• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 97
  • 11
  • 9
  • 9
  • 9
  • 9
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 177
  • 177
  • 116
  • 60
  • 57
  • 43
  • 26
  • 23
  • 23
  • 22
  • 21
  • 19
  • 19
  • 19
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Identification of AdvantagesConnected to Aggregation of SeveralBattery Energy Storage Systems

Darle, Maria, Lindqvist, Saga January 2021 (has links)
In this study, an examination regarding what benefits an aggregatedpopulation of Battery Energy Storage Systems (BESSs) could result incompared to when the individual units in the population are being usedseparately has been executed. The increased flexibility and reducedsafety margins as results of the aggregation was also examined. Thestudy was executed on behalf of the smart energy service companyCheckWatt AB and the study furthermore rests upon results of earlierperformed master theses on behalf of the company. By investigating previous work and studies through a literature study,the enabling of anumerical study was done. The numerical study wasbased on a simple model of a Virtual Power Plant (VPP) where severalBESSs are smartly controlled in order to be used for both local peakshaving and as common providers of the frequency reserve FrequencyContainment Reserve - Normal (FCR-N). The study involved the formation of a numerical model which simulated cases of both aggregated and non-aggregated populations of up to 45 load profile units, this in order for advantages and differences to be distinguished. The data used inthe simulations was received mainly from the CheckWatt AB andconsisted of photovoltaic (PV) electricity production and load data of 45 customers of the company. A sensibility analysis of the numericalstudy was also performed, which showed that the studied model andsystem were quite stable. The results of the simulations of the case of the study proved thatthere are some advantages connected to aggregation of several BESSs,and that the aggregation enabled an added value and a higher level offlexibility within the system. The safety margins connected todelivery of FCR-N could be reduced when aggregating several BESS,while a more extensive study is requested regarding safety marginsconnected to peak shaving. The study’s results further showed that anaggregator can be used as a sustainable and flexible solution forbalancing the electrical grid in the transition to a sustainableenergy system allowing a higher penetration of intermittentenergy sources.
72

Evaluation of the Current-Fed CLLC DC/DC Converters for Battery and Super-Capacitor Based Energy Storage Systems Used in Electrified Transportation

Bai, Yujie 03 December 2019 (has links)
No description available.
73

Investigation of Frequency Containment Reserves With Inertial Response and Batteries

Ghasemi, Hashem, Melki, Jakob January 2019 (has links)
The rise of Renewable Energy Sources (RES) such as wind and solar power, creates new challenges for electric power systems. One of these challenges occur in Frequency Containment Reserves (FCR) on power system because of decreasing system inertia from RES. The purpose of FCR is to regulate the system frequency after a disturbance that gives rise to a Rate of Change of Frequency (RoCoF) and an Instantaneous Frequency Deviation (IFD). Conventional electricity production such as hydro and nuclear power have a contribution for the amount of inertia in the system, while RES lack this contribution of inertia.This paper studies different cases of amount of inertia to understand the impact of lower amount of inertia caused by RES on power system. A power system was simulated and the IFD and SteadyState Frequency Deviation (SSFD) of the system were examined as the nuclear powers were substituted by wind powers. The results showed that a large amount of inertia implies a small IFD and vice versa.Furthermore, this paper also studies Battery Energy Storage System (BESS) as a power support for FCR when using RES. The conclusion for the impact of the battery was to use high injected power and triggering frequency level (TLF) and vice versa to get an acceptable IFD. In other words, this means that it is possible to keep the IFD within predefined limits by using batteries and identify the appropriate range of battery control settings.
74

EXPLORING THE POTENTIAL CONTRIBUTIONS OF USING OLD WIND FARMS AREAS TO LIMIT THE ELECTRICAL GENERATION DEFICIT IN SE4 SWEDEN - A REPOWERING INVESTIGATION

