121 |
Equações elipticas envolvendo o operador 1/2 -Laplaciano e crescimento exponencialNascimento, Rossane Gomes 30 July 2015 (has links)
Submitted by Maike Costa (maiksebas@gmail.com) on 2016-03-31T11:50:13Z
No. of bitstreams: 1
arquivototal.pdf: 862531 bytes, checksum: 12bbf225d527fa4e802f15f051e89d88 (MD5) / Made available in DSpace on 2016-03-31T11:50:13Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 862531 bytes, checksum: 12bbf225d527fa4e802f15f051e89d88 (MD5)
Previous issue date: 2015-07-30 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work, we study the existence and multiplicity of weak solutions to a class of
elliptic problems involving the 1=2-Laplacian operator and a nonlinearity that can has
subcritical or critical exponential growth in the Trudinger-Moser sense. For this, as
tools, we explore a suitable Trundiger-Moser type inequality for the fractional Sobolev
space H1=2(R) and the Mountain Pass Theorem. / Neste trabalho, estudamos a existência e multiplicidade de soluções fracas para
uma classe de problemas elípticos que envolve o operador 1=2-Laplaciano e uma na olinearidade
que pode ter crescimento exponencial subcrí tico ou crí tico no sentido de
Trudinger-Moser. Para isso, como ferramentas, exploramos uma adequada desigualdade
do tipo Trundiger-Moser para o espa ço de Sobolev fracion ário H1=2(R) e o Teorema
do Passo da Montanha.
|
122 |
Existence results for some elliptic equations involving the fractional Laplacian operator and critical growthAraújo, Yane Lísley Ramos 18 December 2015 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-14T16:13:37Z
No. of bitstreams: 1
arquivototal.pdf: 1041120 bytes, checksum: 3357ded46458082b719eebe4f03879a9 (MD5) / Made available in DSpace on 2017-08-14T16:13:37Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1041120 bytes, checksum: 3357ded46458082b719eebe4f03879a9 (MD5)
Previous issue date: 2015-12-18 / In this work we prove some results of existence and multiplicity of solutions for equations
of the type
( ) u + V (x)u = f(x; u) in RN;
where 0 < < 1, N 2 , ( ) denotes the fractional Laplacian, V : RN ! R is a
continuous function that satisfy suitable conditions and f : RN R ! R is a continuous
function that may have critical growth in the sense of the Trudinger-Moser inequality
or in the sense of the critical Sobolev exponent. In order to obtain our results we
use variational methods combined with a version of the Concentration-Compactness
Principle due to Lions. / Neste trabalho provamos alguns resultados de existência e multiplicidade de soluções
para equações do tipo
( ) u + V (x)u = f(x; u) em RN;
onde 0 < < 1, N 2 , ( ) denota o Laplaciano fracionário, V : RN ! R é uma
função contínua que satisfaz adequadas condições e f : RN R ! R é uma função cont
ínua que pode ter crescimento crítico no sentido da desigualdade de Trudinger-Moser
ou no sentido do expoente crítico de Sobolev. A m de obter nossos resultados usamos
métodos variacionais combinados com uma versão do Princípio de Concentração-
Compacidade devido à Lions.
|
123 |
Existência, multiplicidade e concentração de soluções positivas para uma classe de problemas quasilineares em espaços de Orlicz-SobolevSilva, Ailton Rodrigues da 29 February 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-15T12:49:10Z
No. of bitstreams: 1
arquivototal.pdf: 1323834 bytes, checksum: 530efbd6b56f11c5cc1b4369c8c44888 (MD5) / Made available in DSpace on 2017-08-15T12:49:10Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1323834 bytes, checksum: 530efbd6b56f11c5cc1b4369c8c44888 (MD5)
Previous issue date: 2016-02-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / In this work we establish existence, multiplicity and concentration of positive solutions
for the following class of problem
8<:
div 2 ( jruj)ru + V (x) (juj)u = f(u); in RN;
u 2 W1; (RN); u > 0 in RN;
where N 2, is a positive parameter, ; V; f are functions satisfying technical conditions
that will be presented throughout the thesis and (t) = Rjtj
0 (s)sds. The main tools used
are Variational methods, Lusternik-Schnirelman of category, Penalization methods and
properties of Orlicz-Sobolev spaces. / Neste trabalho estabelecemos resultados de existência, multiplicidade e concentração de
soluções positivas para a seguinte classe de problemas quasilineares
8<:
div 2 ( jruj)ru + V (x) (juj)u = f(u); em RN;
u 2 W1; (RN); u > 0 em RN;
onde N 2, é um parâmetro positivo, ; V; f são funções satisfazendo condições técnicas
que serão apresentadas ao longo da tese e (t) = Rjtj
0 (s)sds. As principais ferramentas
utilizadas são os Métodos Variacionais, Categoria de Lusternik-Schnirelman, Método de
Penalização e propriedades dos espaços de Orlicz-Sobolev.
