• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 8
  • Tagged with
  • 46
  • 24
  • 18
  • 16
  • 13
  • 13
  • 12
  • 10
  • 8
  • 8
  • 7
  • 7
  • 6
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Forecasting and¨Optimization Models for Integrated PV-ESS Systems: : A Case Study at KTH Live-In Lab

Flor Lopes, Mariana January 2023 (has links)
With the ever-increasing adoption of renewable energy sources, the seamless integration of PV systems into existing grids becomes imperative. Therefore, this study investigates the integration of a PV-ESS system into sustainable urban living. It entails the development and evaluation of forecasting models for PV production and electricity consumption using artificial neural network models, as well as the analysis of linear optimization algorithms. These investigations give insight into the benefits, challenges, and implications of implementing a PV-ESS system. The photovoltaic generation forecasting model demonstrates high accuracy in winter months while encountering complexity in dynamic summer conditions. The model for estimating power demand poses challenges due to a variety of factors, including human behaviour and data quality.Moreover, the study focuses on the formulation and assessment of linear optimization models with two aims: minimizing costs and optimizing self-consumption. The first continually reduces electricity costs while increasing self-consumption, whereas the second maximizes self-consumption, with limitations in winter battery use. Finally, forecast precision appears as a crucial factor for optimization models. Forecast errors have an impact on the system’s operation. Improving forecasting accuracy and adaptive control strategies are therefore critical. / Med den ständigt ökande användningen av förnybara energikällor blir sömlös integration av solcellssystem i befintliga elnät nödvändig. Därför undersöker denna studie integrationen av ett solcellsenergilagringssystem (PV-ESS) i hållbart stadsboende. Det innefattar utveckling och utvärdering av prognosmodeller för solcellsproduktion och elförbrukning med hjälp av artificiella neurala nätverksmodeller, samt analys av linjär optimeringsalgoritmer. Dessa undersökningar ger insikt om fördelarna, utmaningarna och konsekvenserna av att implementera ett PV-ESS-system. Modellen för prognostisering av solcellsgeneration visar hög noggrannhet under vintermånaderna men stöter på komplexitet under dynamiska sommarförhållanden. Modellen för att uppskatta elförbrukning står inför utmaningar på grund av olika faktorer, inklusive mänskligt beteende och datakvalitet. Dessutom fokuserar studien på formulering och utvärdering av linjära optimeringsmodeller med två mål: att minimera kostnader och optimera självkonsumtion. Den första minskar kontinuerligt elkostnader samtidigt som den ökar självkonsumtionen, medan den andra maximerar självkonsumtionen med begränsningar i vinterbatterianvändning. Slutligen framstår precision i prognoser som en avgörande faktor för optimeringsmodeller. Prognosfel påverkar systemets drift. Därför är förbättring av prognosnoggrannhet och adaptiva kontrollstrategier avgörande.
42

