• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 40
  • 14
  • 7
  • 5
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 80
  • 29
  • 19
  • 17
  • 17
  • 15
  • 14
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Regulatory Effects of TGF-β Superfamily Members on Normal and Neoplastic Thyroid Epithelial Cells

Franzén, Åsa January 2002 (has links)
Thyroid growth and function is partly regulated by growth factors binding to receptors on the cell surface. In the present thesis, the transforming growth factor-β (TGF-β) superfamily members have been studied for their role in regulation of growth and differentiation of both normal and neoplastic thyroid epithelial cells. TGF-β1 is a negative regulator of thyrocyte growth and function. However, the importance of other TGF-β superfamily members has not been fully investigated. TGF-β1, activin A, bone morphogenetic protein (BMP)-7 and their receptors were found to be expressed in porcine thyrocytes. In addition to TGF-β1, activin A was also found to be a negative regulator of thyroid growth and function, and both stimulated phosphorylation and nuclear translocation of Smad proteins. Furthermore, TGF-β1 and epidermal growth factor (EGF) demonstrated a synergistic negative effect on thyrocyte differentiation. Simultaneous addition of the two factors resulted in a loss of the transepithelial resistance and expression of the epithelial marker E-cadherin. This was followed by a transient expression of N-cadherin. Despite the extremely malignant character of anaplastic thyroid carcinoma (ATC) tumor cells, established cell lines are still responsive to TGF-β1. A majority of the cell lines were also found to be growth inhibited by BMP-7. BMP-7 induced cell cycle arrest of the ATC cell line HTh 74 in a dose- and cell density-dependent manner. This was associated with upregulation of p21CIP1 and p27KIP1, decreased cyclin-dependent kinase (Cdk) activity and hypophosphorylation of the retinoblastoma protein (pRb). TGF-β1, and to some extent also BMP-7, induced the expression of N-cadherin and matrix metalloproteinase (MMP)-2 and -9. Stimulation of HTh 74 cells with TGF-β1 increased the migration through a reconstituted basement membrane indicating an increased invasive phenotype of the cells. Taken together, these data show that TGF-β superfamily members not only affect growth and function of normal thyroid follicle cells but may also, in combination with EGF, play a role in cell dedifferentiation. This study additionally suggests that the TGF-β superfamily members may be important for the invasive properties of ATC cells.
62

Novel Regulators of the TGF-β Signaling Pathway

Kowanetz, Marcin January 2005 (has links)
The transforming growth factor-β (TGF-β) superfamily consists of related multifunctional cytokines, which include TGF-βs, activins, and bone morphogenetic proteins (BMPs) and coordinate several biological responses in diverse cell types. The biological activity of TGF-β members is executed by transmembrane serine/threonine kinase receptors and intracellular Smad proteins. The effects of TGF-β on the epithelium are of high interest. Carcinomas (tumors of epithelial origin) are the most common type of human cancer and frequently exhibit aberrant responses to TGF-β. Therefore, TGF-β can be defined as tumor suppressor as it inhibits growth of normal epithelial cells. However, TGF-β also induces an epithelial-mesenchymal transition (EMT), a key component of metastasis, and thus promotes cancer spread. The scope of this thesis is the mechanism of TGF-β signaling in epithelial cells. We established that only TGF-β, but not BMP pathways can elicit EMT. Moreover, we found that Smad signaling is critical for regulation of EMT. In a transcriptomic analysis, we identified a large group of novel genes, whose regulation is pivotal for TGF-β-induced EMT and metastasis. We focused on two of such genes, Id2 and Id3. Interestingly, we found that TGF-β-induced repression of Ids is necessary for inducing EMT and potent cell cycle arrest. BMP increases expression of Ids and therefore it cannot induce the same biological responses as TGF-β. Hence, knock-down of endogenous Id2 and Id3 proteins sensitized epithelial cell to BMP-7. We proposed a model, in which Id2 and Id3 are important components controlling concerted regulation of cell proliferation and EMT downstream of TGF-β pathways. Furthermore, we identified a serine/threonine kinase, SNF1LK, whose mRNA is rapidly induced by TGF-β in epithelial cells. We found that SNF1LK is a negative regulator of the TGF-β pathway and it promotes TGF-β receptor turnover. Subsequently, we demonstrated that SNF1LK together with Smad7 and Smurf2 targets TGF-β receptor for ubiquitin-dependent degradation. Furthermore, SNF1LK interacts with proteasomes, suggesting that SNF1LK serves as bridge between ubiquitinated receptors and proteasomes, helping proteasomes to recognize the ubiquitinated cargo destined for degradation. We therefore established a novel negative feedback regulatory mechanism of TGF-β signaling.
63

