• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 442
  • 38
  • Tagged with
  • 480
  • 478
  • 477
  • 367
  • 367
  • 90
  • 78
  • 72
  • 38
  • 37
  • 36
  • 35
  • 35
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
431

Study of temperature raise in Gavleån river related to district cooling

Monleon Jimenez, Alex, Villas Roca, David January 2010 (has links)
<p>This project is a preliminary study in order to build a small power plant, located beside to Gavleån River. It has been designed with the aim of cooling a district of Gävle city, Sweden. That big project is carried out by the international consulting engineering company SWECO. The mentioned plant contains a thermodynamic cycle that takes water from the river and afterwards, it is returned back warmer. It will attempt to study the temperature raise downstream along the river due to the spill of hot water. In addition, it will try to quantify and weight which may be the importance of the increment of temperature compared to the entire river. This work could be vital for an environmental impact study. The thermo and fluid dynamic problem is going to be solved using typical procedure for numerical simulations. To do this, it will be used Computer Aided Design (CAD) to model Gavleån River path and Computational Fluent Dynamics (CFD) to predict the distribution of temperatures. Finally the results of the simulations will be analyzed and discussed to draw conclusions about the final temperature raise in Gavleån River.</p>
432

Experimental studies in jet flows and zero pressure-gradient turbulent boundary layers

Örlü, Ramis January 2009 (has links)
This thesis deals with the description and development of two classical turbulent shear flows, namely free jet and flat plate turbulent boundary layer flows. In both cases new experimental data has been obtained and in the latter case comparisons are also made with data obtained from data bases, both of experimental and numerical origin. The jet flow studies comprise three parts, made in three different experimental facilities, each dealing with a specific aspect of jet flows. The first part is devoted to the effect of swirl on the mixing characteristics of a passive scalar in the near-field region of a moderately swirling jet. Instantaneous streamwise and azimuthal velocity components as well as the temperature were simultaneously accessed by means of combined X-wire and cold-wire anemometry. The results indicate a modification of the turbulence structures to that effect that the swirling jet spreads, mixes and evolves faster compared to its non-swirling counterpart. The high correlation between streamwise velocity and temperature fluctuations as well as the streamwise passive scalar flux are even more enhanced due to the addition of swirl, which in turn shortens the distance and hence time needed to mix the jet with the ambient air. The second jet flow part was set out to test the hypothesis put forward by Talamelli &amp; Gavarini (Flow, Turbul. &amp; Combust. 76), who proposed that the wake behind a separation wall between two streams of a coaxial jet creates the condition for an absolute instability. The experiments confirm the hypothesis and show that the instability, by means of the induced vortex shedding, provides a continuous forcing mechanism for the control of the flow field. The potential of this passive mechanism as an easy, effective and practical way to control the near-field of interacting shear layers as well as its effect towards increased turbulence activity has been shown. The third part of the jet flow studies deals with the hypothesis that so called oblique transition may play a role in the breakdown to turbulence for an axisymmetric jet.For wall bounded flows oblique transition gives rise to steady streamwise streaks that break down to turbulence, as for instance documented by Elofsson &amp; Alfredsson (J. Fluid Mech. 358). The scenario of oblique transition has so far not been considered for jet flows and the aim was to study the effect of two oblique modes on the transition scenario as well as on the flow dynamics. For certain frequencies the turbulence intensity was surprisingly found to be reduced, however it was not possible to detect the presence of streamwise streaks. This aspect must be furher investigated in the future in order to understand the connection between the turbulence reduction and the azimuthal forcing. The boundary layer part of the thesis is also threefold, and uses both new data as well as data from various data bases to investigate the effect of certain limitations of hot-wire measurements near the wall on the mean velocity but also on the fluctuating streamwise velocity component. In the first part a new set of experimental data from a zero pressure-gradient turbulent boundary layer, supplemented by direct and independent skin friction measurements, are presented. The Reynolds number range of the data is between 2300 and 18700 when based on the free stream velocity and the momentum loss thickness. Data both for the mean and fluctuating streamwise velocity component are presented. The data are validated against the composite profile by Chauhan et al. (Fluid Dyn. Res. 41) and are found to fulfil recently established equilibrium criteria. The problem of accurately locating the wall position of a hot-wire probe and the errors this can result in is thoroughly discussed in part 2 of the boundary layer study. It is shown that the expanded law of the wall to forth and fifth order with calibration constants determined from recent high Reynolds number DNS can be used to fix the wall position to an accuracy of 0.1 and 0.25 l_ * (l_* is the viscous length scale) when accurately determined measurements reaching y+=5 and 10, respectively, are available. In the absence of data below the above given limits, commonly employed analytical functions and their log law constants, have been found to affect the the determination of wall position to a high degree. It has been shown, that near-wall measurements below y+=10 or preferable 5 are essential in order to ensure a correctly measured or deduced absolute wall position. A  number of peculiarities in concurrent wall-bounded turbulent flow studies, was found to be associated with a erroneously deduced wall position. The effect of poor spatial resolution using hot-wire anemometry on the measurements of the streamwise velocity is dealt with in the last part. The viscous scaled hot-wire length, L+, has been found to exert a strong impact on the probability density distribution (pdf) of the streamwise velocity, and hence its higher order moments, over the entire buffer region and also the lower region of the log region. For varying Reynolds numbers spatial resolution effects act against the trend imposed by the Reynolds number. A systematic reduction of the mean velocity with increasing L+ over the entire classical buffer region and beyond has been found. A reduction of around 0.3 uƬ, where uƬ is the friction velocity, has been deduced for L+=60 compared to L+=15. Neglecting this effect can lead to a seemingly Reynolds number dependent  buffer or log region. This should be taken into consideration, for instance, in the debate, regarding the prevailing influence of viscosity above the buffer region at high Reynolds numbers. We also conclude that the debate concerning the universality of the pdf within the overlap region has been artificially complicated due to the ignorance of spatial resolution effects beyond the classical buffer region on the velocity fluctuations. / QC 20100820
433