|
124 |
Concentration-compactness principle and applications to nonlocal elliptic problemsSouza, Diego Ferraz de 13 December 2016 (has links)
Submitted by ANA KARLA PEREIRA RODRIGUES (anakarla_@hotmail.com) on 2017-08-23T16:14:54Z
No. of bitstreams: 1
arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5) / Made available in DSpace on 2017-08-23T16:14:54Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 1030469 bytes, checksum: fd75dc32951ccd2147ed562db94af22a (MD5)
Previous issue date: 2016-12-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The main goal of this work is to analyze concentration-compactness principles for
fractional Sobolev spaces based on the concentration compactness principle of P.-L.
Lions and in the pro le decomposition for weak convergence in Hilbert spaces due to
K. Tintarev and K.-H Fieseler. As application, we address questions on compactness
of the associated energy functional to the following nonlocal elliptic problems,
$'
''''''&'
''''''%
p qsu fpx; uq in RN;
p qsu apxqu fpx; uq in RN;
$&%
p qsu V pxqu Kpxq u fpx; uq gpx; uq in R3;
p q Kpxqu2 in R3;
where 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 and Kpxq ¥ 0 belongs to
a suitable Lebesgue space. We obtain existence results for a wide class of possible
singular potentials apxq; not necessarily bounded away from zero and for oscillatory
nonlinearities in both subcritical and critical growth range that may not satisfy the
Ambrosetti-Rabinowitz condition. / O objetivo principal deste trabalho é analisar princípios de concentração de
compacidade para espaços de Sobolev fracionários baseados na concentração de
compacidade de P.-L. Lions e no per l de decomposição para convergência fraca em
espaços de Hilbert devido a K. Tintarev e K.-H Fieseler. Como aplicação, abordamos
questões sobre a compacidade do funcional energia associado aos seguintes problems
elípticos não locais,
$'
''''''&'
''''''%
p qsu fpx; uq em RN;
p qsu apxqu fpx; uq em RN;
$&%
p qsu V pxqu Kpxq u fpx; uq gpx; uq em R3;
p q Kpxqu2 em R3;
onde 0 s 1; 0 1; 2 4s ¥ 3; ¡ 0 e Kpxq ¥ 0 pertence a um espaço
de Lebesgue adequado. Obtemos resultados de existência para uma vasta classe de
potenciais apxq possivelmente singulares, não necessariamente limitados por baixo por
uma constante positiva e para não linearidades oscilatórias em ambos os crescimentos
subcríticos e críticos que podem não satisfazer a condição de Ambrosetti-Rabinowitz.
|
125 |
Multiplicidade de Soluções para Problemas Elípticos Semilineares Envolvendo o Expoente Crítico de SobolevPrazeres, Disson Soares dos 04 August 2010 (has links)
Made available in DSpace on 2015-05-15T11:46:26Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 549935 bytes, checksum: f7562c326b5af177cb80a71a184aa0c9 (MD5)
Previous issue date: 2010-08-04 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this dissertation, we study the multiplicity of solutions for the following class of semilinear elliptic problems involving the critical Sobolev exponent, ---u = - juj2---2 u + f (x; u) ; x 2 e u = 0; x 2 @ ; where N - 3, - RN is a smooth and bounded domain, - is a positive real parameter
and 2- = 2N= (N - 2) is the critical Sobolev exponent. In obtaining our result, we use variational methods, such as, minimax theorems, Lusternik-Schnirelman theorems, as well
as, concentration-compactness lemma. / Nesta dissertação, estudamos a multiplicidade de soluções para a seguinte classe de
problemas elípticos semilineares envolvendo o expoente crítico de Sobolev, --u = - juj2---2 u + f (x; u) ; x 2
e u (x) = 0; x 2 @ ; onde N - 3, - RN é um dominio suave e limitado, - é um parâmetro real positivo e 2* = 2N= (N - 2) é o expoente crítico de Sobolev. Na prova dos resultados, usamos métodos variacionais, tais como, teoremas do tipo minimax, teoremas do tipo Lusternik-Schnirelman, bem como, lemas de concentração-compacidade.