Epigenetic Regulation of Replication Timing and Signal Transduction

Bergström, Rosita January 2008 (has links)
Upon fertilization the paternal and maternal genomes unite, giving rise to the embryo, with its unique genetic code. All cells in the human body are derived from the fertilized ovum: hence they all contain (with a few exceptions) the same genetic composition. However, by selective processes, genes are turned on and off in an adaptable, and cell type-specific, manner. The aim of this thesis is to investigate how signals coming from outside the cell and epigenetic factors residing in the cell nucleus, cooperate to control gene expression. The transforming growth factor-β (TGF-β) superfamily consists of around 30 cytokines, which are essential for accurate gene regulation during embryonic development and adult life. Among these are the ligands TGF-β1 and bone morphogenetic (BMP) -7, which interact with diverse plasma membrane receptors, but signal via partly the same Smad proteins. Smad4 is essential to achieve TGF-β-dependent responses. We observed that by regulating transcription factors such as Id2 and Id3 in a specific manner, TGF-β1 and BMP-7 achieve distinct physiological responses. Moreover, we demonstrate that CTCF, an insulator protein regulating higher order chromatin conformation, is able to direct transcription by recruiting RNA polymerase II to its target sites. This is the first mechanistic explanation of how an insulator protein can direct transcription, and reveals a link between epigenetic modifications and classical regulators of transcription. We also detected that DNA loci occupied by CTCF replicate late. The timing of replication is a crucial determinant of gene activity. Genes replicating early tend to be active, whereas genes replicating late often are silenced. Thus, CTCF can regulate transcription at several levels. Finally, we detected a substantial cross-talk between CTCF and TGF-β signaling. This is the first time that a direct interplay between a signal transduction pathway and the chromatin insulator CTCF is demonstrated.
64

Regulation of TGF-β Signaling by Post-Translational Modifications

Lönn, Peter January 2010 (has links)
Transforming growth factor-β (TGF-β) signaling is initiated when the ligand binds to type II and type I serine/threonine kinase receptors at the cell surface. Activated TGF-β type I receptors phosphorylate R-Smads which relocate, together with co-Smads, to the cell nucleus and regulate transcription. Enhancement or repression of Smad-specific gene targets leads to intracellular protein compositions which organize functional complexes and thus govern cellular processes such as proliferation, migration and differentiation. TGF-β/Smad signaling relays are regulated by various post-translational modifications. From receptors to gene promoters, intricate interplays between phosphorylation, acetylation, ubiquitination and numerous other modifications, control Smad signaling initiation and duration. However, many steps in the cascade, including receptor internalization, Smad nuclear shuttling and transcriptional termination, still remain elusive. The open gaps in our understanding of these mechanisms most likely involve additional post-translational regulations. Thus, the aim of the present investigation was to identify novel modulators of TGF-β/Smad signaling. In the first part of this thesis, we show the importance of ADP-ribosylation in Smad-mediated transcription. We identified poly(ADP-ribose) polymerase 1 (PARP-1) as a Smad interacting protein. Our work revealed that PARP-1 forms direct interactions with Smad3/4, and PARylates residues in their MH1 domains. This modification restricts Smads from binding to DNA and attenuates Smad-activated transcription. PARylation is reversed by the glycohydrolase PARG. We provide evidence that PARG can de-ADP-ribosylate Smads, which enhances Smad-promoted gene regulation. In the second part, we examine a Smad-dependent gene target of TGF-β signaling, salt inducible kinase 1 (SIK). After induction, SIK cooperates with Smad7 and Smurf2 to downregulate the TGF-β type I receptor. The mechanism relies on both the kinase and UBA domain of SIK as well as the E3-ligase activity of Smurf2. In summary, we have unveiled two enzyme-dependent TGF-β/Smad modulatory mechanisms; SIK promoted receptor turnover and PARP-1/PARG-regulated Smad signaling.
65

