• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 38
  • 19
  • 10
  • 10
  • 9
  • 9
  • 9
  • 9
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Spin-polarized transport in magnetic nanostructures

O'Gorman, Brian Curtin 19 January 2011 (has links)
Two of the principal phenomena observed and exploited in the field of spintronics are giant magnetoresistance (GMR) and spin transfer torque (STT). With GMR, the resistance of a magnetic multilayer is affected by the relative orientation of its magnetic layers due to (electron) spin dependent scattering. For the STT effect, a spin-polarized electric current is used to alter the magnetic state of a ferromagnet. Together, GMR and STT are at the foundation of numerous technologies, and they hold promise for many more applications. To achieve the high current densities (~10¹² A/m²) that are necessary to observe STT effects, point contacts – constricted electrical pathways (~1–100 nm in diameter) between conducting materials – are often used because of their small cross-sectional areas. In this sense, we have explored STT in bilayer magnetic nanopillars, where an electric current was used to induce precession of a ferromagnetic layer. This precessional state was detected as an increase in resistance of the device, akin to GMR. Temperature dependent measurements of the onset of precession shed light on the activation mechanism, but raised further questions about its detailed theory. Point contacts can also be used as local sources or detectors of electrons. In this context, we have observed transverse electron focusing (TEF) in a single crystal of bismuth. TEF is a k-selective technique for studying electron scattering from within materials. Using lithographically fabricated point contacts, we have studied the temperature dependence of the relaxation time for ballistic electrons from 4.2 to 100 K. These measurements indicated a transition between electron-electron dominated scattering at low temperatures and electron-phonon scattering as the Debye temperature was approached. We present preliminary work toward a TEF experiment to measure spin dependent scattering from a non-magnet/magnet interface. We also investigated spin wave propagation in thin, magnetic waveguide structures. At the boundary between the waveguide and continuous magnetic film, spin wave rays were found to radiate into the film, or to reflect and form standing waves in the waveguide. A circular defect in the waveguide was observed to cause diffraction of spin waves, generating an interference pattern of higher modes of oscillation. / text
22

Effets d'asymétrie structurale sur le mouvement induit par courant de parois de domaines magnétiques

Ishaque, Muhammad zahid 31 May 2013 (has links) (PDF)
L'objectif de cette thèse est d'étudier l'effet du champ magnétique Oersted sur le mouvement induit par courant de parois de domaines magnetiques dans des nanobandes de bicouches IrPy. Nous avons optimisé la croissance épitaxiale des couches minces IrPy avec faible rugosité de surface et d'interface, peu de défauts structurels et un faible champ coercitif. Cela peut réduire le piégeage de parois et donc augmenter sa mobilité. Nanobandes polycristallins PtPy préparées par pulvérisation ont également été étudiées pour comparer les résultats avec des échantillons épitaxiés. Une première preuve directe de l'effet du champ Oersted sur la configuration magnétique de nanobandes magnétiques a été donnée par V. Uhlir et al. utilisant des mesures XMCD-PEEM résolues en temps. Ils ont observé une grande inclinaison transversale de l'aimantation du Py et CoFeB dans les nanobandes en tricouchesCoCuPy et CoCuCoFeB. Nous avons observé le changement de chiralité des parois transverses sous champ Oersted avec des impulsions de courant en utilisant la microscopie à force magnétique. Un mouvement de parois stochastique a été observé en raison du piégeage, ce qui donne lieu à une large distribution de vitesses de paroi de domaine. Déplacement de paroi opposé au flux d'électrons et transformations de paroi ont également été observés en raison de Joule chauffage. Les grains de grande taille (comparable à la largeur de bande) dans nos couches minces épitaxiales bi-cristallins par rapport aux échantillons polycristallins (~10nm) peut être la source possible du fort piégeage. Néanmoins, des vitesses de parois maximales très élevées (jusqu'à 700 et 250m/s) pour des densités de courant relativement faible (1.7x1012 et 1x1012 A/m2) ont été observées dans échantillons épitaxiales et pulvérisées respectivement. Ces vitesses sont 2 à 5 fois plus élevées avec des densités de courant similaires ou plus faible que celles observées dans des nanobandes de Py seul, rapportés dans la littérature. Le champ Oersted est peut-être à l'origine de la plus grande efficacité du couple de transfert de spin dans ces bandes en bicouche. Des simulations micromagnétiques réalisées dans notre groupe confirment qu'un champ magnétique transverse appliqué en plus d'un champ longitudinal pour déplacemer la paroi peut stabiliser le cœur d'une paroi vortex au centre de la nanobande, supprimant ainsi l'expulsion de cœur au bord de la nanobande et donc empêchant la transformation de parois vortex. De même, il peut stabiliser les parois transverses, empêchant des transformations. Cela peut conduire à une décalage du seuil de Walker vers des courants plus élevés, résultant en une augmentation de la vitesse de paroi. Des mesures XMCD-PEEM résolue en temps seront réalisées dans un avenir proche pour confirmer l'effet du champ Oersted sur le mouvement de la paroi.
23