Analysis and control of transitional shear flows using global modes

Bagheri, Shervin January 2010 (has links)
In this thesis direct numerical simulations are used to investigate two phenomenain shear flows: laminar-turbulent transition over a flat plate and periodicvortex shedding induced by a jet in cross flow. The emphasis is on understanding and controlling the flow dynamics using tools from dynamical systems and control theory. In particular, the global behavior of complex flows is describedand low-dimensional models suitable for control design are developed; this isdone by decomposing the flow into global modes determined from spectral analysisof various linear operators associated with the Navier–Stokes equations.Two distinct self-sustained global oscillations, associated with the sheddingof vortices, are identified from direct numerical simulations of the jet incrossflow. The investigation is split into a linear stability analysis of the steadyflow and a nonlinear analysis of the unsteady flow. The eigenmodes of theNavier–Stokes equations, linearized about an unstable steady solution revealthe presence of elliptic, Kelvin-Helmholtz and von K´arm´an type instabilities.The unsteady nonlinear dynamics is decomposed into a sequence of Koopmanmodes, determined from the spectral analysis of the Koopman operator. Thesemodes represent spatial structures with periodic behavior in time. A shearlayermode and a wall mode are identified, corresponding to high-frequency andlow-frequency self-sustained oscillations in the jet in crossflow, respectively.The knowledge of global modes is also useful for transition control, wherethe objective is to reduce the growth of small-amplitude disturbances to delaythe transition to turbulence. Using a particular basis of global modes, knownas balanced modes, low-dimensional models that capture the behavior betweenactuator and sensor signals in a flat-plate boundary layer are constructed andused to design optimal feedback controllers. It is shown that by using controltheory in combination with sensing/actuation in small, localized, regionsnear the rigid wall, the energy of disturbances may be reduced by an order of magnitude.
434