Role of Smad-interacting Protein 1 (Sip1/Zfhx1b) in the development of the cerebral cortex

Miquelajauregui, Amaya 26 April 2006 (has links)
No description available.
66

TRAF6 stimulates TGFβ-induced oncogenic signal transduction in cancer cells / TRAF6 stimulerar TGFβ-inducerad onkogen signal transduction i cancerceller.

Gudey, Shyam Kumar January 2014 (has links)
Prostate cancer is one of the leading causes of cancer-related deaths in men worldwide, with 10,000 new cases/year diagnosed in Sweden. In this context, there is an urgent need to identify new biomarkers to detect prostate cancer at an initial stage for earlier treatment intervention. Although how prostate cancer develops has not been fully established, the male sex hormone testosterone is a known prerequisite for prostate cancer development. High levels of transforming growth factor-β (TGFβ) are prognostically unfavorable in prostate cancer patients. TGFβ is a multifunctional cytokine that regulates a broad range of cellular responses. TGFβ signals through either the canonical Smad or the non-Smad signaling cascade. Cancerous cells develop different strategies to evade defense mechanisms and metastasize to different parts of the body. This thesis unveils one such novel mechanism related to TGFβ signaling. The first two articles provide evidence that TGFβ receptor type I (TβRI) is ubiquitinated by tumor necrosis factor receptor-associated factor 6 (TRAF6) and is cleaved at the ectodomain region by tumor necrosis factor alpha converting enzyme (TACE) in a protein kinase C zeta type-dependent manner. After TβRI is shed from the ectodomain, it undergoes a second cleavage by presenilin 1 (PS1), a γ-secretase catalytic subunit, which liberates the TβRI intracellular domain (TβRI-ICD) from the cell membrane. TRAF6 promotes TGFβ-dependent Lys63-linked polyubiquitination and recruitment of PS1 to the TβRI complex, and facilitates the cleavage of TβRI by PS1 to generate a TβRI-ICD. The TβRI-ICD then translocates to the nucleus, where it binds with the transcriptional co-activator p300 and regulates the transcription of pro-invasive target genes such as Snail1. Moreover, the nuclear translocated TβRI-ICD cooperates with the Notch intracellular domain (NICD), a core component in the Notch signaling pathway, to drive the expression of invasive genes. Interestingly, treatment with g-secretase inhibitors was able to inhibit cleavage of TβRI and inhibit the TGFβ-induced oncogenic pathway in an in vivo prostate cancer xenograft model. In the third article, we identified that Lysine 178 is the acceptor lysine in TβRI that is ubiquitinated by TRAF6. The TβRI K178R mutant was neither ubiquitinated nor translocated to the nucleus, and prevented transcriptional regulation of invasive genes in a dominant negative manner. In the fourth article, we show that TGFβ utilizes the E3-ligase TRAF6 and the p38 mitogen-activated protein kinase to phosphorylate c-Jun. In turn, the phosphorylated c-Jun activates p21 and Snail1 in a non-canonical Smad-independent pathway, and thereby promotes invasion in cancerous cells. In summary, we elucidate a new mechanism of TGFβ-induced oncogenic signal transduction in cancer cells in which TRAF6 plays a fundamental role. This opens a new avenue in the field of TGFβ signaling.
67

The Genetic Heterogeneity of Brachydactyly Type A1: Identifying the Molecular Pathways