Spindynamik in Tunnelelementen mit senkrechter magnetischer Anisotropie / Spin dynamics in tunnel junctions with perpendicular magnetic anisotropy

Zbarsky, Vladyslav 22 January 2015 (has links)
No description available.
24

Estudo da densidade de corrente cr?tica para revers?o da magnetiza??o de nanoelementos ferromagn?ticos

Souza, Rafaela Medeiros de 16 March 2015 (has links)
Submitted by Automa??o e Estat?stica (sst@bczm.ufrn.br) on 2016-02-05T22:57:33Z No. of bitstreams: 1 RafaelaMedeirosDeSouza_DISSERT.pdf: 16368490 bytes, checksum: 32187a14cfce1f59c3e74840bc7d851a (MD5) / Approved for entry into archive by Arlan Eloi Leite Silva (eloihistoriador@yahoo.com.br) on 2016-02-16T21:42:19Z (GMT) No. of bitstreams: 1 RafaelaMedeirosDeSouza_DISSERT.pdf: 16368490 bytes, checksum: 32187a14cfce1f59c3e74840bc7d851a (MD5) / Made available in DSpace on 2016-02-16T21:42:19Z (GMT). No. of bitstreams: 1 RafaelaMedeirosDeSouza_DISSERT.pdf: 16368490 bytes, checksum: 32187a14cfce1f59c3e74840bc7d851a (MD5) Previous issue date: 2015-03-16 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico - CNPq / A descoberta de que uma corrente el?trica ? capaz de exercer um torque em um material ferromagn?tico, atrav?s da transfer?ncia de momento angular de spin, pode proporcionar o desenvolvimento de novos dispositivos tecnol?gicos que armazenam informa??o a partir da dire??o da magnetiza??o. A redu??o da densidade de corrente para revers?o da magnetiza??o ? primordial para potenciais aplica??es em c?lulas de mem?rias magn?ticas de acesso aleat?- rio n?o vol?teis (MRAM). Apresentamos uma investiga??o te?rica dos efeitos de forma e do campo de dipolar na densidade de corrente cr?tica para revers?o da magnetiza??o, via torque por transfer?ncia de spin (STT), em nanoelementos ferromagn?ticos. O sistema nanoestruturado consiste em uma camada de refer?ncia, na qual a corrente ser? polarizada em spin, e uma camada livre de revers?o da magnetiza??o. Observamos consider?veis varia??es na densidade de corrente cr?tica em fun??o da espessura da camada de revers?co ( ? t = 1.0 nm, 1.5 nm, 2.0 nm e 2.5 nm) e da geometria do nanoelemento (circular e el?ptico), do tipo de material que comp?e a camada livre do sistema (Ferro e Permalloy) e de acordo com a orienta??o da magnetiza??o e da polariza??o em spin com o eixo maior. Mostramos que a densidade de corrente cr?tica pode ser reduzida em cerca de 50% diminuindo a espessura da camada livre de Fe e em 75% ao modificar a magnetiza??o de satura??o de nanoelementos circulares com 2.5 nm de espessura. Observamos, ainda, uma redu??o de at? 90% na densidade de corrente de revers?o para nanoelementos ultrafinos magnetizados ao longo da dire??o do eixo menor, usando a polariza??o no plano paralela ? magnetiza??o. / The discovery that a spin-polarized current is capable of exerting a torque in a ferromagnetic material, through spin transfer, might provide the development of new technological devices that store information via the direction of magnetization. The reduction of current density to revert the magnetization is a primary issue to potential applications on non volatile random access memories (MRAM). We report a theorical study of the dipolar and shape effects on the critical current density for reversal of magnetization, via spin transfer torque (STT), on ferromagnetic nanoelements. The nanostructured system consists on a reference layer, in which the current will be spin-polarized, and a free layer of magnetization reversal. We observed considerable changes on the critical current density as a function of the element?s reversion layer thickness (t = 1.0 nm, 1.5 nm, 2.0 nm e 2.5 nm) and geometry (circular and elliptical), the material kind of the system free layer (Iron and Permalloy) and according to the orientation of the magnetization and the spin polarization with the major axis. We show that the critical current density may be reduced about 50% by reducing the Fe free layer thickness and around 75% when we change the saturation magnetization of circular nanoelements with 2.5 nm of thickness. We still observed a reduction as much as 90% on the current density of reversion for thin nanoelements magnetized along the minor axis direction, using in-plane spin polarization parallel to the magnetization.
25

