Spelling suggestions: "subject:"reguläre""
11 |
An index theorem for operators with horn singularitiesLapp, Frank 05 November 2013 (has links)
Die abgeschlossenen Erweiterungen der sogenannten geometrischen Operatoren (Spin-Dirac, Gauß-Bonnet und Signatur-Operator) auf Mannigfaltigkeiten mit metrischen Hörnern sind Fredholm-Operatoren und ihr Index wurde von Matthias Lesch, Norbert Peyerimhoff und Jochen Brüning berechnet. Es wurde gezeigt, dass die Einschränkungen dieser drei Operatoren auf eine punktierte Umgebung des singulären Punkts unitär äquivalent zu irregulär singulären Operator-wertigen Differentialoperatoren erster Ordnung sind. Die Lösungsoperatoren der dazugehörigen Differentialgleichungen definierten eine Parametrix, mit deren Hilfe die Fredholmeigenschaft bewiesen wurde. In der vorliegenden Doktorarbeit wird eine Klasse von irregulären singulären Differentialoperatoren erster Ordnung, genannt Horn-Operatoren, eingeführt, die die obigen Beispiele verallgemeinern. Es wird bewiesen, dass ein elliptischer Differentialoperator erster Ordnung, dessen Einschränkung auf eine punktierte Umgebung des singulären Punkts unitär äquivalent zu einem Horn-Operator ist, Fredholm ist, und sein Index wird berechnet. Schließlich wird dieser abstrakte Index-Satz auf geometrische Operatoren auf Mannigfaltigkeiten mit "multiply warped product"-Singularitäten angewendet, welche eine wesentliche Verallgemeinerung der metrischen Hörner darstellen. / The closed extensions of geometric operators (Spin-Dirac, Gauss-Bonnet and Signature operator) on a manifold with metric horns are Fredholm operators, and their indices were computed by Matthias Lesch, Norbert Peyerimhoff and Jochen Brüning. It was shown that the restrictions of all three operators to a punctured neighbourhood of the singular point are unitary equivalent to a class of irregular singular operator-valued differential operators of first order. The solution operators of the corresponding differential equations defined a parametrix which was applied to prove the Fredholm property. In this thesis a class of irregular singular differential operators of first order - called horn operators - is introduced that extends the examples mentioned above. It is proved that an elliptic differential operator of first order whose restriction to the neighbourhood of the singular point is unitary equivalent to a horn operator is Fredholm and its index is computed. Finally, this abstract index theorem is applied to compute the indices of geometric operators on manifolds with multiply warped product singularities that extend the notion of metric horns considerably.
|
12 |
Hypersurfaces with defect and their densities over finite fieldsLindner, Niels 20 February 2017 (has links)
Das erste Thema dieser Dissertation ist der Defekt projektiver Hyperflächen. Es scheint, dass Hyperflächen mit Defekt einen verhältnismäßig großen singulären Ort besitzen. Diese Aussage wird im ersten Kapitel der Dissertation präzisiert und für Hyperflächen mit beliebigen isolierten Singularitäten über einem Körper der Charakteristik null, sowie für gewisse Klassen von Hyperflächen in positiver Charakteristik bewiesen. Darüber hinaus lässt sich die Dichte von Hyperflächen ohne Defekt über einem endlichen Körper abschätzen. Schließlich wird gezeigt, dass eine nicht-faktorielle Hyperfläche der Dimension drei mit isolierten Singularitäten stets Defekt besitzt. Das zweite Kapitel der Dissertation behandelt Bertini-Sätze über endlichen Körpern, aufbauend auf Poonens Formel für die Dichte glatter Hyperflächenschnitte in einer glatten Umgebungsvarietät. Diese wird auf quasiglatte Hyperflächen in simpliziellen torischen Varietäten verallgemeinert. Die Hauptanwendung ist zu zeigen, dass Hyperflächen mit einem in Relation zum Grad großen singulären Ort die Dichte null haben. Weiterhin enthält das Kapitel einen Bertini-Irreduzibilitätssatz, der auf einer Arbeit von Charles und Poonen beruht. Im dritten Kapitel werden ebenfalls Dichten über endlichen Körpern untersucht. Zunächst werden gewisse Faserungen über glatten projektiven Basisvarietäten in einem gewichteten projektiven Raum betrachtet. Das erste Resultat ist ein Bertini-Satz für glatte Faserungen, der Poonens Formel über glatte Hyperflächen impliziert. Der letzte Abschnitt behandelt