated temporal and spatial distributions of PDT components as well as the detectable emission signals including both sensitizer fluorescence and singlet oxygen luminescence (SOL) using typical clinical conditions. Since singlet oxygen is considered to cause PDT outcomes, the correlations of different PDT dose metrics to average reacted (<sup>1</sup>O<sub>2</sub>) "dose" and "dose" at different depths were examined and compared for a wide range of varied treatment conditions. The dose metrics included absolute fluorescence bleaching metric (AFBM), fractional fluorescence bleaching metric (FFBM) and cumulative singlet oxygen luminescence (CSOL), and the varied treatment conditions took into account different treatment irradiances and wavelengths, varied initial sensitizer concentration and distribution, and a wide range of optical properties of tissue. These investigations and comparisons provide information about the complicated dynamic process of PDT such as the induction of tissue hypoxia, photosensitizer photobleaching and possible PDT-induced vascular responses. It was also found that the CSOL is the most robust and could serve as a gold standard for the testing of other techniques. In addition to these theoretical studies, recent progress on the assessment of a novel, more efficient superconducting nanowire single photon detector (SNSPD) for singlet oxygen luminescence detection will be introduced and the current photomultiplier tubes (PMT) system will be briefly described as well. The author participated in the experimental assessments of the SNSPD and analyzed the results shown in this thesis.</p> / Doctor of Philosophy (PhD)
|
56 |
A Remote Electro-Optical Technique for Monitoring Singlet Oxygen Generation During Photodynamic Therapy / Remote Electro-Optical Detection of Singlet Oxygen in VivoMadsen, Steen 07 1900 (has links)
Photodynamic therapy (PDT) is a form of local cancer treatment in which cell death is caused by photochemical reactions involving an exogenous photosensitizer. The photosensitizer, which is preferentially retained in malignant tissues, is photoactivated and cell death results from the generation of reactive products -most likely excited molecular (singlet) oxygen. The development of in vivo PDT dosimetry would be greatly aided by the ability to directly measure the local concentration of this product by non-invasive means. In condensed media singlet oxygen will, with some small probability, undergo a radiative transition to the ground state with emission at 1270 nm. This infrared phosphorescence may provide a means for monitoring the production of singlet oxygen in vivo. Unfortunately the background infrared fluorescence observed from tissue may be many times the expected magnitude of the 1270 nm phosphorescence, even within the bandwidth encompassing the peak. The principal aim of this project was the design of a system optimized for the in vivo detection of the singlet oxygen emission. The system makes use of the most sensitive commercially available detector and uses phase sensitive detection to discriminate against infrared fluorescence. The system's performance matched theoretical expectations for the photosensitizer Photofrin II in aqueous and methanol solutions. However, a discrepancy in the observed and theoretical values was noted for aluminum chlorosulphonated phthalocyanine suggesting a deviation from simple first order kinetics. Singlet oxygen phosphorescence was not observed during PDT of cell suspensions or mouse tumours even though considerable cell death and tumour necrosis were observed. The most likely explanation of this failure is that, due to quenching by biomolecules, the lifetime of singlet oxygen in cells or tissue is much lower than in solution so that the probability of emission is reduced accordingly. Quantitative calibration of the system yielded a lower limit of approximately 0.1 us on the singlet oxygen lifetime in tissue. This suggests that singlet oxygen is generated in a protein environment. / Thesis / Master of Science (MS)
|
57 |
Photoredox catalysis for environmental and chemical applications. A mechanistically-based approachMartínez Haya, Rebeca 04 January 2019 (has links)
En las últimas décadas, los procesos redox fotoinducidos mediados por luz visible han recibido gran atención debido a las suaves condiciones de operación en que se llevan a cabo. Como resultado, se han logrado posicionar como una alternativa más dentro de los Procesos de Oxidación Avanzada. Además, se han convertido en una metodología excepcional en síntesis orgánica, que ha abierto la puerta a nuevas rutas químicas con aplicaciones sintéticas. Sin embargo, a pesar del crecimiento del campo, se ha prestado poca atención a los mecanismos por los que operan estos procesos.