Free cooling and PVT integration in a ground-source heat pump (GSHP) system

Pourier, Christopher January 2023 (has links)
The performance of ground-source heat pump (GSHP) systems can be negatively affected over time by soil temperature degradation of boreholes (BH) in heating dominated climates. Land area is scarce in the dense urban environments typical of multi-family houses (MFH) and can lead to accelerated degradation- in tight BH fields. Heat extracted from photovoltaic thermal collectors (PVT) can help with BH regeneration; thus, limiting degradation. Additionally, free cooling (FC) is proposed in this study to tackle the anticipated cooling demandi ncrease in Sweden, while resolving the listed challenges of GSHP systems. A novel multi-source (MS) system integrating FC, PVT and GSHP together shall be investigated in this study. Firstly, implementing FC in a GSHP system for the scenario considered only provided marginal regeneration of the BH in the longterm. Both the SPF4+ and total life cycle cost (TLCC) of an FC+GSHP and GSHPsystem remained virtually constant. Furthermore, operation interference of FC and PVT in the MS system can be mitigated by considering their relative location in the system. In this study, cooling is the priority, thus placing the FC system after the BH field but before the PVT system in the brine loop is recommended. In that case, only 0.56% of the annual cooling is not delivered due to FC operation interference and the PVT thermal yield is decreased on average by 3.52%. By decreasing the BH spacing from 15 to 5 m, a slight SPF4+ increase to 3.22 is possible in a system with FC and 48 PVT collectors. With a sensitivity analysis it was shown that if a 15% decrease is achieved in electricity prices then the TLCC of this system can be lower than the TLCC of 2.13 MSEK for a GSHP system. / Prestandan hos ytjordvärmepump (GSHP) kan påverkas negativt över tid av försämrad marktemperatur i borrhål (BH) i klimat som domineras av uppvärmning. I täta stadsmiljöer med flerfamiljshus (MFH) är markytan knapp, vilket kan leda till accelererad nedbrytning i trånga BH-fält. Värme som utvinns från solfångare (PVT) kan bidra till regenerering av BH, vilket begränsar nedbrytningen. Dessutom föreslås frikyla (FC) i denna studie för att hantera den förväntade ökningen av kylbehovet i Sverige, samtidigt som man löser de listade utmaningarna med GSHP-system. Ett nytt multikällsystem (MS) som integrerar FC, PVT och GSHP tillsammans ska undersökas i denna studie. För det första gav implementeringen av FC i ett GSHP-system för det aktuella scenariot endast marginell regenerering av BH på lång sikt. Både SPF4+ och den totala livscykelkostnaden (TLCC) för ett FC+GSHP och GSHP-system förblev praktiskt taget konstant. Dessutom kan driftstörningar från FC och PVT i MS-systemet minskas genom att ta hänsyn till deras relativa placering i systemet. I denna studie prioriteras kylning, och därför rekommenderas att FC-systemet placeras efter BH-fältet men före PVT-systemet i brineslingan. Endast 0.56% av den årliga kylningen levereras inte på grund av störningar i FC-driften och PVT:s värmeutbyte minskar i genomsnitt med 3.52%. Genom att minska BH-avståndet från 15 till 5 m är en liten ökning av SPF4+ till 3.22 möjlig i ett system med FC och 48 PVT-kollektorer. En känslighetsanalys visade att om elpriserna minskar med 15% kan TLCC för detta system bli lägre än TLCC på 2.13 MSEK för ett GSHP-system.
43

Zero CO2 factory : Energikartläggning av industrier och ett exempel på hur noll utsläpp nås / Zero CO2 factory : An energy audit of industries and an example on how to reach zero emissions

