1 |
On the optimal multiple stopping problemJi, Yuhee, 1980- 29 November 2010 (has links)
This report is mainly based on the paper "Optimal multiple stopping and valuation of swing options" by R. Carmona and N. Touzi (1). Here the authors model and solve optimal stopping problems with more than one exercise time. The existence of optimal stopping times is firstly proved and they then construct the value function of American put options with multiple exercises in the case of the Black-Scholes model, characterizing the exercise boundaries of the perpetual case. Finally, they extend the analysis to the swing contracts with infinitely many exercise rights. In this report, we concentrate on explaining their rigorous mathematical analysis in detail, especially for the valuation of the perpetual American put options with single exercise and two exercise rights, and the characteristics of the exercise boundaries of the multiple stopping case. These results are presented as theorems in Chapter 2 and Chapter 3. / text
|
2 |
Information and Default Risk in Financial ValuationLeniec, Marta January 2016 (has links)
This thesis consists of an introduction and five articles in the field of financial mathematics. The main topics of the papers comprise credit risk modelling, optimal stopping theory, and Dynkin games. An underlying theme in all of the articles is valuation of various financial instruments. Namely, Paper I deals with valuation of a game version of a perpetual American option where the parties disagree about the distributional properties of the underlying process, Papers II and III investigate pricing of default-sensitive contingent claims, Paper IV treats CVA (credit value adjustment) modelling for a portfolio consisting of American options, and Paper V studies a problem motivated by model calibration in pricing of corporate bonds. In each of the articles, we deal with an underlying stochastic process that is continuous in time and defined on some probability space. Namely, Papers I-IV treat stochastic processes with continuous paths, whereas Paper V assumes that the underlying process is a jump-diffusion with finite jump intensity. The information level in Paper I is the filtration generated by the stock value. In articles III and IV, we consider investors whose information flow is designed as a progressive enlargement with default time of the filtration generated by the stock price, whereas in Paper II the information flow is an initial enlargement. Paper V assumes that the default is a hitting time of the firm's value and thus the underlying filtration is the one generated by the process modelling this value. Moreover, in all of the papers the risk-free bonds are assumed for simplicity to have deterministic prices so that the focus is on the uncertainty coming from the stock price and default risk.
|
3 |
Problem of hedging of a portfolio with a unique rebalancing momentMironenko, Georgy January 2012 (has links)
The paper deals with the problem of finding an optimal one-time rebalancing strategy for the Bachelier model, and makes some remarks for the similar problem within Black-Scholes model. The problem is studied on finite time interval under mean-square criterion of optimality. The methods of the paper are based on the results for optimal stopping problem and standard mean-square criterion. The solution of the problem, considered in the paper, let us interpret how and - that is more important for us -when investor should rebalance the portfolio, if he wants to hedge it in the best way.
|
4 |
Ein linearer Programmierungsansatz zur Lösung von Stopp- und SteuerungsproblemenRöhl, Stefan 08 May 2001 (has links)
Es wird ein Ansatz und ein Algorithmus zur Lösung von stochastischen Stoppproblemen vorgestellt, der auf einer dualen Formulierung zum klassischen Lösungsansatz für Stoppprobleme mittels Variationsungleichungen basiert. Unter bestimmten Voraussetzungen kann man für diese duale Formulierung ein äquivalentes unendlichdimensionales lineares Programm aufstellen, das die Momente des Aufenthaltsmaßes des stochastischen Prozesses bis zum Stoppzeitpunkt und die Momente der Verteilung des Prozesses zum Zeitpunkt des Stoppens als Variablen enthält. Für dieses unendlichdimensionale Problem werden endlichdimensionale Approximationen formuliert und gelöst, wobei die Momente nur bis zu einer endlichen Ordnung berücksichtigt werden. Die Güte der numerischen Resultate hängt davon ab, wie genau der Träger des Maßes zum Stoppzeitpunkt identifiziert werden kann. Aus diesem Grund wird ein Verfeinerungsalgorithmus entwickelt, mit dem diese Identifizierung in einer Reihe von Fällen gelingt und sich sehr genaue Ergebnisse erzielen lassen. Der für Stoppprobleme entwickelte Algorithmus kann auch bei der Ermittlung von optimalen Steuerungen für stetige stochastische Prozesse angewandt werden. Für einzelne Beispiele wird gezeigt, welche Resultate dabei erzielt werden können. / We present an approach to, and an algorithm for solving optimal stopping problems. The approach is based on a dual formulation of the classical method for solving stopping problems using variational inequalities. Under suitable conditions it is possible to express the dual formulation as an infinite-dimensional linear program. This linear program uses the moments of the occupation measure and the moments of the stopping measure as variables. We formulate and solve finite-dimensional approximations to this infinite-dimensional program by restricting the number of moments. The accuracy of the numerical results depend on how well the support of the stopping measure can be identified. To this end we develop an iterative procedure which works very well in many cases. In the second part of the dissertation we show how the algorithm, developed for stopping problems, can be used for solving stochastic control problems.