elliptische Kurven über einem Funktionskörper einer Varietät der Dimension mindestens zwei. Die zuvor entwickelten Techniken ermöglichen es, eine untere Schranke für die Dichte solcher Kurven mit Mordell-Weil-Rang null anzugeben. Dies verbessert ein Ergebnis von Kloosterman. / The first topic of this dissertation is the defect of projective hypersurfaces. It is indicated that hypersurfaces with defect have a rather large singular locus. In the first chapter of this thesis, this will be made precise and proven for hypersurfaces with arbitrary isolated singularities over a field of characteristic zero, and for certain classes of hypersurfaces in positive characteristic. Moreover, over a finite field, an estimate on the density of hypersurfaces without defect is given. Finally, it is shown that a non-factorial threefold hypersurface with isolated singularities always has defect. The second chapter of this dissertation deals with Bertini theorems over finite fields building upon Poonen’s formula for the density of smooth hypersurface sections in a smooth ambient variety. This will be extended to quasismooth hypersurfaces in simplicial toric varieties. The main application is to show that hypersurfaces admitting a large singular locus compared to their degree have density zero. Furthermore, the chapter contains a Bertini irreducibility theorem for simplicial toric varieties generalizing work of Charles and Poonen. The third chapter continues with density questions over finite fields. In the beginning, certain fibrations over smooth projective bases living in a weighted projective space are considered. The first result is a Bertini-type theorem for smooth fibrations, giving back Poonen’s formula on smooth hypersurfaces. The final section deals with elliptic curves over a function field of a variety of dimension at least two. The techniques developed in the first two sections allow to produce a lower bound on the density of such curves with Mordell-Weil rank zero, improving an estimate of Kloosterman.
|
13 |
Optimal Trading with Multiplicative Transient Price Impact for Non-Stochastic or Stochastic LiquidityFrentrup, Peter 28 October 2019 (has links)
Diese Arbeit untersucht eine Reihe multiplikativer Preiseinflussmodelle für das Handeln in einer riskanten Anlage. Unser risikoneutraler Investor versucht seine zu erwartenden Handelserlöse zu maximieren. Zunächst modellieren wir den vorübergehende Preiseinfluss als deterministisches Funktional der Handelsstrategie. Wir stellen den Zusammenhang mit Limit-Orderbüchern her und besprechen die optimale Strategie zum Auf- bzw. Abbau einer Anlageposition bei a priori unbeschränkem Anlagehorizont. Anschließend lösen wir das Optimierungsproblem mit festem Anlagehorizon in zwei Schritten. Mittels Variationsrechnung lässt sich die freie Grenzefläche, die Kauf- und Verkaufsregionen trennt, als lokales Optimum identifizieren, was entscheidend für die Verifikation globaler Optimalität ist. Im zweiten Teil der Arbeit erweitern wir den zwischengeschalteten Markteinflussprozess um eine stochastische Komponente, wodurch optimale Strategien dynamisch an zufällige Liquiditätsschwankungen adaptieren. Wir bestimmen die optimale Liquidierungsstrategie im zeitunbeschränkten Fall als die reflektierende Lokalzeit, die den Markteinfluss unterhalb eines explizit beschriebenen nicht-konstanten Grenzlevels hält. Auch dieser Beweis kombiniert Variationsrechnung und direkten Methoden. Um nun eine Zeitbeschränkung zu ermöglichen, müssen wir Semimartingalstrategien zulassen. Skorochods M1-Toplogie ist der Schlüssel, um die Klasse der möglichen Strategien in einer umfangreichen Familie von Preiseinflussmodellen, welche sowohl additiven, als auch multiplikativen Preiseinfluss umfasst, mit deterministischer oder stochastischer Liquidität, eindeutig von endlichen Variations- auf allgemeine càdlàg Strategien zu erweitern. Nach Einführung proportionaler Transaktionskosten lösen wir das entsprechende eindimensionale freie Grenzproblem des optimalen unbeschränkten Handels und beleuchten mögliche Lösungsansätze für das Liquidierungsproblem, das mit dem Verkauf der letzten Anleihe endet. / In this thesis, we study a class of multiplicative price impact models for trading a single risky asset. We model price impact to be multiplicative