Workload Driven Designs for Cost-Effective Non-Volatile Memory Hierarchies

Timothy A Pritchett (9179468) 28 July 2020 (has links)
Compared to traditional hard-disk drives (HDDs), non-volatile (NV) memory technologies offer significant performance advantages on one hand, but also incur significant cost and asymmetric write-performance on the other. A common strategy to manage such cost- and performance-differentials is to use hierarchies such that a small, but intensely accessed, working set is staged in the NV storage (selective caching). However, when this working set includes write-heavy data, the low write-lifetime of NV storage necessitates significant over-provisioning to maintain required lifespans (e.g., storage lifespan must match or exceed 3 year server lifespan). One may think that employing DRAM-based write-buffers can filter writes that trickle through to the NV storage and thus alleviate the write-pressure felt at the NV storage. Unfortunately, selective caches, when used with common recency-based or frequency-based replacement, have access patterns that require large write buffers (e.g., 100MB+ relative to a 12GB cache) to filter writes adequately. Further, these large DRAM write-buffers also require backup-power to ensure the durability of disk writes. More sophisticated replacement policies that combine recency and frequency can reduce the size of the DRAM buffer (while preserving write-filtering), but are so computationally-expensive that they can limit the I/O rate, especially for simple controllers (e.g., RAID controller). <br>My first contribution is the design and implementation of WriteGuard– a self-tuning sieving write-buffer algorithm that filters writes as well as the highly-effective (but computationally-expensive) algorithms while requiring lightweight computation comparable to a simple LRU-based write-buffer. While WriteGuard reduces the capacity needed for DRAM buffering (to approx. 64 MB), it does not eliminate the need for DRAM buffers (and corresponding power backup).<br>For my second thrust, I identify two specific application characteristics – (1) the vast majority of the write-buffer’s contents is composed of write-dominant blocks, and (2) the vast majority of blocks in the write-buffer are overwritten within a period of 28 hours. I show that these characteristics help enable a high-density, optimized STT-MRAM as a replacement for DRAM, which enables durable write-buffers (thus eliminating the cost of power backup for the write-buffer). My optimized STT-MRAM-based write buffer achieves higher density by (a) trading off superfluous durability by exploiting characteristic (2), and (b) deoptimizing the read-performance of STT-MRAM by leveraging characteristic (1). Together, the techniques increase the density of STT-MRAM by 20% with low or no impact on write-buffer performance.<br>
26

Designing Future Low-Power and Secure Processors with Non-Volatile Memory

Pan, Xiang 07 September 2017 (has links)
No description available.
27

Magnetodynamics in Spin Valves and Magnetic Tunnel Junctions with Perpendicular and Tilted Anisotropies