El principal objetivo de esta tesis fue avanzar en la comprensión de distintos procesos fotoredox llevados a cabo empleando fotocatalizadores orgánicos. Más específicamente, se estudió la viabilidad de distintos fotocatalizadores orgánicos, y además, se realizó un estudio mecanístico detallado basado en técnicas resueltas en el tiempo. A partir de estos resultados, se estableció una metodología para determinar los puntos clave a considerar en un sistema fotoredox.
En primer lugar, en la Parte I, se eligieron dos fotocatalizadores basados en sales de pirilio y tiapirilio, que operan mediante transferencia electrónica oxidativa, con distintos objetivos. En el Capítulo 3, se evaluó su aplicabilidad en la fotodegradación de dos contaminantes de la industria del corcho y se estudió el mecanismo por el que se produce dicha fotodegradación. En el Capítulo 4, se demostró la utilidad de la detección directa de todos los intermedios de vida corta derivados del TPP+ implicados en la oxidación fotocatalizada como herramienta para evaluar el nivel de fotodegradación. En el Capítulo 5, se empleó TPTP+ para establecer las mejores características de un fotocatalizador y la influencia de la concentración de las sustancias a oxidar en la eficiencia de los estados excitados, o en general, de los intermedios clave de vida corta.
En segundo lugar, en la Parte II, en el Capítulo 6, se evaluó el potencial del Rosa Bengala en la eliminación de dos fármacos. Éste es un fotocatalizador típico en la remediación de aguas residuales conocido por actuar via mecanismo Tipo II. Se incluyó además un segundo fotocatalizador, Perinaftenona, cuyo rendimiento cuántico de oxígeno singlete es incluso mayor a Rosa Bengala. En el Capítulo 7, se llevó a cabo la fotooxidación de tres contaminantes, usando NMQ+, un fotocatalizador inusual, capaz de generar oxígeno singlete desde su estado excitado singlete. En todos los casos se pudo demostrar la mayor contribución del mecanismo Tipo I sobre el mecanismo Tipo II en la fotodegradación de los diferentes contaminantes.
Finalmente, en la Parte II, el Capítulo 8 se dedicó a la reducción fotocatalítica de bromuros orgánicos, empleando Riboflavina, un colorante orgánico no metálico, como fotocatalizador. De nuevo, se prestó especial atención a la detección y comportamiento de las especies intermedias, lo que resultó de acuerdo a los datos termodinámicos. / En les últimes dècades, els processos redox fotoinduïts mitjan per llum visible han rebut gran atenció degut a les suaus condicions d'operació en que es donen. Com a resultat, s'han aconseguit col·locar com una alternativa mes dins dels Processos d'Oxidació Avançada. A més, han estat convertint-se en una metodologia excepcional en síntesi orgànica, que ha obert la porta a noves rutes químiques amb aplicacions sintètiques. No obstant això, a pesar del creixement del camp, s'ha prestat poca atenció als mecanismes pels que operen aquests processos.
El principal objectiu d'esta tesi va ser avançar en la comprensió de diferents processos fotoredox duts a terme emprant fotocatalitzadors orgànics. Més específicament, es va estudiar la viabilitat de distints fotocatalitzadors orgànics, i a més, es va realitzar un estudi mecanístic al detall basat en tècniques resoltes en el temps. Amb aquests resultats, es va establir una metodologia per a determinar els punts clau a considerar en un sistema fotoredox.
En primer lloc, en la Part I, es van elegir dos fotocatalitzadors basats en sals de pirili i tiapirili, els quals operen per mitjà de transferència electrònica oxidativa, amb distints objectius. En el Capítol 3, es va avaluar la seua aplicabilitat en la fotodegradació de dos contaminants de la indústria del suro i es va estudiar el mecanisme pel qual es produeix dita fotodegradació. En el Capítol 4, es va demostrar la utilitat de la detecció directa de tots els intermedis de curt temps de vida derivats del TPP+ implicats en l'oxidació fotocatalitzada com a ferramenta per avaluar el nivell de fotodegradació. En el Capítol 5, es va emprar TPTP+ per a establir les millors característiques d'un fotocatalitzador i l'influencia de la concentració de les substàncies a oxidar en la eficiència dels estats oxidats, o en general, del intermedis claus de vida curta.