so that prices are guaranteed to stay non-negative. Our risk-neutral large investor seeks to maximize expected gains from trading. We first introduce a basic variant of our model, wherein the transient impact is a deterministic functional of the trading strategy. We draw the connection to limit order books and give the optimal strategy to liquidate or acquire an asset position infinite time horizon. We then solve the optimization problem for finite time horizon two steps. Calculus of variations allows to identify the free boundary surface that separates buy and sell regions and moreover show its local optimality, which is a crucial ingredient for the verification giving (global) optimality. In the second part of the thesis, we add stochasticity to the auxiliary impact process. This causes optimal strategies to dynamically adapt to random changes in liquidity. We identify the optimal liquidation strategy in infinite horizon as the reflection local time which keeps the market impact process below an explicitly described non-constant free boundary level. Again the proof technique combines classical calculus of variations and direct methods. To now impose a time constraint, we need to admit semimartingale strategies. Skorokhod's M1 topology is key to uniquely extend the class of admissible controls from finite variation to general càdlàg strategies in a broad class of market models including multiplicative and additive price impact, with deterministic or stochastic liquidity. After introducing proportional transaction costs in our model, we solve the related one-dimensional free boundary problem of unconstrained optimal trading and highlight possible solution methods for the corresponding liquidation problem where trading stops as soon as all assets are sold.
|
14 |
Uniform Error Estimation for Convection-Diffusion ProblemsFranz, Sebastian 27 February 2014 (has links) (PDF)
Let us consider the singularly perturbed model problem
Lu := -epsilon laplace u-bu_x+cu = f
with homogeneous Dirichlet boundary conditions on the unit-square (0,1)^2. Assuming that b > 0 is of order one, the small perturbation parameter 0 < epsilon << 1 causes boundary layers in the solution.
In order to solve above problem numerically, it is beneficial to resolve these layers. On properly layer-adapted meshes we can apply finite element methods and observe convergence.
We will consider standard Galerkin and stabilised FEM applied to above problem. Therein the polynomial order p will be usually greater then two, i.e. we will consider higher-order methods.
Most of the analysis presented here is done in the standard energy norm. Nevertheless, the question arises: Is this the right norm for this kind of problem, especially if characteristic layers occur? We will address this question by looking into a balanced norm.
Finally, a-posteriori error analysis is an important tool to construct adapted meshes iteratively by solving discrete problems, estimating the error and adjusting the mesh accordingly. We will present estimates on the Green’s function associated with L, that can be used to derive pointwise error estimators.
|
15 |
Polynomiale Kollokations-Quadraturverfahren für singuläre Integralgleichungen mit festen SingularitätenKaiser, Robert 25 October 2017 (has links) (PDF)
Viele Probleme der Riss- und Bruchmechanik sowie der mathematischen Physik lassen sich auf Lösungen von singulären Integralgleichungen über einem Intervall zurückführen. Diese Gleichungen setzen sich im Wesentlichen aus dem Cauchy'schen singulären Integraloperator und zusätzlichen Integraloperatoren mit festen Singularitäten in den jeweiligen Kernen zusammen. Zur numerischen Lösung solcher Gleichungen werden polynomiale Kollokations-Quadraturverfahren betrachet. Als Ansatzfunktionen und Kollokationspunkte werden dabei gewichtete Polynome und Tschebyscheff-Knoten gewählt. Die Gewichte sind so gewählt, dass diese das asymptotische Verhalten der Lösung in den Randpunkten widerspiegeln. Mit Hilfe von C*-Algebra Techniken, werden in dieser Arbeit notwendige und hinreichende Bedingungen für die Stabilität der Kollokations-Quadraturverfahren angegeben. Die theoretischen Resultate werden dabei durch numerische Berechnungen anhand des Problems der angerissenen Halbebene und des angerissenen Loches überprüft.