Le, Quang Tuan January 2016 (has links)
Spin-torque transfer (STT) effects have brought spintronics ever closer to practical electronic applications, such as MRAM and active broadband microwave spin-torque oscillator (STO), and have emerged as an increasingly attractive field of research in spin dynamics. Utilizing materials with perpendicular magnetic anisotropy (PMA) in such applications offers several great advantages such as low-current, low-field operation combined with high thermal stability. The exchange coupling that a PMA thin film exerts on an adjacent in-plane magnetic anisotropy (IMA) layer can tilt the IMA magnetization direction out of plane, thus creating a stack with an effective tilted magnetic anisotropy. The tilt angle can be engineered via both intrinsic material parameters, such as the PMA and the saturation magnetization, and extrinsic parameters, such as the layer thicknesses.       STOs can be fabricated in one of a number of forms—as a nanocontact opening on a mesa from a deposited pseudospin-valve (PSV) structure, or as a nanopillar etching from magnetic tunneling junction (MTJ)—composed of highly reproducible PMA or predetermined tilted magnetic anisotropy layers.       All-perpendicular CoFeB MTJ STOs showed high-frequency microwave generation with extremely high current tunability, all achieved at low applied biases. Spin-torque ferromagnetic resonance (ST-FMR) measurements and analysis revealed the bias dependence of spin-torque components, thus promise great potential for direct gate-voltage controlled STOs.       In all-perpendicular PSV STOs, magnetic droplets were observed underneath the nanocontact area at a low drive current and low applied field. Furthermore, preliminary results for microwave auto-oscillation and droplet solitons were obtained from tilted-polarizer PSV STOs. These are promising and would be worth investigating in further studies of STT driven spin dynamics. / Effekter av spinnvridmoment (STT) har fört spinntroniken allt närmare praktiska elektroniska tillämpningar, såsom MRAM och den spinntroniska mikrovågsoscillatorn (STO), och har blivit ett allt mer attraktivt forskningsområde inom spinndynamik. Användning av material med vinkelrät magnetisk anisotropi (PMA) i sådana tillämpningar erbjuder flera stora fördelar, såsom låg strömförbrukning och funktion vid låga fält i kombination med hög termisk stabilitet. Den utbyteskoppling (”exchange bias”) en PMA-tunnfilm utövar på ett intilliggande skikt med magnetisk anisotropi i planet (IMA) kan få IMA-magnetiseringsriktningen att vridas ut ur planet, vilket ger en materialstack med en effektivt sett lutande magnetisk anisotropi. Lutningsvinkeln kan manipuleras med både inre materialparametrar, såsom PMA och mättningsmagnetisering, och yttre parametrar, såsom skikttjocklekarna. STO:er kan tillverkas som flera olika typer - som en nanokontaktsöppning på en s.k. mesa av en deponerad pseudospinnventilstruktur (PSV) eller som en nanotråd etsad ur en magnetisk tunnlingsövergång (MTJ) –och bestå av mycket reproducerbar PMA eller av skikt med på förhand bestämt lutning av dess magnetiska anisotropi. MTJ-STO:er av CoFeB med helt vinkelrät anisotropi visar högfrekvent mikrovågsgenerering med extremt stort frekvensomfång hos strömstyrningen, detta vid låg biasering. Mätning och analys av spinnvridmoments-ferromagnetisk resonans (ST-FMR) avslöjade ett biasberoende hos spinnvridmomentskomponenter, vilket indikerar en stor potential för direkt gate-spänningsstyrda STO:er. I helt vinkelräta PSV-STO:er observerades magnetiska droppar under nanokontaktområdet vid låg drivström och lågt pålagt fält. Dessutom erhölls preliminära resultat av mikrovågssjälvsvängning och av s.k. ”droplet solitons” hos PSV-STO:er med lutande polarisator. Dessa är lovande och skulle vara värda att undersökas i ytterligare studier av STT-driven spinndynamik. / <p>QC 20160829</p>
28

Spin Transfer Torque-induziertes Schalten von Nanomagneten in lateraler Geometrie bei Raumtemperatur / Spin transfer torque induced switching of nano magnets in lateral spin valve geometry at roomtemperature

Buhl, Matthias 14 April 2014 (has links) (PDF)
Das Schalten und das Auslesen der magnetischen Ausrichtung einzelner winziger magnetischer Informationsspeicher müssen zu wirklich nanoskopischer Dimension entwickelt werden, um mit der Miniaturisierung von modernen, nanoelektronischen Bauteilen Schritt zu halten. Daher sind neue Konzepte, den magnetischen Zustand von Nanostrukturen elektronisch gezielt zu beeinflussen, derzeitig im Mittelpunkt wissenschaftlicher Untersuchungen. Diese Arbeit befasst sich mit dem zuverlässigen Einstellen der Magnetisierung eines rein horizontal kontaktierten, nanoskopischen Magneten, in zwei stabile Zustände. Ein spinpolarisierter Strom wird bei Raumtemperatur in eine Leiterbahn unterhalb des magnetischen Nanopillars injiziert. Spindiffusion durch den Kontakt zwischen der Leiterbahn (Cu) und dem Pillar (CoFe) ruft eine Spin-Akkumulation im Nanopillar hervor, der durch den Spin Transfer Torque-Effekt (STT) vermittelt wird. Bei diesem Prozess verursachen die akkumulierten Elektronenspins ein auftretendes Netto-Moment, das senkrecht auf die Magnetisierungsorientierung des Nanopillars wirkt und so das Schalten ermöglicht. In den STT-induzierten Schaltexperimenten wird der magnetische Zustand des Nanopillars durch eine bildgebendes Messverfahren mittels Rasterröntgentransmissionsmikroskopie (STXM) erfasst. So konnte gezeigt werden, dass sich die Magnetisierung des Pillars auch gegen das Oersted-Feld des Schaltstroms reversibel schalten lässt. / “Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nano electronic components. Therefore, new concepts for controlling the state of nano magnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar by means of Spin Transfer Torque (STT). In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM)” [1]. Therefore it could be demonstrated, to reversibly switch the nanopillar’s magnetic state even against the Oersted field which is induced by the switching current. Furthermore we could show, that magnetization switching is possible by a pure spin current that is diffusively transported beneath the nanopillar.
29