En segon lloc, en la Part II, en el Capítol 6, es va avaluar el potencial del Rosa Bengala en l'eliminació de dos fàrmacs. Aquest es un fotocatalitzador típic en la remediació d'aigües residuals conegut per actuar via mecanisme Tipus II. Es va incloure a més un segon fotocatalitzador, Perinaftenona, el del qual rendiment quàntic d'oxigen singlet és inclús major a Rosa Bengala. En el Capítol 7, es va dur a terme la fotooxidació de tres contaminants, usant NMQ+, un fotocatalitzador inusual, capaç de generar oxigen singlet des del seu estat excitat singlet. En tots els casos es va poder demostrar la major contribució del mecanisme Tipus I sobre el mecanisme Tipo II en la fotodegradació dels diferents contaminants.
Finalment, en la Part II, el Capítol 8 es va dedicar a la reducció fotocatalítica de bromurs orgànics, emprant Riboflavina, un colorant orgànic no metàl·lic, com fotocatalitzador. De nou, es va prestar especial atenció a la detecció i comportament de les espècies intermèdies, el que va resultar d'acord amb les dades termodinàmiques. / In the last decades, photoinduced-redox processes mediated through visible light have obtained great attention due to the generally mild operating conditions that they offer. As a result, they constitute a further alternative within the so-called Advanced Oxidation processes. Besides, they are becoming an outstanding methodology in organic synthesis, which has opened the door to new synthetic and chemical routes. However, despite the growth of the field, little attention has been paid to the mechanisms pathways behind these processes.
The main objective of this thesis was to gain deeper understanding of different photoredox processes carried out using organic photocatalysts. More specifically, the viability of several organic photocatalysts was studied, and besides, a careful mechanistic study based on time resolved techniques supported the postulated mechanisms. With this information, a methodology determining the key points to consider in a photoredox system were stablished.
Firstly, in Part I, two photocatalysts based on pyrilium and thiapyrilium salts, which operate through an oxidative electron transfer, have been used with different objectives. In Chapter 3, the viability of the photodegradation of two common pollutants from cork industry and the mechanism behind it has been evaluated. In Chapter 4, the direct detection of all the TPP+ derived short-lived intermediates in the photocatalyzed oxidation of a mixture of pollutants using TPP+ was proposed as a methodology to assess the photodegradation extent. In the last chapter of Part I, Chapter 5, TPTP+ is used to stablish the best characteristics of a photocatalyst. Besides, the study claimed the influence of the concentration of the target substances in the efficiency of the excited states or, in general, of the key short-lived intermediates.
Secondly, in Part II, in Chapter 6, Rose Bengal, a typical photocatalyst used in wastewater remediation, known for working via Type II mechanism, was evaluated for the removal of two common drugs. In addition, a second one, Perinaphtenone, which exhibits even a higher singlet oxygen quantum yield than Rose Bengal was tested. In Chapter 7, NMQ+, a non-typical photocatalyst able of generate singlet oxygen from its singlet excited state, was used in the photooxidation of three different pollutants. In every case, the major contribution of Type I vs Type II mechanism was demonstrated.
Finally, in Part III, Chapter 8 was devoted to the photocatalytic reduction of organic bromides. In this case, Riboflavine, a non-metallic organic dye, was used as a photocatalyst. Analogously, careful attention was paid to the behavoiur of the intermediates, which were in agreement, as well as to the thermodynamics of the steps involved in the photocatalytic cycle. / Martínez Haya, R. (2018). Photoredox catalysis for environmental and chemical applications. A mechanistically-based approach [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/114828
|
58 |
Nutzung der orts- und zeitaufgelösten Detektion der Singulettsauerstoff Lumineszenz zur Evaluierung der Photodynamischen Inaktivierung von MikroorganismenBornhütter, Tobias 18 April 2018 (has links)
Die Photodynamische Inaktivierung von Mikroorganismen (PDI) ist eine vielversprechende Methode zur Bekämpfung verschiedener Mikroorganismen. Grundlage der PDI ist die Generierung von reaktiven Sauerstoffspezies in toxischer Dosis, insbesondere von Singulettsauerstoff (1O2). Die Generierung von 1O2 erfolgt durch die Wechselwirkung eines Photosensibilisators mit Licht und molekularem Sauerstoff.