|
5 |
Essays on Utility maximization and Optimal Stopping Problems in the Presence of Default RiskFeunou, Victor Nzengang 09 August 2018 (has links)
Gegenstand der vorliegenden Dissertation sind stochastische Kontrollprobleme, denen sich Agenten im Zusammenhang mit Entscheidungen auf Finanzmärkten gegenübersehen. Der erste Teil der Arbeit behandelt die Maximierung des erwarteten Nutzens des Endvermögens eines Finanzmarktinvestors. Für den Investor ist eine Beschreibung der optimalen Handelsstrategie, die zur numerischen Approximation geeignet ist sowie eine Stabilitätsanalyse der optimalen Handelsstrategie bzgl. kleinerer Fehlspezifikationen in Nutzenfunktion und Anfangsvermögen, von höchstem Interesse. In stetigen Marktmodellen beweisen wir Stabilitätsresultate für die optimale Handeslsstrategie in geeigneten Topologien.
Für hinreichend differenzierbare Nutzenfunktionen und zeitstetige Marktmodelle
erhalten wir eine Beschreibung der optimalen Handelsstrategie durch die Lösung eines
Systems von stochastischen Vorwärts-Rückwärts-Differentialgleichungen (FBSDEs).
Der zweite Teil der Arbeit beschäftigt sich mit optimalen Stopproblemen für einen Agenten,
dessen Ertragsprozess von einem Ausfallsereignis abhängt. Unser Hauptinteresse gilt der Beschreibung der Lösungen vor und nach dem Ausfallsereignis und damit dem besseren Verständnis des Verhaltens des Agenten bei Auftreten eines Ausfallsereignisses.
Wir zeigen wie sich das optimale Stopproblem in zwei einzelne Teilprobleme zerlegen lässt:
eines, für das der zugrunde liegende Informationsfluss das Ausfallereignis nicht beinhaltet,
und eines, in welchem der Informationsfluss das Ausfallereignis berücksichtigt.
Aufbauend auf der Zerlegung des Stopproblems und der Verbindung zwischen
der Optimalen Stoptheorie und der Theorie von reflektierenden stochastischen Rückwärts-Differentialgleichungen (RBSDEs), leiten wir einen entsprechenden Zerlegungsansatz her,
um RBSDEs mit genau einem Sprung zu lösen. Wir beweisen neue Existenz- und Eindeutigkeitsresultate von RBSDEs mit quadratischem Wachstum. / This thesis studies stochastic control problems faced by agents in financial markets when making decisions. The first part focuses on the maximization of expected utility from terminal wealth for an investor trading in a financial market. Of utmost concern to the investor is a description of optimal trading strategy that is amenable to numerical approximation, and
the stability analysis of the optimal trading strategy w.r.t. "small" misspecification in his utility function and initial capital. In the setting of a continuous market model, we prove stability results for the optimal wealth process in the Emery topology and the uniform topology on semimartingales, and stability results for the optimal trading strategy in suitable topologies.