|
16 |
Layer structure and the galerkin finite element method for a system of weakly coupled singularly perturbed convection-diffusion equations with multiple scalesRoos, Hans-Görg, Schopf, Martin 17 April 2020 (has links)
We consider a system of weakly coupled singularly perturbed convection-diffusion equations with multiple scales. Based on sharp estimates for first order derivatives, Linß [T. Linß, Computing 79 (2007) 23–32.] analyzed the upwind finite-difference method on a Shishkin mesh. We derive such sharp bounds for second order derivatives which show that the coupling generates additional weak layers. Finally, we prove the first robust convergence result for the Galerkin finite element method for this class of problems on modified Shishkin meshes introducing a mesh grading to cope with the weak layers. Numerical experiments support our theory.
|
17 |
Uniform Error Estimation for Convection-Diffusion ProblemsFranz, Sebastian 20 January 2014 (has links)
Let us consider the singularly perturbed model problem
Lu := -epsilon laplace u-bu_x+cu = f
with homogeneous Dirichlet boundary conditions on the unit-square (0,1)^2. Assuming that b > 0 is of order one, the small perturbation parameter 0 < epsilon << 1 causes boundary layers in the solution.
In order to solve above problem numerically, it is beneficial to resolve these layers. On properly layer-adapted meshes we can apply finite element methods and observe convergence.
We will consider standard Galerkin and stabilised FEM applied to above problem. Therein the polynomial order p will be usually greater then two, i.e. we will consider higher-order methods.
Most of the analysis presented here is done in the standard energy norm. Nevertheless, the question arises: Is this the right norm for this kind of problem, especially if characteristic layers occur? We will address this question by looking into a balanced norm.
Finally, a-posteriori error analysis is an important tool to construct adapted meshes iteratively by solving discrete problems, estimating the error and adjusting the mesh accordingly. We will present estimates on the Green’s function associated with L, that can be used to derive pointwise error estimators.
|
18 |
On the use of singular perturbation based model hierarchies of an electrohydraulic drive for virtualization purposesZagar, Philipp, Scheidl, Rudolf 25 June 2020 (has links)
Virtualization of products means the representation of some of their properties by models. In a stronger digitalized world, these models will gain a much broader use than models had in engineering so far. Even for one modelling aspect different models of the same product will be used, depending on the specific need of the model user. That need may change in the course of product life, between first product concepts till over the different phases of development, to product use, maintenance, or even recycling. Since a digitalized world use of these diverse models will not be limited to experts model consistency will play a much stronger role. Model hierarchies will play a stronger role and can serve also as means for teaching product users a deeper understanding of product properties. A consistent model hierarchy leading from a simple to a more advanced property representation can support this learning process. In this paper perturbation methods are analyzed as a means for setting up model hierarchies in a consistent manner. This is studied by models for the behavior of a electrohydraulic drive, which consists of a variable speed motor, a pump, a double stroke cylinder and a counterbalance valve. Model hierarchy is achieved by model reduction in the sense of perturbation theory. The use of these different models for different questions in a system design context and their interrelations are exemplified.
|
19 |
Über das Verhalten von Kapillarflächen in SpitzenScholz, Markus 28 November 2004 (has links)
Grundlage der vorliegenden Arbeit sind mathematische Aspekte des Kapillarflächenproblems. Die Arbeit ist in zwei Teile gegliedert. Im ersten Teil werden existierende glatte Lösungen des klassischen Kapillarflächenproblems betrachtet. Diese sind unbeschränkt, wenn das Definitionsgebiet Spitzen enthält. Es wird eine Vielzahl von asymptotischen Formeln hergeleitet. Der zweite Teil der Arbeit beschäftigt sich mit verallgemeinerten Lösungen des allgemeinen Kapillar- flächenproblems. Es wird die Existenz dieser Lösungen unter sehr schwachen Voraussetzungen bewiesen. Für konstante Gravitationspotentiale und Benetzungsverhalten werden verallgemeinerte Lösungen näher untersucht und z. T. sogar explizit konstruiert. Die Eigenschaften einer speziellen Klasse solcher Lösungen könnte einen Beitrag zur Erklärung des Wasseranstiegs in Bäumen liefern. / The present paper is based on mathematical aspects of the capillary surface problem. It is divided into two parts. In the first part we consider the classical capillary surface problem, for which smooth solutions exist. These solutions are unbounded if the domain of definition contains cusps. We prove a large variety of asymptotic formulas. The second part is concerned with generalized solutions of the general capillary problem, for which there is not always a smooth solution. We prove existence of generalized solutions under very weak preconditions. We can construct some generalized solutions for zero-gravity and constant wetting-behaviour explicitly. These solutions have a very restricted geometry and could be of interest for the understanding of water lift in trees.