Ein direkter Nachweis von 1O2 ist nur durch die Detektion seiner Phosphoreszenz bei 1269 nm (1O2 Lumineszenz) möglich. Die Kinetik der 1O2 Lumineszenz erlaubt Rückschlüsse auf die Mikroumgebung des Photosensibilisators. Die Phosphoreszenz-Quantenausbeute des 1O2 ist sehr gering und die spektrale Lage der 1O2 Lumineszenz bedingt geringe Detektionseffizienz und hohes Rauschen. Daher erfordert die zeitaufgelöste Detektion der 1O2 Lumineszenz hohen Aufwand an Technik und Fachwissen. Bisher gelang die zeitaufgelöste Detektion von 1O2 Lumineszenz an Mikroorganismen nur in Suspensionen.
In dieser Arbeit werden Grundlagen für die Nutzung der orts- und zeitaufgelösten Detektion der 1O2 Lumineszenz auf Oberflächen als Werkzeug für die Evaluierung der PDI auf Oberflächen vorgestellt. Um diese Grundlagen zu schaffen, wurde ein Messplatz zur orts- und zeitaufgelösten Detektion von 1O2 Lumineszenz auf Oberflächen geplant, konstruiert, charakterisiert und getestet. In Untersuchungen an vier verschiedenen Mikroorganismen mit zwei Photosensibilisatoren gelingt erstmals der direkte, zeitaufgelöste Nachweis von 1O2 an Oberflächen kultivierter Mikroorganismen.
Durch den Vergleich von Fluoreszenz-Scans und 1O2 Lumineszenz-Scans können Aussagen über das Diffusionsverhalten der Photosensibilisatoren und das 1O2 Lumineszenz Quenching der Mikro-organismen getroffen werden. Eine Analyse der 1O2 Lumineszenzkinetik zeigt, dass die Detektion der 1O2 Lumineszenz und die Bestimmung der 1O2 Lumineszenzkinetik im Zeitraum der PDI aller untersuchten Mikroorganismen möglich ist. / The Photodynamic Inactivation of Microorganisms (PDI) is a promising method to combat different microorganisms. The mechanism of PDI is based on the selective generation of reactive oxygen species, particularly of singlet oxygen (1O2), in a lethal dose. 1O2 is generated via the interaction of a photosensitizer with light and molecular oxygen.
The only method for directly detecting 1O2 is the measurement of its characteristic phosphorescence at 1269 nm (1O2 luminescence). The kinetics of the 1O2 luminescence can be utilized to draw conclusions about the microenvironment of the photosensitizer. Due to the extremely low phosphorescence quantum yield of 1O2 and low detection efficiency because of its spectral position, the detection of 1O2 luminescence requires a considerable amount of specialised knowledge and technical efforts. Hitherto, the time-resolved detection of 1O2 luminescence at microorganisms has only been successful in suspensions.
This thesis presents fundamentals for the use of laterally and time-resolved detection of 1O2 luminescence as a tool for evaluating PDI of microorganisms on surfaces. To provide these fundamentals, a setup for lateral and time-resolved 1O2 luminescence detection was planned, constructed and characterised. In studies regarding four different microorganisms and two photosensitizer, the direct time-resolved detection of 1O2 luminescence on the surface of cultured microorganisms was succeeded for the first time.
The comparison of fluorescence and 1O2 luminescence scans allows gathering information about the diffusion properties of the photosensitizer as well as the quenching properties of the microorganisms. The analysis of the 1O2 luminescence kinetics exemplifies, that the determination of the 1O2 luminescence kinetics is possible over the period of the microorganisms’ PDI.