Drgham, Mohamad Mubarak January 2023 (has links)
In the southern part of Sweden, specifically in price zone SE4, there is an increasing cost of electricity and a contemporary supply deficit. This research aims to elaborate on the deficit in electrical generation to consumption in SE4. The found values indicate a 42% unmet demand, equaling 5.152 TWh annually. However, long-term solutions on a European and Swedish regional level require years to be implemented, and the complications of permitting and public acceptance of new renewable projects pose a delaying factor. Henceforth, repowering aging wind farms, which are nearing the end of their operational lifetime, presents a viable solution. In this research, a case study for SE4 old wind sites has been identified and assessed, using three repowering scenarios: Scenario I - wind, Scenario II - wind & solar, and Scenario III - wind, solar & storage system. The scenarios have been simulated using the available renewable resources in the case study area and retrofitted within the exact required surface area that the current case study system occupies of 42.71 km2. The results have shown that all scenarios have great potential to limit the 42% deficit of supply in SE4 when implemented. The share of annual generation found for each scenario was 0.939 TWh, 3.08 TWh, and 3.962 TWh, respectively. These annual generations will contribute to 7.7%, 25.32%, and 32.5% of the annual electrical consumption found for SE4. The first scenario of only wind energy is the most economical and has the highest capacity to productiveness of area ratio, at a 22.27 GWh/km2/year for 68 MW installed capacity.
75

Optimization analysis of secondlifebatteries integration in fastchargersfor electric vehicles inSpain

de Maio, Pasquale January 2017 (has links)
This project investigates the viability of using reconditioned batteries, which have lost part of their original capacity while powering electric vehicles (EVs), to minimize the expenses of fast-charging infrastructures under the three charging scenarios where fast-charging mode is likely to be needed the most. The analysis is conducted for the Spanish scenario and considers the retail electricity tariff that best suits the requirements of a FCS. The economic analysis is performed on an annual basis and is tackled with an optimization algorithm, formulated as a mixed-integer linear programming problem and run on MATLAB. The expected lifetime of the ESS, being made of reused automotive cells, is estimated with a semi-empirical approach, using an iterative process and implemented in MATLAB. A sensitivity analysis is conducted on three input parameters that were identified to have a considerable impact on the system design and performance.   Overall, results show that with current figures energy storage integration in FCSs is viable as it effectively reduces the infrastructure expenses in all scenarios. Peak-shaving is identified as the main source of cost savings while demand shifting is not effective at all. The latter is further discussed in the sensitivity analysis and some considerations are elaborated. The most profitable scenario for storage integration is the case of a fast-charger located in a urban environment while, surprisingly, the lowest cost savings are obtained in the highway case. The sensitivity analysis illustrates the impact and effects that electricity prices and specific cost of both the power converter and the second-life batteries produce on the optimal system design. Moreover, charging demand profiles are deeply analyzed and their main implications highlighted.
76

Predictive control of standalone DC microgrid with energy storage under load and environmental uncertainty

Batiyah, Salem Mohammed 01 May 2020 (has links)
Distributed generators (DGs) with integration of renewable resources (RRs) such as photovoltaic (PV) and wind turbine have been widely considered to reduce the dependency on conventional power generation systems along with enhancement of the quality and sustainability of the power system. Recently, DC microgrid has gained popularity in many real-world applications such as rural electrification due to its simplicity and low power losses. However, the power variability of renewable resources and continuous change in load demand imposes risks of power mismatch in standalone DC systems that increase the chances of stability and reliability issues. Therefore, complementary generation and/or storage systems are coupled with standalone DC microgrid to mitigate the power fluctuations and maintain a power balance in the system. This dissertation presents a power management strategy (PMS) based on model predictive control (MPC) for a standalone DC microgrid. A control scheme for a standalone DC microgrid system with RRs, storage, and load is desired to have the capability of effective power management that maximizes the extraction of energy from renewable generators, minimizes the transients in the system during disturbances, and protects the storage from over/under charging conditions. As a part of the proposed MPC, an optimization problem is formulated to meet the voltage performance in the system with respect to operating conditions and constraints. The proposed PMS uses the ARIMA prediction method to forecast the load and environmental parameters. The predicted parameters are utilized to estimate the future performance of the system by solving the dynamic model of the system, and a cost function is optimized to generate suitable control sequences. This research also presents detailed mathematical models of the considered systems. This dissertation presents an extensive simulation-based analysis of the proposed approach. With the proposed control, maximum utilization of the renewable generators has been achieved, and the DC bus voltage is regulated at nominal value with minimum transients under various load/environmental disturbances. Moreover, the research investigates the proposed MPC based on ARIMA prediction by comparing the performance of different types of prediction methods. The dissertation also measures the effectiveness of the proposed MPC by comparing its performance with a conventional PI controller.
77