For sufficiently differentiable utility functions, we obtain a description of the optimal trading strategy in terms of the solution of a system of forward-backward stochastic differential equations (FBSDEs). The second part of the thesis deals with the optimal stopping problem
for an agent with a reward process exposed to a default event. Our main concern is to give a description of the solutions before and after the default event and thereby better understand the behavior of the agent in the presence of default. We show how the stopping problem can be decomposed into two individual stopping problems: one with information flow for which the default event is not visible, and another one with information flow which captures the default event. We build on the decomposition of the optimal stopping problem, and the link between the theories of optimal stopping and reflected backward stochastic differential equations (RBSDEs) to derive a corresponding decomposition approach to solve RBSDEs with a single jump. This decomposition allows us to establish existence and uniqueness results for RBSDEs with drivers of quadratic growth.
|
6 |
Sequential stopping under different environments of weak informationDendievel, Rémi 10 November 2016 (has links) (PDF)
Notre thèse s’articule autour du thème de l’utilisation optimale de l’information contenue dans un modèle probabiliste flexible. Dans le premier chapitre, nous couvrons des résultats bien connus des martingales comme le théorème de convergence dit L1 des martingales et le théorème d’arrêt. Nous discutons de problèmes ouverts similaires au «last arrival problem» (Bruss et Yor, 2012) qui sont des vrais défis du point de vue théorique et nous ne pouvons que conjecturer la stratégie optimale.Dans les chapitres suivants, nous résolvons des extensions de problèmes d’arrêt optimal proposés par R. R. Weber (U. Cambridge), basés sur le «théorème des odds» (Bruss, 2000). En résumé, il s’agit d’effectuer une seule action (un seul arrêt) lorsque deux suites d’observations indépendantes sont observées simultanément. Nous donnons la solution à ces problèmes pour un nombre (fixé) choisi de processus.Le chapitre suivant passe en revue la plupart des développements récents (depuis 2000) réalisés autour du «théorème des odds» (Bruss, 2000). Le matériel présenté fut publié (2013), il a donc été mis à jour dans cette thèse pour inclure les derniers résultats depuis cette date.Puis nous réservons un chapitre pour une solution explicite pour un cas particulier du Problème d’arrêt optimal de Robbins. Ce chapitre est basé sur un article publié par l’auteur en collaboration avec le professeur Swan (Université de Liège). Ce chapitre offre une belle illustration des difficultés rencontrées lorsque trop d’information sur les variables est contenue dans le modèle. La solution optimale de ce problème dans le cas général n’est pas connue. Par contre, contre-intuitivement, dans le «last arrival problem» mentionné plus haut, moins d’information permet, comme nous le montrons, de trouver en effet la solution optimale.La thèse contient un dernier chapitre sur un problème de nature plus combinatoire que nous pouvons lier à la théorie des graphes dans une certaine mesure. Nous étudions le processus de création d’un graphe aléatoire particulier et les propriétés des cycles créés par celui-ci. Le problème est séquentiel et permet d’envisager des problèmes d’arrêt intéressants. Cette étude a des conséquences en théorie des graphes, en analyse combinatoire ainsi qu’en science de la chimie combinatoire pour les applications. Un de nos résultats est analogue au résultat de Janson (1987) relatif au premier cycle créé pendant la création de graphes aléatoires. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
|
7 |
Revision Moment for the Retail Decision-Making SystemJuszczuk, Agnieszka Beata, Tkacheva, Evgeniya January 2010 (has links)
In this work we address to the problems of the loan origination decision-making systems. In accordance with the basic principles of the loan origination process we considered the main rules of a clients parameters estimation, a change-point problem for the given data and a disorder moment detection problem for the real-time observations. In the first part of the work the main principles of the parameters estimation are given. Also the change-point problem is considered for the given sample in the discrete and continuous time with using the Maximum likelihood method. In the second part of the work the disorder moment detection problem for the real-time observations is considered as a disorder problem for a non-homogeneous Poisson process. The corresponding optimal stopping problem is reduced to the free-boundary problem with a complete analytical solution for the case when the intensity of defaults increases. Thereafter a scheme of the real time detection of a disorder moment is given.