Receptivity of Boundary-Layer Flows over Flat and Curved Walls

Schrader, Lars-Uve January 2010 (has links)
Direct numerical simulations of the receptivity and instability of boundary layers on flat and curved surfaces are herein reported. Various flow models are considered with the aim to capture aspects of flows over straight and swept wings such as wall curvature, pressure variations, leading-edge effects, streamline curvature and crossflow. The first model problem presented, the flow over a swept flat plate, features a crossflow inside the boundary layer. The layer is unstable to steady and traveling crossflow vortices which are nearly aligned with the free stream. Wall roughness and free-stream vortical modes efficiently excite these crossflow modes, and the associated receptivity mechanisms are linear in an environment of low-amplitude perturbations. Receptivity coefficients for roughness elements with various length scales and for free-stream vortical modes with different wavenumbers and frequencies are reported. Key to the receptivity to free-stream vorticity is the upstream excitation of streamwise streaks evolving into crossflow modes. This mechanism is also active in the presence of free-stream turbulence. The second flow model is that of a Görtler boundary layer. This flow type forms on surfaces with concave curvature, e.g. the lower side of a turbine blade. The dominant instability, driven by a vertically varying centrifugal force, appears as pairs of steady, streamwise counter-rotating vortical rolls and streamwise streaks. The Görtler boundary layer is in particular receptive to free-stream vortical modes with zero and low frequencies. The associated mechanism builds on the excitation of upstream disturbance streaks from which the Görtler modes emerge, similar to the mechanism in swept-plate flows. The receptivity to free-stream vorticity can both be linear and nonlinear. In the presence of free-stream turbulence, nonlinear receptivity is more likely to trigger steady Görtler vortices than linear receptivity unless the frequencies of the free-stream fluctuations are very low. The third set of simulations considers the boundary layer on a flat plate with an elliptic leading edge. This study aims to identify the effect of the leading edge on the boundary-layer receptivity to impinging free-stream vortical modes. Three types of modes with streamwise, vertical and spanwise vorticity are considered. The two former types trigger streamwise disturbance streaks while the latter type excites Tollmien-Schlichting wave packets in the shear layer. Simulations with two leading edges of different bluntness demonstrate that the leading-edge shape hardly influences the receptivity to streamwise vortices, whereas it significantly enhances the receptivity to vertical and spanwise vortices. It is shown that the receptivity mechanism to vertical free-stream vorticity involves vortex stretching and tilting - physical processes which are clearly enhanced by blunt leading edges. The last flow configuration studied models an infinite wing at 45 degrees sweep. This model is the least idealized with respect to applications in aerospace engineering. The set-up mimics the wind-tunnel experiments carried out by Saric and coworkers at the Arizona State University in the 1990s. The numerical method is verified by simulating the excitation of steady crossflow vortices through micron-sized roughness as realized in the experiments. Moreover, the receptivity to free-stream vortical disturbances is investigated and it is shown that the boundary layer is most receptive, if the free-stream modes are closely aligned with the most unstable crossflow mode / QC 20101025
435

Study of temperature raise in Gavleån river related to district cooling

Monleon Jimenez, Alex, Villas Roca, David January 2010 (has links)
This project is a preliminary study in order to build a small power plant, located beside to Gavleån River. It has been designed with the aim of cooling a district of Gävle city, Sweden. That big project is carried out by the international consulting engineering company SWECO. The mentioned plant contains a thermodynamic cycle that takes water from the river and afterwards, it is returned back warmer. It will attempt to study the temperature raise downstream along the river due to the spill of hot water. In addition, it will try to quantify and weight which may be the importance of the increment of temperature compared to the entire river. This work could be vital for an environmental impact study. The thermo and fluid dynamic problem is going to be solved using typical procedure for numerical simulations. To do this, it will be used Computer Aided Design (CAD) to model Gavleån River path and Computational Fluent Dynamics (CFD) to predict the distribution of temperatures. Finally the results of the simulations will be analyzed and discussed to draw conclusions about the final temperature raise in Gavleån River.
436

Taluppfattbarhet med strupmikrofon / Speech intelligibility with throat microphone

Wickman, Erik January 2018 (has links)
Contact microphones, especially throat microphones, have been developed to be used in environments with high background noises to improve the speech intelligibility in communication. They pick up vibrations from the surface they are attached to and are therefore less sensitive to sound and noise from the air. Comparison of the speech intelligibility with other types of microphones have previously been done by letting test persons examine the communication devices in question. This study examines the possibility to make use of the STI-method instead and therefore make a comparison faster, more cost-efficient and customizable. The thought is that if the relationship between speech signals and vibrations were known, it could be used to transform the STI test signal to vibrations and then use the STImethod to estimate the speech intelligibility for the chosen contact microphone. This study, containing 22 men and women, evaluated the vibrations at the most suitable locations on the head for contact microphones and compared it with the speech signal of the same test person. Frequency responses were calculated for all locations of the head and a more detailed study showed that the frequency response of the neck may be approximated as a second order lowpass filter with a cut-off frequency of about 300 Hz that attenuates speech signals with higher frequencies. Experiments were also done to measure the STI value of a throat microphone with the known relationship. However, the results pointed out several problems that needs to be addressed before a STI method can be performed successfully. The results from this study may also be used to deeper study the relationships between different vibrations resulting from speech signals and suggestions on how the performance of contact microphones may be improved are given.
437