Racacho, Lemuel Jean January 2015 (has links)
Brachydactyly type A1 (BDA1) is a rare autosomal dominant trait characterized by the shortening of the middle phalanges of digits 2-5 and of the proximal phalange of digit 1 in both hands and feet. Many of the brachymesophalangies including BDA1 have been associated with genetic perturbations along the BMP-SMAD signaling pathway. The goal of this thesis is to identify the molecular pathways that are associated with the BDA1 phenotype through the genetic assessment of BDA1-affected families. We identified four missense mutations that are clustered with other reported BDA1 mutations in the central region of the N-terminal signaling peptide of IHH. We also identified a missense mutation in GDF5 cosegregating with a semi-dominant form of BDA1. In two families we reported two novel BDA1-associated sequence variants in BMPR1B, the gene which codes for the receptor of GDF5. In 2002, we reported a BDA1 trait linked to chromosome 5p13.3 in a Canadian kindred (BDA1B; MIM %607004) but we did not discover a BDA1-causal variant in any of the protein coding genes within the 2.8 Mb critical region. To provide a higher sensitivity of detection, we performed a targeted enrichment of the BDA1B locus followed by high-throughput sequencing. We report the identification of a novel 9.5 Kb intergenic tandem duplication in two unrelated BDA1-affected families. In-vitro and in-vivo reporter assays demonstrated the enhancer activity of noncoding conserved sequence elements found within the microduplication. We also show an upregulation of the neighboring genes, NPR3 and PDZD2, in the patients' fibroblasts that suggests a gain-of-function through the duplication of cis-regulatory elements on dose sensitive genes. By expanding the repertoire of BDA1-causing mutations in IHH, GDF5, BMPR1B and at the BDA1B locus, we have begun to elucidate a common genetic pathway underlying phalangeal formation and elongation.
68

Controlling Neural Territory Patterning from Pluripotency Using a Systems Developmental Biology Approach

Sears, Katie Elizabeth 01 September 2021 (has links)
No description available.
69

The development and characterization of animal models of squamous cell carcinoma: the roles of parathyroid hormone-related protein, transforming growth factor-Β, and the osteoclast in disease progression

Tannehill-Gregg, Sarah 11 March 2005 (has links)
No description available.
70

Associação entre polimorfismos nos genes SLC2A1, SLC2A2, HNF1A, TGFB1 e DCP1A e nefropatia em portadores de diabetes mellitus tipo 1 / Association between polymorphisms in the genes SLC2A1, SLC2A2, HNF1A, TGFB1 e DCPA1 and nephropathy in type 1 diabetes patients