|
59 |
Síntese e caracterização de nanopartículas emissoras de luz por conversão ascendente de energia (UCNPS) funcionalizadas para uso em aplicações biológicas / Synthesis and Characterization of Upconversion Nanoparticles Functionalized for Biological ApplicationsArai, Marylyn Setsuko 21 September 2018 (has links)
As nanopartículas emissoras de luz por conversão ascendente de energia (UCNPs) têm atraído grande interesse nos últimos anos devido à sua versatilidade e capacidade de converter radiação menos energética em fótons de maior energia. Quando combinadas com outras moléculas, as UCNPs podem ser empregadas em um grande número de bioaplicações e, apesar de encontrar um de seus maiores usos na terapia fotodinâmica (PDT) de células cancerígenas, os mesmos princípios podem ser empregados na fotoinativação de bactérias (PDI). Nos últimos 20 anos a resistência bacteriana têm se tornado um dos maiores problemas de saúde pública e novas estratégias precisam ser desenvolvidas para superar esse desafio. Nesse trabalho, nós apresentamos a síntese e caracterização de nanopartículas de NaYF4 dopadas com Yb3+ (20%) e Er3+ (2%) e funcionalizadas para uso em PDI. As UCNPs foram sintetizadas utilizando-se o método de co-precipitação e foram revestidas com uma camada de sílica mesoporosa (@mSiO2) visando o aumento da dispersibilidade em água, o incremento da área superficial e a possibilidade de funcionalizações, e a diminuição da citotoxicidade do material. As UCNP@mSiO2 foram decoradas com moléculas orgânicas e com o fotossensibilizador (PS) ftalocianina de silício (SiPc) para estudo de sua interação e efeito bactericida contra cepas bacterianas Gram positivas e negativas. Diferentes abordagens foram utilizadas em busca de nanopartículas com as melhores propriedades: tamanho, forma, geração de oxigênio singleto e estabilidade em solução aquosa. Verificou-se que a transferência de energia entre as UCNPs e as SiPc em sua superfície é muito dependente do tipo de funcionalização realizada e da extensão com que as moléculas de PS adentram os poros da sílica. O material final apresentou toxicidade na ausência de luz contra a bactéria E. coli, enquanto a viabilidade das cepas de S. aureus não foi afetada no escuro. A excitação direta da SiPc nas nanopartículas levou a completa erradicação da E. coli e um drástico decréscimo no número de unidades formadoras de colônia (CFU) da S. aureus de até sete ordens de magnitude. Com esse estudo demonstramos diferentes estratégias para sintetizar e potencializar o uso das UCNPs como agentes teranósticos, principalmente para uso em PDI. / Lanthanide-doped upconverting nanoparticles (UCNPs) that emit high-energy photons upon excitation by low-energy near infrared (NIR) light, have garnered great interest in recent years due to their versatility. These nanoparticles combined to other molecules can be used for a broad range of bio-applications as theranostic agents, for bioimaging, drug and gene delivery and photodynamic therapy (PDT) applications. Although phototherapy is commonly used in the treatment of cancer, the same principles can be applied for the inactivation of bacteria (PDI). In the last twenty years bacterial resistance against antibiotics has become a critical public health issue and new strategies are needed to overcome this challenge. Herein, we describe the synthesis, detailed characterization and application of functionalized NaYF4: Yb (20%), Er (2%) UCNPs for use in PDT and especially for PDI. The UCNPs are produced using the co-precipitation method and covered with a mesoporous silica shell to enhance the dispersibility in water, increase the surface area and grant functionalization possibility and to decrease cytotoxicity. The nanoparticles were decorated with different molecules and functionalized with the photosensitizer (PS) silicon phthalocyanine (SiPc) to study interaction and enhance the bactericidal effect against Gram positive (+) and Gram negative (-) bacteria. Different approaches were used to identify the best particles concerning the shape, size, photophysical properties, generation of singlet oxygen and stability in water. It was verified that the energy transfer (FRET) efficiency from the UCNP towards SiPc depended on the surface functionalization and resulting encapsulation depths of the PS into the mesoporous silica. Functionalized UCNPs displayed dark toxicity towards Gram (-) E. coli while Gram (+) S. aureus viability was not decreased in the dark. Directly exciting the PS on the UNCP led to complete eradication of E. coli and a drastic decrease of colony forming units of S. aureus of up to seven orders of magnitude. Through this study we demonstrate different strategies to synthesize and potentialize the use of UCNPs as theranostic agents, mainly for use in PDI.