Low Frequency Impact Sound in Timber Buildings : Simulations and Measurements

Olsson, Jörgen January 2016 (has links)
An increased share of construction with timber is one possible way of achieving more sustainable and energy-efficient life cycles of buildings. The main reason is that wood is a renewable material and buildings require a large amount of resources. Timber buildings taller than two storeys were prohibited in Europe until the 1990s due to fire regulations. In 1994, this prohibition was removed in Sweden.     Some of the early multi-storey timber buildings were associated with more complaints due to impact sound than concrete buildings with the same measured impact sound class rating. Research in later years has shown that the frequency range used for rating has not been sufficiently low in order to include all the sound characteristics that are important for subjective perception of impact sound in light weight timber buildings. The AkuLite project showed that the frequency range has to be extended down to 20 Hz in order to give a good quality of the rating. This low frequency range of interest requires a need for knowledge of the sound field distribution, how to best measure the sound, how to predict the sound transmission levels and how to correlate numerical predictions with measurements.     Here, the goal is to improve the knowledge and methodology concerning measurements and predictions of low frequency impact sound in light weight timber buildings. Impact sound fields are determined by grid measurements in rooms within timber buildings with different designs of their joist floors. The measurements are used to increase the understanding of impact sound and to benchmark different field measurement methods. By estimating transfer functions, from impact forces to vibrations and then sound pressures in receiving rooms, from vibrational test data, improved possibilities to correlate the experimental results to numerical simulations are achieved. A number of excitation devices are compared experimentally to evaluate different characteristics of the test data achieved. Further, comparisons between a timber based hybrid joist floor and a modern concrete floor are made using FE-models to evaluate how stiffness and surface mass parameters affect the impact sound transfer and the radiation.     The measurements of sound fields show that light weight timber floors in small rooms tend to have their highest sound levels in the low frequency region, where the modes are well separated, and that the highest levels even can occur below the frequency of the first room mode of the air. In rooms with excitation from the floor above, the highest levels tend to occur at the floor levels and in the floor corners, if the excitation is made in the middle of the room above. Due to nonlinearities, the excitation levels may affect the transfer function in low frequencies which was shown in an experimental study. Surface mass and bending stiffness of floor systems are shown, by simulations, to be important for the amount of sound radiated.     By applying a transfer function methodology, measuring the excitation forces as well as the responses, improvements of correlation analyses between measurements and simulations can be achieved / ProWood / Silent Timber Build / Urban Tranquility / BioInnovation FBBB
438

Two-dimensional Study of Blade Profiles for a Savonius Wind Turbine

Sundberg, Johanna, Lundberg, Martina, Solhed, Julia, Manousidou, Aikaterini January 2020 (has links)
A Savonius wind turbine is a self-starting vertical axis rotor. It can be designed to be compact in size and also produces less noise which makes it suitable to integrate into urban spaces such as rooftops and sign-poles. These characteristics make it interesting from a sustainability point of view, especially when aiming to increase the decentralization of electricity production. This thesis aimed to investigate the aerodynamic performance of different two-bladed Savonius profiles by varying the blade arc angle and the overlap ratio. For evaluation, the dimensionless power coefficient and torque coefficient were investigated over different tip speed ratios. The study was conducted numerically with 2D simulations in Ansys Fluent. The partial differential equations describing the characteristics of the flow, including the flow turbulence effects, were solved with the Reynolds-average Navier Stokes in combination with the k-omega SST model. A validation was performed by comparing data from simulated and experimental tests of a semi-circular profile and a Benesh profile. The investigation of the blade arc angle and overlap ratio was performed on a Modified Bach profile. The profile with a blade arc angle of 130 degrees and an overlap ratio of 0.56 generated a maximal power coefficient of 0.267 at a tip speed ratio of 0.9. This blade configuration generated the best performance of all conducted simulations in this project. However, this project contained uncertainties since simulations can never be an exact description of reality. The project was also limited by the computational power available. Nevertheless, according to the conducted simulations, it was observed that a higher blade arc angle and a larger overlap ratio seem to generate higher efficiency. / En Savonius vindturbin är en självstartande vertikalaxlad rotor som kan utformas i en kompakt design samtidigt som den producerar mindre oljud än horisontalaxlade vindkraftverk. Dagens hållbarhetssträvan i kombination med Savonius turbinens karakteristiska egenskaper gör den till ett potentiellt starkt vertyg för vindenergi. Då den kan placeras på exempelvis hustak eller skyltstolpar, utan att störa närliggande omgivning, finns det många möjliga sätt att implementera och integrera den i samhällets infrastruktur. Målet med detta projekt var att undersöka den aerodynamiska prestationen för Savoniusturbiner med två blad genom att variera bladvinkeln och överlappningsförhållandet. För att jämföra de olika profilerna användes den dimensionslösa effektkoefficienten och momentkoefficienten. Dessa koefficienter beräknades i förhållande till löptalet. Studien utfördes numeriskt med 2D-simuleringar i Ansys Fluent. De partiella differentialekvationerna som beskriver flödets egenskaper, inkluderat turbulenseffekterna, löstes med Reynolds-average Navier Stokes i kombination med k-ω SST modellen. En validering utfördes genom att jämföra data med simulerade och experimentella värden av en Semi-circular profil och en Benesh profil. Studien av bladvinkel och överlappningsförhållandet utgick från en Modified Bach profil. Den mest effektiva profilen hade en bladvinkel av 130 grader och ett överlappsförhållande på 0,56. Den genererade en maximal effektkoefficient av 0,267 vid löptal 0,9. Projektet innehöll en del osäkerheter då simuleringar aldrig kan beskriva verkligheten till fullo. Den tillgängliga beräkningskapaciteten begränsade även projektet ytterligare. Trots vissa begränsningar, visar ändå utförda simuleringar att ökad bladvinkel och ökat överlappningsförhållande genererar högre effekt. / <p>This project was conducted within Stand up for wind and Stand up for energy.</p>
439