Rocha, Tatiana Marques Ferreira da 11 March 2013 (has links)
A nefropatia diabética (ND) decorre da hiperglicemia crônica, de fatores de risco como a hipertensão arterial e a dislipidemia e de uma susceptibilidade genética já evidenciada em inúmeros estudos clínicos. Uma das características histológicas da ND é o acúmulo de proteínas de matriz extracelular no mesângio, para o qual contribuem várias vias bioquímicas. O GLUT-1, codificado pelo gene SLC2A1, é o principal transportador de glucose da célula mesangial e sua expressão está aumentada no glomérulo de animais diabéticos, o que constitui uma alça de feedback positivo pela qual a glicose extracelular aumentada estimula ainda mais sua própria captação, piorando a lesão mesangial. O GLUT-2, codificado pelo gene SLC2A2, é expresso nas células tubulares e nos podócitos e sua expressão também está aumentada na ND. A expressão deste transportador de glicose é regulada pelo fator de transcrição HNF-1. Participa, ainda, da lesão renal induzida pela hiperglicemia o fator de crescimento transformante - (TGF-), que exerce vários efeitos deletérios, tais como diminuir a atividade de metaloproteinases de matriz e promover fibrose renal. Esse fator de crescimento determina a ativação transcricional de genes-alvo, mas necessita de outros ativadores e co-ativadores da transcrição, tais como a proteína SMIF, codificada pelo gene DCP1A. Tendo em vista a participação das proteínas mencionadas acima na patogênese da ND, o presente estudo teve o objetivo de avaliar a associação de polimorfismos de um único nucleotídeo (SNPs) nos genes SLC2A1, SLC2A2, HNF1A, TGFB1 e DCP1A com a doença renal em portadores de diabetes mellitus tipo 1 (DM1). Um total de 449 pacientes (56,4% do sexo feminino, idade média de 36,0±11,0 anos) com mais de 10 anos de doença foram incluídos e classificados de acordo com o estágio de ND: (1) Ausência de ND: excreção urinária de albumina (EUA) normal (< 30 mg/24h ou < 20 g/min) e creatinina plasmática < 1,7 mg/dL sem tratamento anti-hipertensivo; (2) ND incipiente: microalbuminúria (EUA de 30 299 mg/24h ou 20 199 g/min) e creatinina plasmática < 1,7 mg/dL sem tratamento anti-hipertensivo e (3) ND Franca: macroalbuminúria (EUA > 300 mg/24h ou > 200 g/min) ou proteinúria ou tratamento para reposição renal. Também foram avaliadas as associações dos SNPs com o ritmo de filtração glomerular estimado (RFGe). Os SNPs foram genotipados pela metodologia de reação em cadeia da polimerase em tempo real, com o uso de sondas fluorescentes. As associações dos SNPs com a ND foram avaliadas por análise de regressão logística e os odds ratios (OR) e respectivos intervalos de confiança (IC) de 95% foram calculados após ajuste para possíveis confundidores, que foram incluídos como co-variáveis no modelo de regressão. Valores de P < 0.05 (bicaudal) foram considerados estatisticamente significantes. As seguintes associações foram observadas: (1) gene SLC2A1: genótipos CT+TT do SNP rs841848 conferiram risco para a ND incipiente na população global (OR 1,88; CI95% 1,06-3,34; P= 0,03) e nos pacientes do sexo masculino (OR 2,67; CI95% 1,13-6,35; P=0,0247) e para a ND franca (OR 2,70; CI95% 1,18-6,31; e P= 0,0197) apenas nos pacientes do sexo masculino; genótipos GA+AA do SNP rs1385129 conferiram risco para a ND franca na população do sexo masculino (OR 3,09; CI95% 1,34-7,25; P=0,0085); genótipos AT + TT do SNP rs3820589, conferiram proteção contra a ND incipiente na população global (OR 0,36; CI95% 0,16-0,78; P=0,0132) e na população do sexo feminino (OR 0,14; CI95% 0,02-0,52; P=0,0122). (2) gene SLC2A2: genótipos GA+GG do SNP rs5396 conferiram proteção contra ND franca nos pacientes do sexo masculino (OR 0,29; CI95% 0,12-0,69; P=0,0052); os genótipos AG+GG do SNP rs6800180 conferiram proteção contra a ND franca nos pacientes do sexo masculino (OR 0,16; CI95% 0,14-0,90; P=0,0324). (3) gene HNF1A: genótipos AC + CC do SNP rs1169288 conferiram risco para ND franca na população global (OR 2,23; CI95% 1,16-4,38; P=0,0175); genótipos CG+GG do SNP rs1169289 conferiram risco para ND franca na população global (OR 3,43; CI95% 1,61-7,73; P=0,002); (4) Gene TGFB1: genótipos CT + TT do SNP 1800468 conferiram risco para ND incipiente na população total (OR 2,99; CI95% 1,26-7,02; P 0,0116) e o alelo polimórfico T do SNP rs1800469 conferiu risco para um menor RFGe (p=0,0271). (5) gene DCP1A: o alelo polimórfico A do SNP rs11925433 também se associou com um menor RFGe (p=0,0075). Em conclusão, SNPs em genes que codificam