Wannemo, John January 2019 (has links)
Industrin står för 32% av den globala energianvändningen och majoriteten av industrins utsläpp sker vid förbränning av fossila bränslen för värmeanvändning. Hälften av industrins värmeanvändning uppskattas vara i temperaturer upp till 400 °C vilket är lämpligt för värme från solfångare.Klädesindustrin står för 10% av de globala växthusgasutsläppen och majoriteten av de utsläppen sker vid textilproduktion och flera av textilindustrins processer är i temperaturintervall som kan använda värme från solfångare likt Absolicons T160.Data från energianvändning hos textilfabriker har samlats in och beräkningar på energianvändning och utsläpp har gjorts för erhållna data. Solfångarnas energiberäkningar har gjorts med hjälp av simuleringar från Absolicon applikation Field Simulator. En 3-stegs plan gjordes för 2 stora textilfabriker i Indien som visar hur de skulle kunna eliminera sina utsläpp från energianvändning.Kartläggningen visar att textilindustrin till stor del använder fossila bränslen och de 5 största textilfabrikerna i denna rapport visar en energifördelning mellan värme och el på 85% respektive 15%. Utsläppen per producerad massa varor i kg för de 5 fabrikerna uppskattas vara i snitt 6,1 kgCO2e vilket motsvarar en förbränning av 2,1 kg brunkol.De två stora textilfabriker i Indien samlade utsläpp från energianvändning redovisas vara 686 ktCO2e. Värmeanvändningen i fabrikerna sänks i 3-stegsplanen med 17% och fossila bränslen ersätts med värme från solfångare och biomassa. För att täcka 68% av det nya värmebehovet med värme från solfångare så behövs det solfångarfält med en termisk effekt på cirka 400 MW och en yta på cirka 1,3 km2. De resterande 32% av värmebehovet ska komma från förbränning av cirka 100 000 ton biomassa per år.Industrin har möjlighet att sänka stora delar av sina utsläpp genom att ersätta fossila bränslen i värmeanvändningen med till exempel värme från solfångare och biomassa. För att täcka stora delar av värmeanvändningen med solfångarfält behövs lediga ytor runt om och på fabrikerna. Fossila bränslen har i dagsläget ett lågt pris i förhållande till dess utsläpp och tillämpning av globala utsläppsrätter eller skatter bör appliceras för att påskynda omställningen till utsläppsfri energi och lägre utsläpp. / The industry sector accounts for 32% of the global energy usage where the majority of the energy is being used as heat. Most of the heat is generated by burning fossil fuels which leads to heat use being the largest source of emissions in the sector. About half of energy used as in the industries are in temperatures up to 400 °C which is suitable for heat provided by solar collectors.The apparel industry accounts for 10% of the global carbon emissions and multiple of the industry processes used in textile production are in temperature ranges reachable with solar collectors such as Absolicons T160.Energy data was collected from textile factories and calculations of energy usage and emissions was made. The calculations for solar collectors was made with Absolicons web application Field Simulator. A 3-step plan was created to demonstrate how two textile factories in India could reach zero CO2 emissions.The analysis shows that the textile industry’s majority of energy is being used from fossil fuels to generate heat where the 5 largest factories in this report average energy is 85% as heat and 15% as electricity. The emissions per produced mass of goods in kg is an average of 6,1 kgCO2e at these 5 factories which is comparable to burning 2,1 kg of black coal.The two large textile factories combined emissions from energy usage is reported to be 686 ktCO2e. In the 3-step plan the heat usage is reduced by 17% and heat from fossil fuels are replaced by heat from solar collectors and biomass. To cover 68% of the new energy demand it would require solar fields with a total thermal capacity of about 400 MW and an area of 1,3 km2. The remaining 32% of heat demand would be covered by burning 100 000 tonne of biomass per year.The conclusion is that he industry sector has a huge potential of reducing their emissions by replacing fossil fuels for generating thermal energy by thermal energy from e.g. solar collectors or biomass. It will require available spaces close to or on top of the factories to be able cover large portions of the heat demand with solar collectors. The current prices of energy from fossil fuels is low compared to their emissions and a global carbon market or taxes should be applied to accelerate the change to clean energy and lower emissions.
44

Flerfamiljshus självförsörjande på solenergi : En jämförelse av olika kombinationer av PVT, solceller och solfångare i ett hybridsystem

Manjikian, Saro, Lundgren, Pauline January 2020 (has links)
The rise in population causes serious issues in larger cities since the electrical grid is becoming overloaded. Simultaneously, the demand on more sustainable energy production and the use of renewable energy sources increase. Renewable energy based off-grid electrical systems are a possible solution to decrease the magnitude of these issues. The purpose of this thesis is to compare solar cells, solar thermal collectors and PVT (Photovoltaic thermal hybrid solar collectors) and design the most suitable combination of solar panels for a selfsufficient multi-family house in Jönköping, Sweden. The solar panels were compared from a cost and energy production perspective, then a suitable renewable energy system with all three types of panels was constructed and optimized using Opti-CE, which is a MATLABbased software. During the course of this thesis, an interview was made with Hans-Olof Nilsson who is a co-founder of Nilsson Energy and owner of a self-sufficient off-grid house. The results show that PVT-panels have higher energy production per area and 22% higher LCC (life cycle cost) than regular solar cells in combination with solar thermal collectors. Optimization results indicate that the house cannot be self-sufficient by installing solar panels on the given roof area only, rather the area of installed solar collectors should be increased to a minimum of 1497𝑚2 . With the given roof area of 900𝑚2 the house can only be self-sufficient a maximum of 75% of the time. The results also indicate that the introduction of compact systems with the simultaneous decrease of cost will make renewable off-grid energy systems more attractive in the future.
45