|
126 |
Desigualdade de Adams em domínios ilimitados / Adams inequality in unbounded domainsRocha, Fábio Sodré 10 August 2018 (has links)
Submitted by Liliane Ferreira (ljuvencia30@gmail.com) on 2018-09-05T10:48:04Z
No. of bitstreams: 2
Dissertação - Fábio Sodré Rocha - 2018.pdf: 2598970 bytes, checksum: 6dcbeb213d900d41e0a2064ff8a20d22 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-09-05T11:22:03Z (GMT) No. of bitstreams: 2
Dissertação - Fábio Sodré Rocha - 2018.pdf: 2598970 bytes, checksum: 6dcbeb213d900d41e0a2064ff8a20d22 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-09-05T11:22:03Z (GMT). No. of bitstreams: 2
Dissertação - Fábio Sodré Rocha - 2018.pdf: 2598970 bytes, checksum: 6dcbeb213d900d41e0a2064ff8a20d22 (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-08-10 / Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPq / In this work our aim is to present an extension of the Trudinger-Moser inequality [20]
in unbounded domains of Rn for Sobolev Spaces involving high order derivatives. This
inequality is nowadays known as Adams-type inequality [1]. We study the techniques
developed in the works due to F. Sani and B. Ruf in [23] and due to N. Lam and G. Lu
in [16] which are, essentially, combinations of the Comparison Principle of Trombetti
and Vazquez for polyharmonic operators and a symmetrization argument, also known
as Schwarz Symmetrization. "With such techniques in hands", our aim is to reduce our
problem to the radial case and, as a consequence, find an upper bound for the supremum
over all functions belonging to the unit ball of Wn;mn (Rn) provided with some specific
norm, as well as the sharpness of the constant that appears in Adams inequalities. / Neste trabalho temos como objetivo apresentar uma extensão da desigualdade de AdamsTrudinger-Moser [1] em domínios ilimitados de Rn para espaços de Sobolev envolvendo
derivadas de ordem superior no caso crítico. Esta desigualdade é conhecida hoje como
desigualdade do tipo Adams [1]. Nosso estudo é baseado nas técnicas desenvolvidas
nos trabalhos devidos à F. Sani e B. Ruf em [23] e à N. Lam e G. Lu em [16], que
são, essencialmente, combinações do Princípio de Comparação de Vazquez-Trombetti
para operadores poliharmônicos e um argumento de simetrização, também conhecido
como Simetrização de Schwarz. Munidos de tais técnicas, nosso objetivo é reduzir nosso
problema ao caso radial, e como consequência, encontrar um limite superior para o
supremo sobre todas as funções pertecentes à bola unitária de Wn;mn (Rn) provido de
uma norma específica, bem como também mostrar a otimalidade da constante presente
na desigualdade do tipo Adams.
|
127 |
Sobre um problema de valor de fronteira para equações da ondaJesus Filho, Thiago de 21 March 2016 (has links)
In this work we study the existence and uniqueness of solutions of a boundary value
problem for equations of non-homogeneous wave. We will use the Faedo - Galerkin
method to ensure the existence of solutions and also prove the exponential decay of the
solution. / Neste trabalho estudaremos a existência e unicidade de soluções de um problema de valor de fronteira para equações da onda não homogênea. Usaremos o método de Faedo-Galerkin para garantir a existência de soluções e também provaremos o decaimento exponencial da solução do problema.
|
128 |
Teorema de Hodge e aplicaÃÃesCarlos Augusto David Ribeiro 16 July 2008 (has links)
Conselho Nacional de Desenvolvimento CientÃfico e TecnolÃgico / O presente trabalho aborda um teorema classico de decomposiÃÃo do espaÃo das p-formas suaves sobre uma variedade Riemaniana compacta e orientada, conhecido como teorema da decomposiÃÃo de Hodge, assim como
suas consequÃncias. No decorrer do mesmo, foi feita uma passagem por diversas ferramentas interessantes, como espaÃos Sobolev (capÃtulo 2) e EDP elÃptica (capÃtulo 3), assim como uma abordagem suscinta de formas diferenciÃveis. / This dissertation presents a classical theorem of decomposition of the space of smooths p-forms on compact oriented Riemannian manifold , known as the theorem of Hodge decomposition, and its consequences. During the
same was made a passage for several interesting tools, such as Sobolev spaces(Chapter 2) and elliptical PDE (Chapter 3), as well as a succinct approach
about diferenciable forms (Chapter 1).