|
20 |
Feedback Effects in Stochastic Control Problems with Liquidity FrictionsBilarev, Todor 03 December 2018 (has links)
In dieser Arbeit untersuchen wir mathematische Modelle für Finanzmärkte mit einem großen Händler, dessen Handelsaktivitäten transienten Einfluss auf die Preise der Anlagen haben.
Zuerst beschäftigen wir uns mit der Frage, wie die Handelserlöse des großen Händlers definiert werden sollen. Wir identifizieren die Erlöse zunächst für absolutstetige Strategien als nichtlineares Integral, in welchem sowohl der Integrand als der Integrator von der Strategie abhängen.
Unserere Hauptbeiträge sind hier die Identifizierung der Skorokhod M1 Topologie als geeigneter Topologue auf dem Raum aller Strategien sowie die stetige Erweiterung der Definition für die Handelserlöse von absolutstetigen auf cadlag Kontrollstrategien.
Weiter lösen wir ein Liquidierungsproblem in einem multiplikativen Modell mit Preiseinfluss, in dem die Liquidität stochastisch ist. Die optimale Strategie wird beschrieben durch die Lokalzeit für Reflektion einer Diffusion an einer nicht-konstanten Grenze. Um die HJB-Variationsungleichung zu lösen und Optimalität zu beweisen, wenden wir probabilistische Argumente und Methoden aus der Variationsrechnung an, darunter Laplace-Transformierte von Lokalzeiten für Reflektion an elastischen Grenzen.
In der zweiten Hälfte der Arbeit untersuchen wir die Absicherung (Hedging) für Optionen. Der minimale Superhedging-Preis ist die Viskositätslösung einer semi-linearen partiellen Differenzialgleichung, deren Nichtlinearität von dem transienten Preiseinfluss abhängt.
Schließlich erweitern wir unsere Analyse auf Hedging-Probleme in Märkten mit mehreren riskanten Anlagen. Stabilitätsargumente führen zu strukturellen Bedingungen, welche für ein arbitragefreies Modell mit wechselseitigem Preis-Impakt gelten müssen. Zudem ermöglichen es jene Bedingungen, die Erlöse für allgemeine Strategien unendlicher Variation in stetiger Weise zu definieren. Als Anwendung lösen wir das Superhedging-Problem in einem additiven Preis-Impakt-Modell mit mehreren Anlagen. / In this thesis we study mathematical models of financial markets with a large trader (price impact models) whose actions have transient impact on the risky asset prices.
At first, we study the question of how to define the large trader's proceeds from trading. To extend the proceeds functional to general controls, we ask for stability in the following sense: nearby trading activities should lead to nearby proceeds. Our main contribution in this part is to identify a suitable topology on the space of controls, namely the Skorokhod M1 topology, and to obtain the continuous extension of the proceeds functional for general cadlag controls. Secondly, we solve the optimal liquidation problem in a multiplicative price impact model where liquidity is stochastic. The optimal control is obtained as the reflection local time of a diffusion process reflected at a non-constant free boundary. To solve the HJB variational inequality and prove optimality, we need a combination of probabilistic arguments and calculus of variations methods, involving Laplace transforms of inverse local times for diffusions reflected at elastic boundaries.
In the second half of the thesis we study the hedging problem for a large trader. We solve the problem of superhedging for European contingent claims in a multiplicative impact model using techniques from the theory of stochastic target problems. The minimal superhedging price is identified as the unique viscosity solution of a semi-linear pde, whose nonlinearity is governed by the transient nature of price impact.
Finally, we extend our consideration to multi-asset models. Requiring stability leads to strong structural conditions that arbitrage-free models with cross-impact should satisfy. These conditions turn out to be crucial for identifying the proceeds functional for a general class of strategies. As an application, the problem of superhedging with cross-impact in additive price impact models is solved.
|
Page generated in 0.0594 seconds