as proteínas envolvidas na patogênese da ND GLUT-1, GLUT-2, HNF-1, TGF- e SMIF conferem susceptibilidade para essa complicação crônica nos portadores de DM1 avaliados no presente estudo / Diabetic nephropathy (DN) results from chronic hyperglycemia, risk factors such as hypertension and dyslipidemia as well as from genetic susceptibility, already demonstrated in numerous clinical studies. A histological feature of DN is the accumulation of extracellular matrix proteins in the mesangium after activation of multiple biochemical pathways. GLUT-1, encoded by gene SLC2A1, is the major glucose transporter in mesangial cell and its expression is increased in the glomeruli of diabetic animals, comprising a positive feedback loop whereby high extracellular glucose stimulates its own uptake and worsening mesangial injury. GLUT-2, encoded by SLC2A2 gene, is expressed in podocytes and tubular cells and its expression is also increased in DN. The expression of this glucose transporter is regulated by the transcription factor HNF-1. Transforming growth factor - (TGF-) also participates in renal injury induced by hyperglycemia, exerting several deleterious effects, such as to decrease the activity of matrix metalloproteinases and to promote renal fibrosis. This growth factor determines the transcriptional activation of target genes, but needs other activators and co-activators, such as the protein named SMIF, encoded by the gene DCP1A. Given the involvement of the aforementioned proteins in the pathogenesis of DN, the present study aimed to evaluate the association of single nucleotide polymorphisms (SNPs) in the genes SLC2A1, SLC2A2, HNF1A, TGFB1 e DCP1A with renal disease in patients with type 1 diabetes mellitus (T1DM). A total of 449 patients (56.4% female, mean age 36.0±11.0 years) with disease duration > 10 years were included and grouped according to DN stages: (1) absence of DN: normal urinary albumin excretion (UAE) (< 30 mg/24h or < 20 g/min) and plasmatic creatinine < 1.7 mg/dL without antihypertensive treatment; (2) incipient DN: microalbuminuria (UAE 30 299 mg/24h or 20 199 g/min) and plasmatic creatinine < 1.7 mg/dL without antihypertensive treatment and (3) overt DN: macroalbuminúria (UAE > 300 mg/24h or > 200 g/min) or proteinuria or renal replacement therapy. Associations of SNPs with estimated glomerular filtration rate (eGFR) were also evaluated. All SNPs were genotyped by real time polymerase chain reaction using fluorescent-labelled probes. Associations of the SNPs with DN were assessed by logistic regression analyses and odds ratios (OR) were calculated after adjustments for possible confounders included as covariables in the regressive model. P values <0.05 (two-tails) were considered significant. The following associations were observed: (1) SLC2A1: genotypes CT+TT from rs841848 conferred risk to incipient DN in the overall population (OR 1.88; 95%IC 1.06-3.34; P= 0.03) and in the male patients (OR 2.67; CI95% 1.13-6.35; P=0.0247) and to overt DN (OR 2.70; CI95% 1.18-6.31; e P= 0.0197) only in the male patients; genotypes GA+AA from rs1385129 conferred risk to overt DN in the male population (OR 3.09; CI95% 1.34-7.25; P=0.0085); genotypes AT + TT from rs3820589 conferred protection against incipient DN in the overall population (OR 0.36; CI95% 0.16-0.78; P=0.0132) and in the female population (OR 0.14; CI95% 0.02-0.52; P=0.0122). (2) SLC2A2: genotypes GA+GG from rs5396 conferred protection against overt DN in the male patients (OR 0.29; CI95% 0.12-0.69; P=0.0052); genotypes AG+GG from rs6800180 conferred protection against overt DN in the male patients (OR 0.16; CI95% 0.14-0.90; P=0.0324). (3) HNF1A: genotypes AC + CC from rs1169288 conferred risk to overt DN in the overall population (OR 2.23; CI95% 1.16-4.38; P=0.0175); genotypes CG+GG from rs1169289 conferred risk to overt DN in the overall population (OR 3.43; CI95% 1.61-7.73; P=0.002); (4) TGFB1: genotypes CT + TT from 1800468 conferred risk to incipient DN in the overall population (OR 2.99; CI95% 1.26-7.02; P=0.0116) and the polymorphic allele T from SNP rs1800469 conferred risk to a lower eGFR (p=0.0271). (5) DCP1A: the polymorphic allele A from SNP rs11925433 was also associated with a lower eGFR (p=0.0075). In conclusion, SNPs in the genes encoding proteins GLUT-1, GLUT-2, HNF-1, TGF- e SMIF, all involved in the pathogenesis of DN, conferred susceptibility to this chronic complication in the T1DM patients evaluated in the present study

Page generated in 0.0512 seconds