|
60 |
Desenvolvimento de nanopartículas fotossensibilizadoras / Development of photosensitizing nanoparticlesTada, Dayane Batista 14 December 2007 (has links)
No presente trabalho são apresentadas a síntese e a caracterização estrutural, fotofísica, fotoquímica e fotobiológica de nanopartículas contendo os fotossensibilizadores (FS) Azul de Metileno (AM) e Tionina. AM e Tionina foram incorporados nas nanopartículas sil-AM e sil-Tio pelo processo sol-gel. Nas nanopartículas Cab-Tio, Tionina foi ligada à superfície de sílica CabOsil® através de ligação covalente com reagentes bifuncionais. Todas as nanopartículas mostraram-se esféricas e com de diâmetro médio na faixa de 30 a 60nm. A imobilização dos FS induziu a agregação destes em extensões diferentes para cada tipo de nanopartícula. Foi observado que a maior presença de dímeros de FS leva à menor eficiência de geração de 1O2. Constatou-se que as nanopartículas sofrem pouca influência do meio, uma vez que os FS a elas ligadas não sofreram redução química por NADPH, nem supressão do estado tripleto por íons ascorbato e a supressão de fluorescência por íon brometo foi diminuída. Foi testado também o efeito do recobrimento destas nanopartículas com lipídios dioleilfosfatidil colina (DOPC) e fosfatidilglicerol (PG) e com Polietileno glicol (PEG). A adsorção das nanopartículas sobre membranas miméticas foi reduzida após os recobrimentos, resultado que foi explicado pelas interações de carga superficial (potencial zeta) e pela força de hidratação. As nanopartículas sil-AM e Cab-Tio apresentaram fototoxicidades in vitro, 38% e 20% maiores que os respectivos FS livres. A modificação das nanopartículas de sil-AM com lipídios e com PEG diminuiu a fototoxicidade das mesmas e no caso do recobrimento com lipídios levou ao aumento da toxicidade no escuro. Imagens de microscopia confocal mostraram que as nanopartículas com e sem recobrimento de lipídios entram em células B16. No caso das nanopartículas recobertas, observou-se um perfil de distribuição difuso por todo o citoplasma e no caso de nanopartículas sem recobrimento, estas encontraram-se em poucas regiões vacuolares do citoplasma. O perfil de distribuição homogênea por todo o citoplasma no caso de nanopartículas recobertas com lipídios pode ser o responsável pelo aumento de toxicidade no escuro. Concluiu-se que a ligação dos FS em nanopartículas com diferentes graus de agregação pode ser uma estratégia para obtenção de sistemas com capacidade modulada de geração de 1O2 e com reduzida susceptibilidade às composições do meio. As atividades fototóxicas das nanopartículas contra células B16 mostraram que estas podem ser úteis em Terapia Fotodinâmica de Câncer / In this work we present the synthesis and the characterization (structural, photophysical, photochemical and photobiological) of nanoparticles with incorporated photosensitizers (PS) Methylene Blue (MB) and Thionin. MB and Thionin were incorporated in sil-MB and sil-Th nanoparticles through sol-gel process. In the case of Cab-Th nanoparticles Thionin was linked to the surface of CabOsil® nanoparticles through cross-linking reactions. All nanoparticles were spherical and presented average diameter in the range of 30 to 60nm. Different extension of PS aggregation was observed in each nanoparticle. It was characterized that the higher the proportion of dimers to monomers the smaller the efficiency of singlet oxygen (1O2) generation. It was shown that nanoparticles can protect PS from external interferences, since NADPH did not reduce them, neither were their triplet state quenched by ascorbate ions. Besides, fluorescence quenching by bromide ions was reduced compared to free PS. The effect of covering the nanoparticles with lipids, i.e., di-oleil phosphatidylcholine (DOPC) and phosphatidylglycerol (PG), and with Polyethylene glycol was also tested. The nanoparticle adsorption over membrane mimics was reduced, which was explained by the interaction among surface charges (zeta potential) and by hydration forces. Sil-MB and Cab-Th nanoparticles presented in vitro phototoxicity 38% and 20% higher than the respective free PS. It was observed that the nanoparticle coating with lipids and with PEG reduced their photoxicity. Nanoparticles coated with lipids showed higher toxicity in the dark. Confocal fluorescence images of B16 cells showed that nanoparticles with or without lipid coating enter the cells. In the case of lipid-coated nanoparticles a diffuse distribution profile was observed and in the case of nanoparticles without coating, they concentrated in specific vacuolar regions of the cytoplasm. The homogeneous cytoplasmic distribution profile of lipid-coated nanoparticles can explain the increased toxicity in the dark. It has been concluded that immobilization of PS with different aggregation degrees is a strategy to obtain systems in which the modulated efficiency of 1O2 generation is not affected by the external medium. Finally, based on the observed in vitro phototoxicity activity against B16 cells, these systems can be useful in Photodynamic Therapy of Cancer
|
Page generated in 0.0564 seconds