Condition Based Reliability Evaluation and Maintenance Strategy for Battery Energy Storage System / Tillståndsbaserad Tillförlitlighets Evaluering och Underhållsstrategi för Batterienergilagringssystem

Hou, Novalie January 2022 (has links)
The electrical grid balances production capacity and demand in real-time. With an increased demand for renewable energy sources, challenges such as stability of the grid, the balance between generation and demand, and power quality occur. One way to deal with the variability is by introducing Battery Energy Storage System (BESS) to the electric grid. To ensure a stable connection, the BESS must be reliable, and much research has been carried out on the BESS reliability. However, the previous studies have mainly focused on the DC reliability of the system and little research has been conducted on the AC side of a BESS. This thesis aims to provide a reliability-based maintenance strategy for the AC-side of a BESS. First, the reliability index of each AC component is calculated with established models, and based on the results, the maintenance strategy is developed. It is shown that the load current and ambient temperature are the two main parameters that affect a BESS’s reliability. For longer periods of continuous operation, the reliability declines with time and the failure rate increases. The most suitable maintenance strategy is a combination of preventive and predictive. The frequency of the scheduled preventive maintenance differs between the AC components since the schedule is based on the results from individual reliability indices. The preventive maintenance uses the condition monitoring method to observe some key elements such as DC-bus neutral current and junction temperature. / Det elektriska distributionsnätet balanserar produktionskapacitet och efterfrågan i realtid. I samband med den ökade efterfrågan av förnyelsebara energikällor uppstår nya utmaningar, såsom nätstabilitet, balans mellan produktion och efterfrågan och kvaliteten. Ett sätt att hantera variationen är att introducera Batterienergilagringssystem (BESS) till distributionsnätet. För att säkerställa en stabil anslutning måste BESS vara tillförlitlig och mycket forskning har utförts kring BESS tillförlitlighet. Fokus från de tidigare studierna har dock främst varit på DC-sidan av systemet och nästintill ingen forskning har fokuserats på den AC-sidan och dess tillförlitlighet. Denna masteruppsats syftar till att tillhandahålla en tillförlitlighetsbaserad underhållsstrategi för AC-sidan av en BESS. Först beräknas tillförlitlighetsindexet för varje AC-komponent från etablerade modeller och den underhållsstrategin utvecklas senare baserats på resultaten från tillförlighetsindex. Det visar sig att strömmen och omgivningstemperaturen är de två huvudparametrarna som påverkar tillförlitligheten. Vid längre perioder av kontinuerlig drift minskar tillförlitligheten med tiden och felfrekvensen ökar. Den mest lämpliga underhållsstrategin är en kombination av förebyggande och förutsägande. Frekvensen av det schemalagda förebyggande underhållet skiljer sig mellan AC-komponenterna eftersom schemat är baserat på resultaten från individuella tillförlitlighetsindex. Det förebyggande underhållet använder tillståndsövervakningsmetoden för att observera några nyckelelement såsom likström och kopplingstemperatur.
78

Virtual Power Plant Optimization Utilizing the FCR-N Market : A revenue maximization modelling study based on building components and a Battery Energy Storage System. Based on values from Sweden's first virtual power plant, Väla.