|
8 |
Flexible public private partnerships : a real-option-based optimization approach / Partenariats publics privés flexibles : une approche d'optimisation par les options réellesBen Jazia, Abderrahim 22 September 2017 (has links)
Les Partenariats Publics Privés (PPPs) peuvent être un outil efficace pour optimiser et moderniser la commande publique dans un contexte où les besoins en investissement public ne cessent d’accroître. Les fréquences importantes de renégociation et les difficultés à estimer correctement les revenus futurs demeurent un défi majeur lors de la structuration financière des PPPs. Ce travail propose d’incorporer des clauses financières flexibles afin de remédier à ce problème. L’approche développée se base sur les théories d’options réelles et d’optimisation multi-objectif. Dans un premier temps, une méthodologie adéquate pour la gestion des risques est développée. La volatilité du projet est déterminée par le biais de la simulation de Monte Carlo et un déflateur stochastique est introduit afin de conduire les différentes valorisations d’options sous la probabilité historique. Ce travail développe dans un second temps, quatre formes de flexibilité qui permettent de réajuster l'équilibre financier du projet, si le revenu est insuffisant. Enfin une approche d’optimisation multi-objectif est développée afin de permettre de visualiser les différents compromis auxquels l’introduction de la flexibilité donne lieu. / Public private partnerships can be a solution to the dilemma of how to do more with less available funds that public entities are constantly financing in the last decades. If implemented properly, Public Private Partnerships can contribute to the modernization of public service provision and can constitute efficient vehicles for the delivery of optimal value for money. The high incidence of renegotiation as well as the difficulty of accurately predicting the future demand on the projects is a matter of concern when it comes to the financial structuring of Public Private Partnerships. This work proposes a real-option- based optimization framework to boost the financial viability of the projects. This is done by introducing flexible financial clauses. First, an adequate framework for risk management, where volatility is derived by Monte Carlo simulation and the valuation is made without switching to the risk neutral measure, is presented. Four families of flexible clauses are, afterwards, investigated. Such clauses are triggerred, if the revenue level of the projet is not sufficient to guarnatee its financiel viability. Finally, this work develops a multi-objective optimization approach in order to assess the different trade-offs that the introduction of flexibility leads to. The proposed optimization problem is solved via multi-objective evolutionary algorithms.
|
9 |
Contribution à l’étude des processus markoviens déterministes par morceaux : étude d’un cas-test de la sûreté de fonctionnement et problème d’arrêt optimal à horizon aléatoireGonzalez, Karen 03 December 2010 (has links)
Les Processus Markoviens Déterministes par Morceaux (PDMP) ont été introduits dans la littérature par M.H.A Davis comme une classe générale de modèles stochastiques. Les PDMP forment une famille de processus markoviens qui décrivent une trajectoire déterministe ponctuée par des sauts aléatoires. Dans une première partie, les PDMP sont utilisés pour calculer des probabilités d'événements redoutés pour un cas-test de la fiabilité dynamique (le réservoir chauffé) par deux méthodes numériques différentes : la première est basée sur la résolution du système différentieldécrivant l'évolution physique du réservoir et la seconde utilise le calcul de l'espérancede la fonctionnelle d'un PDMP par un système d'équations intégro-différentielles.Dans la seconde partie, nous proposons une méthode numérique pour approcher lafonction valeur du problème d'arrêt optimal pour un PDMP. Notre approche estbasée sur la quantification de la position après saut et le temps inter-sauts de lachaîne de Markov sous-jacente au PDMP, et la discréetisation en temps adaptée à latrajectoire du processus. Ceci nous permet d'obtenir une vitesse de convergence denotre schéma numérique et de calculer un temps d'arrêt ε-optimal. / Piecewise Deterministic Markov Processes (PDMP's) have been introduced inthe literature by M.H.A. Davis as a general class of stochastics models. PDMP's area family of Markov processes involving deterministic motion punctuated by randomjumps. In a first part, PDMP's are used to compute probabilities of top eventsfor a case-study of dynamic reliability (the heated tank system) with two di#erentmethods : the first one is based on the resolution of the differential system giving thephysical evolution of the tank and the second uses the computation of the functionalof a PDMP by a system of integro-differential equations. In the second part, wepropose a numerical method to approximate the value function for the optimalstopping problem of a PDMP. Our approach is based on quantization of the post-jump location and inter-arrival time of the Markov chain naturally embedded in thePDMP, and path-adapted time discretization grids. It allows us to derive boundsfor the convergence rate of the algorithm and to provide a computable ε-optimalstopping time.
|
Page generated in 0.067 seconds