External Heat Transfer Coefficient Predictions on a Transonic Turbine Nozzle Guide Vane Using Computational Fluid Dynamics

Enico, Daniel January 2021 (has links)
The high turbine inlet temperature of modern gas turbines poses a challenge to the material used in the turbine blading of the primary stages. Mechanical failure mechanisms are more pronounced at these high temperatures, setting the lifetime of the blade. It is therefore crucial to obtain accurate local metal temperature predictions of the turbine blade. Accurately predicting the external heat transfer coefficient (HTC) distribution of the blade is therefore of uttermost importance. At present time, Siemens Energy uses the boundary layer code TEXSTAN for this purpose. The limitations coupled to such codes however make them less applicable for the complex flow physics involved in the hot gas path of turbine blading. The thesis therefore aims at introducing CFD for calculating the external HTC. This includes conducting an extensive literature study to find and validate a suitable methodology. The literature study was centered around RANS modeling, reviewing how the calculation of the HTC has evolved and the performance of some common turbulence and transition models. From the literature study, the SST k − ω model in conjunction with the γ − Reθ transition model, the v2 − f model and the Lag EB k − ε model were chosen for the investigation of a suitable methodology. The validation of the methodology was based on the extensively studied LS89 vane linear cascade of the von Karman Institute. In total 13 test cases of the cascade were chosen to represent a wide range of flow conditions. Both a periodic model and a model of the entire LS89 cascade were tested but there were great uncertainties whether or not the correct flow conditions were achieved with the model of the entire cascade. It was therefore abandoned and a periodic model was used instead. The decay of turbulence intensity is not known in the LS89 cascade. This made the case difficult to model since the turbulence boundary conditions then were incomplete. Two approaches were attempted to handle this deficiency, where one was ultimately found invalid. It was recognized that the Steelant-Dick postulation could be used in order to find a turbulent length scale which when specified at the inlet, lead to fairly good agreement with data of the HTC. The validation showed that the SST γ − Reθ model performs relatively well on the suction side and in transition onset predictions but worse on the pressure side for certain flow conditions. The v2 − f model performed better on the pressure side and on a small portion of the suction side. Literature emphasized the importance of obtaining proper turbulence characteristics around the vane for accurate HTC-predictions. It was found that the results of the validation step could be closely coupled to this statement and that further work is needed regarding this. Further research must also be done on the Steelant-Dick postulation to validate it as a reliable method in prescribing the inlet length scale.
440

Nonlinear Methods of Aerodynamic Data-driven Reduced Order Modeling

Forsberg, Arvid January 2022 (has links)
Being able to accurately approximate outputs of computationally expensive simulations for arbitrary input parameters, also called missing points estimation, is central in many different areas of research and development with applications ranging from uncertainty propagation to control system design to name a few. This project investigates the potential of kernel transformations and nonlinear autoencoders as methods of improving the accuracy of the proper orthogonal decomposition method combined with regression. The techniques are applied on aerodynamic pressure CFD data around airplane wings in both two- and three-dimensional settings. The novel methods show potential in select situations, but cannot at this stage be generally considered superior. Their performances are similar although the procedure of design and training of a nonlinear autoencoder is less straight forward and more time demanding than using kernel transformations. The results demonstrate the regression bottleneck of the proper orthogonal decomposition method, which partially is improved with the new methods. Future studies should focus on adapting the autoencoder training strategy to the architecture and data as well as improving the regression stage of all methods.

Page generated in 0.1291 seconds