Edwall, Bill January 2020 (has links)
Renewable energy resources are projected to claim a larger part of the Swedish power mix in coming years. This could potentially increase frequency fluctuations in the power grid due to the intermittency of renewable power generating resources. These fluctuations can in turn cause issues in the power grid if left unchecked. In order to resolve these issues, countermeasures are employed. One such countermeasure is for private actors to regulate power; in exchange they are financially compensated through reserve markets. The reserve market studied in this thesis is called Frequency Containment Reserve – Normal (FCR-N). Currently hydroelectric power provides almost all regulated power within this market. As the need for power regulation is expected to increase in the coming years, there exists a need to study other technologies capable of power regulation. This thesis focuses on one such technology called, virtual power plants. While virtual power plants are operating in other parts of the world, there were no virtual power plants operating in Sweden. As a result, the nature of an optimized virtual power plant and the economic benefits of optimization had not been previously investigated. To answer such questions, this thesis modelled and optimized the revenue of a virtual power plant. The examined virtual power plant consisted of cooling chillers, lighting, ventilation fans and a battery energy storage system. Where varying their total power demand allowed for them to provide power regulation. With the virtual power plant market in Sweden being in its infancy, this thesis serves as a first look into how an optimized virtual power plant using these components could function. To put the economic results of the optimization into context, a comparative model was constructed. The comparative model was based on a semi-static linear model. This is what the thesis’s industry partner Siemens currently uses. For the simulated scenarios, the optimized model generated at least 85% higher net revenues than the semi-static linear model. The increase in revenue holds potential to increase the uptake of virtual power plants on the Swedish market, thus increasing stability in the power grid and easing the transition to renewable energy. / Då förnyelsebara energiresurser antas omfatta en större roll av den svenska elproduktionen inom kommande år, så kan detta leda till att frekvensfluktueringar i elnätet ökar. Detta sker på grund av att den oregelbundna elproduktionen från förnyelsebara energiresurser inte matchas med konsumtion. Om dessa fluktueringar inte hanteras kan det i sin tur leda till skadliga störningar inom elnätet. För att motverka detta och således stabilisera elnätet används diverse lösningar. Ett sätt att åstadkomma ökad stabilisering i elnätet är att låta privata aktörer kraftreglera. De privata aktörerna som står för kraftregleringen gör detta i utbyte mot ekonomisk kompensation, genom att delta i reservmarknader. Den reservmarknad som studerades inom detta examensarbete kallas Frequency Containment Reserve – Normal (FCR-N). I nuläget står vattenkraft för nästan all reglerad kraft inom den här marknaden. Men då behovet av kraftreglering antas öka inom kommande år så behövs nya teknologier studeras som kan bistå med kraftregleringen. Den studerade teknologin inom detta examensarbete var ett virtuellt kraftverk. Då inga virtuella kraftverk var i bruk i Sverige då denna uppsats skrevs fanns det osäkerheter kring hur man optimalt styr ett virtuellt kraftverk och de ekonomiska fördelarna som detta skulle kunna leda till. Detta examensarbete modellerade och optimerade ett virtuellt kraftverk ur ett vinstperspektiv. Det virtuella kraftverket var uppbyggt utav kylmaskiner, ljus, ventilationsfläktar och ett batterisystem. Deras kraftkonsumtion styrdes på ett sådant sätt som lätt de bidra till kraftreglering på reservmarknaden. För att kunna analysera de ekonomiska resultaten från det optimerade virtuella kraftverket, så byggdes en jämförelsemodell. Denna jämförelsemodell är baserad på en semistatisk linjär modell, vilket är det som examensarbetets industripartner Siemens använder. Den ekonomiska jämförelsens resultat påvisade att inkomsten från den optimerade modellen var minst 85% högre än den semistatiskt linjära modellen, inom de studerade scenarierna. Denna inkomstökning skulle potentiellt kunna öka användningen av virtuella kraftverk på den svenska reservmarknaden vilket i sin tur skulle medföra högre stabilitet på elnätet. Genom att öka stabiliteten på elnätet kan således förnyelsebara energiresurser i sin tur lättare implementeras.
79

Design and Control of an Isolated Battery-Driven Grid Interface with Three-Phase Dual-Active-Bridge Converter