Performance Evaluation of a Photovoltaic/Thermal (PVT) Collector with Numerical Modelling

Ebrahim, Mila January 2021 (has links)
In Photovoltaic/Thermal (PVT) technology, both PV and solar thermal technology are integrated in the same module for simultaneous electricity and heat production. Research has shown that there are multiple benefits from integrating PVT collectors with a ground source heat pump (GSHP) system, since it allows for seasonal storage of thermal energy over the year. Furthermore, it leads to reduced operating temperatures for the PVT collectors which can increase efficiency and lifetime. The aim of this study is to present the electric and thermal performance of a PVT collector developed by Solhybrid i Småland AB, for different environmental and fluid inlet conditions that can occur when PVT collectors are connected to a GSHP system. Furthermore, the performance of this PVT design is evaluated with ASHRAE (Standard 93-2003), to allow for comparison with other PVT collector designs, with values on the overall heat loss coefficient (UL) and heat removal factor (FR). The modelling tool used for the study is the software COMSOL Multiphysics, which uses the finite element method to solve the partial differential equations in heat transfer and fluid flow problems. Based on the performance curves, the thermal and electrical efficiency of the collector is approximately 48.0-53.4% and 19.0-19.2% respectively at a reduced temperature of zero and irradiance levels of 800-1000 W/m2 for the mass flow rate of 0.026 kg/sm2 which was determined as most suitable to increase thermal performance. Furthermore, these results resulted in a heat removal factor (FR) and overall heat loss coefficient (UL) of 0.56-0.62 and 53.4-53.5 W/m2 K respectively. The results on the performance of the PVT collector in different weather conditions shows that the inlet water temperature can significantly affect operating time and the amount of thermal energy that can be extracted during the year, especially if the collector operates in a colder climate like Sweden. To assess the accuracy of the created model, future work includes experimental testing of the studied PVT collector. / En panel med kombinerad teknik av både solceller och termisk solfångare (PVT) kan producera både elektricitet och värme samtidigt. Forskning har visat att det kan finnas flera fördelar med att integrera PVT-paneler med ett bergvärmesystem, eftersom det mjliggör lagring av termisk energi över året. Dessutom leder ett sådant system till lägre drifttemperaturer som kan öka PVT-panelens effektivitet och livslängd. Syftet med studien är att presentera den elektriska och termiska prestandan av en PVT-panel utvecklat av Solhybrid i Småland AB för olika driftförhållanden som kan uppstå på grund av olika väderförhållanden och inlopps-temperaturer när panelerna är kopplade till ett bergvärmesystem. Vidare utvärderas prestandan för denna panel med ASHRAEmetoden (standard 93-2003), för att möjliggöra jämförelse med andra PVT-paneler. Modelleringsverktyget som använts i studien är mjukvaran COMSOL Multiphysics, som använder finita elementmetoden för att lösa partiella differentialekvationer i värmeöverförings-och flödesproblem. Baserat på prestandakurvorna som presenteras i resultatet, är den termiska och elektriska verkningsgraden approximativt 48.0-53.4% respektive 19.0-19.2% för en reducerad temperatur med värdet noll, en solstrålning mellan 800-1000 W/m2, för en massflödeshastighet på 0.026 kg/sm2 som beslutades som den mest lämpliga för att öka den termiska prestandan. Resultaten resulterade i en värmeavledningsfaktor (FR) och total värmeförlustkoefficient (UL) på 0.56-0.62 respektive 53.4-53.5 W/m2 K. Resultaten på PVT-panelens prestanda under olika väderförhållanden visar att vattnets inloppstemperatur kan påverka drifttiden och mängden termisk energi som kan extraheras under året avsevärt, speciellt i nordiskt klimat. För att bedöma korrektheten i resultaten och den skapade modellen rekommenderas experimentell testning av den studerade PVT-panelen.
46

Opera i Stockholm, Galärvarvet

Andersson, Joakim January 2011 (has links)
Suggestion for a new operahouse in stockholm, förslag på nytt operahus i stockholm. Stockholmsoperan.

Page generated in 0.0562 seconds