|
129 |
On Hamiltonian elliptic systems with exponential growth in dimension two / Sistemas elípticos hamiltonianos com crescimento exponencial em dimensão doisYony Raúl Santaria Leuyacc 23 June 2017 (has links)
In this work we study the existence of nontrivial weak solutions for some Hamiltonian elliptic systems in dimension two, involving a potential function and nonlinearities which possess maximal growth with respect to a critical curve (hyperbola). We consider four different cases. First, we study Hamiltonian systems in bounded domains with potential function identically zero. The second case deals with systems of equations on the whole space, the potential function is bounded from below for some positive constant and satisfies some integrability conditions, while the nonlinearities involve weight functions containing a singulatity at the origin. In the third case, we consider systems with coercivity potential functions and nonlinearities with weight functions which may have singularity at the origin or decay at infinity. In the last case, we study Hamiltonian systems, where the potential can be unbounded or can vanish at infinity. To establish the existence of solutions, we use variational methods combined with Trudinger-Moser type inequalities for Lorentz-Sobolev spaces and a finite-dimensional approximation. / Neste trabalho estudamos a existência de soluções fracas não triviais para sistemas hamiltonianos do tipo elíptico, em dimensão dois, envolvendo uma função potencial e não linearidades tendo crescimento exponencial máximo com respeito a uma curva (hipérbole) crítica. Consideramos quatro casos diferentes. Primeiramente estudamos sistemas de equações em domínios limitados com potencial nulo. No segundo caso, consideramos sistemas de equações em domínio ilimitado, sendo a função potencial limitada inferiormente por alguma constante positiva e satisfazendo algumas de integrabilidade, enquanto as não linearidades contêm funções-peso tendo uma singularidade na origem. A classe seguinte envolve potenciais coercivos e não linearidades com funções peso que podem ter singularidade na origem ou decaimento no infinito. O quarto caso é dedicado ao estudo de sistemas em que o potencial pode ser ilimitado ou decair a zero no infinito. Para estabelecer a existência de soluções, utilizamos métodos variacionais combinados com desigualdades do tipo Trudinger-Moser em espaços de Lorentz-Sobolev e a técnica de aproximação em dimensão finita.
|
130 |
Espaces de fonctions sur les tores quantiques / Function spaces on quantum loriXiong, Xiao 02 July 2015 (has links)
Cette thèse donne une étude systématique des espaces de Sobolev, Besov et Triebel-Lizorkin sur le tore quantique. Ces espaces partagent beaucoup de propènes avec leurs analogues classiques. Nous prouvons le théorème de réduction pour tous ces espaces et une inégalité de Poincaré pour les espaces de Sobolev. Nous démontrons les inégalités de plongement pour eux, incluant le plongement d'espaces de Besov et d'espaces de Sobolev. Nous obtenons une caractérisation générale à la Littlewood-Paley pour les espaces de l3esov et Triebel-Lizorkin, qui implique des caractérisations concrètes par les semigroupes de Poisson et de chaleur ainsi par des différences. Certains d'entre elles sont nouvelles, même dans le cas commutatif; par exemple, celle d'espaces de Besov et Triebel-Lizorkin par le semigroupe de Poisson améliore le résultat classique. En conséquence de la caractérisation d'espaces de Besov par des différences, nous étendons les récents résultats de Bourgain-Brézis -Mironescu et Maz'ya-Shaposhnikova sur les limites de normes de Besov au cadre quantique. Nous étudions aussi l'interpolation de ces espaces, et en particulier, déterminons explicitement le K-fonctionnel du couple de l'espace Lp et l'espace de Sobolev, ce qui est l'analogue quantique du résultat classique de Johnen et Scherer. Enfin, nous montrons que les multiplicateurs de Fourier complètement bornés sur tous ces espaces coïncident avec ceux sur les espaces correspondants sur le tore usuel. Nous prouvons également que les multiplicateurs de Fourier sur les espaces de Besov sont complètement déterminés par ceux sur les sous-espaces Lp associés à leurs composantes dans la décomposition de Littlewood-Paley. / This thesis gives a systematic study of Sobolev, Besov and Triebel-Lizorkin spaces on a noncommutative d-torus. We prove, arnong other basic properties, the lifting theorem for all these spaces and a Poincaré type inequality for Sobolev spaces. We establish the embedding inequalities of all these spaces, including the l3esov and Sobolev embedding theorems. We obtain Littlewood-Paley type characterizations for Besov and 'friebel-Lizorki spaces in a general way, as well as the concrete ones internas of the Poisson, heat semigroups and differences. Some of them are new even in the commutative case, for instance, oui Poisson semigroup characterization of Besov and Triebel-Lizorkin spaces improves the classical ones. As a consequence of the characterization of the Besov spaces by differences, we extend to the quantum setting the recent results of Bourgain-Brézis -Mironescu and Maz'ya-Shaposhnikova on the limits of l3esov florins. We investigate the interpolation of all these spaces, in particular, deterrnine explicitly the K-functional of the couple of Lp space and Sobolev space, winch is the quantum analogue of a classical result due to Johnen and Scherer Finally, we show that the completely bounded Fourier multipliers on all these spaces coincide with those on the corresponding spaces on the usuel d-torus. We also give a quite simple description of (completely) bounded Fourier multipliers on the Besov spaces in ternis of their behavior on the Lp-components in the Littlevvood-Paley decomposition.
|
Page generated in 0.0472 seconds