Deqiang, Wang 22 June 2018 (has links)
Battery energy storage system (BESS) is promising to be implemented in residential applications for supporting PV integration, load shifting, and backup power purposes. For this application, 48V second-life battery draws more and more attentions for their cost-effectiveness, safe voltage level, reliability, and potential large market. This thesis proposes the comprehensive control and design of an isolated battery-driven grid interface (IBDGI) with the dual-active-bridge (DAB) converter for residential applications with 48V battery pack. The three-phase DAB converter is a promising candidate as the front-end DC/DC converter in the two-stage IBDGI due to its high efficiency, high power density, and low capacitance requirement. An effective design strategy for the three-phase DAB converter is proposed based on the zero-voltage-switching (ZVS) zone and back-ow power to achieve high efficiency for a wide operating voltage range and different load conditions. Based on the power loss model, an easily-implemented variable switching frequency operating method is proposed to further increase the efficiency at light load conditions. The dead-time effect is observed in the three-phase DAB converter. To avoid the dead-time effect and better understand the phenomena, a comprehensive analysis is proposed. All the cases of the dead-time effect in the three-phase DAB converter are analyzed in terms of the buck, boost, and matching states. The expressions of the transmission power, constraint conditions, and key time of the dead-time effect are derived for each state. The operation waveforms of the dead-time effect are also presented. The hybrid capacitor bank composed by the LC resonant lter with electrolytic capacitor and lm capacitor is utilized for the DC bus of the IBGDI. The electrolytic capacitors work as passive decoupling purpose while the lm capacitor is responsible for high switching harmonic ltering. Moreover, a current sharing method between the hybrid capacitor bank is proposed to extend the electrolytic capacitor's life. The LCL single-phase inverter is applied for the downstream of the IBDGI. A step-by-step design procedure of the LCL lter with passive damping is proposed for the 120V/240V dual grid-tied and standalone modes. The PR controllers are also designed for the LCL inverter for standalone and grid-tied modes. At the system level, a novel second harmonic current (SHC) reduction strategy is proposed for the IBDGI with the three-phase DAB converter by adding a load current feedforward (LCFF) path to the DAB voltage closed-loop controller. This method will suppress the SHC without modi cations of the original controller's bandwidth, which make it easy to be implemented. The small-signal model of the three-phase DAB converter is provided and veri ed by the step response. The parameter sensitivity analysis for the LCFF method is proposed to show that the SHC is well suppressed within ±20% parameter error. The proposed converter and control methods are veri ed by simulation and experimental results. / Thesis / Doctor of Philosophy (PhD)
80

Planning and Operation of Hybrid AC-DC Microgird with High Penetration of Renewable Energy Sources

Baseer, Muhammad January 2022 (has links)
A hybrid ac/dc microgrid is a more complex but practical network that combines the advantages of an AC and a DC system. The main advantage of this network is that it connects both alternating current and direct current networks via an interlinking converter (IC) to form a unified distribution grid. The hybrid microgrid (HMG) will enable the direct integration of both alternating current (AC) and direct current (DC) distributed generators (DGs), energy storage systems (ESS), and alternating current and direct current (DC) loads into the grid. The alternating current and direct current sources, loads, and ESS are separated and connected to their respective subgrids primarily to reduce power conversion and thus increase overall system efficiency. As a result, the HMG architecture improves power quality and system reliability. Planning a hybrid microgrid entails estimating the capacities of DGs while taking technical, economic, and environmental factors into account. The hybrid ac-dc microgrid is regarded as the distribution network of the future, as it will benefit from both ac and dc microgrids. This thesis presents a general architecture of a hybrid ac-dc microgrid, which includes both planning and design. The goal of the Hybrid ac-dc microgrid planning problem is to maximise social welfare while minimising total planning costs such as investment, maintenance, and operation costs. This configuration will assist Hybrid microgrid planners in estimating planning costs while allowing them to consider any type of load ac/dc and DER type. Finally, this thesis identifies the research questions and proposes a future research plan.

Page generated in 0.0641 seconds