Spin Transfer Torque-induziertes Schalten von Nanomagneten in lateraler Geometrie bei Raumtemperatur

Buhl, Matthias 07 April 2014 (has links)
Das Schalten und das Auslesen der magnetischen Ausrichtung einzelner winziger magnetischer Informationsspeicher müssen zu wirklich nanoskopischer Dimension entwickelt werden, um mit der Miniaturisierung von modernen, nanoelektronischen Bauteilen Schritt zu halten. Daher sind neue Konzepte, den magnetischen Zustand von Nanostrukturen elektronisch gezielt zu beeinflussen, derzeitig im Mittelpunkt wissenschaftlicher Untersuchungen. Diese Arbeit befasst sich mit dem zuverlässigen Einstellen der Magnetisierung eines rein horizontal kontaktierten, nanoskopischen Magneten, in zwei stabile Zustände. Ein spinpolarisierter Strom wird bei Raumtemperatur in eine Leiterbahn unterhalb des magnetischen Nanopillars injiziert. Spindiffusion durch den Kontakt zwischen der Leiterbahn (Cu) und dem Pillar (CoFe) ruft eine Spin-Akkumulation im Nanopillar hervor, der durch den Spin Transfer Torque-Effekt (STT) vermittelt wird. Bei diesem Prozess verursachen die akkumulierten Elektronenspins ein auftretendes Netto-Moment, das senkrecht auf die Magnetisierungsorientierung des Nanopillars wirkt und so das Schalten ermöglicht. In den STT-induzierten Schaltexperimenten wird der magnetische Zustand des Nanopillars durch eine bildgebendes Messverfahren mittels Rasterröntgentransmissionsmikroskopie (STXM) erfasst. So konnte gezeigt werden, dass sich die Magnetisierung des Pillars auch gegen das Oersted-Feld des Schaltstroms reversibel schalten lässt.:Kurzfassung v Abstract vi Danksagung xi 1 Einleitung 1 2 Grundlagen zu Spintronic 5 2.1 Elektronenspins als Grundlage für den Ferromagnetismus . . . . . . 6 2.2 Magnetowiderstandseffekte . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Anisotroper Magnetowiderstandseffekt (AMR) . . . . . . . . 8 2.2.2 Riesenmagnetowidersandseffekt (GMR) . . . . . . . . . . . . 10 2.2.3 Tunnelmagnetowiderstandeffekt (TMR) . . . . . . . . . . . 13 2.3 Spin–Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Spinpolarisation . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Spin-Injektion und Spin-Akkumulation . . . . . . . . . . . . 17 2.3.3 Spinpolarisierter elektrischer Transport . . . . . . . . . . . . 20 2.4 Spin Transfer Torque (STT) . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Geometrien für Spintronic–Bauelemente . . . . . . . . . . . . . . . 30 3 Probenkonzept und Fabrikationsmethoden 35 3.1 Probenkonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 Anforderungen an die CIP–STT-Struktur . . . . . . . . . . . 37 3.1.2 Anforderungen an die ferromagnetischer Materialien . . . . . 38 3.2 Techniken der Probenfabrikation . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Elektronenstrahllithografie (EBL) . . . . . . . . . . . . . . . 41 3.2.2 Positiv- und Negtivlack Prozess . . . . . . . . . . . . . . . . 41 3.2.3 Physikalisches Ätzen . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Probenfabrikation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Experimentelle Methoden 49 4.1 Transmissionsröntgenmikroskopie . . . . . . . . . . . . . . . . . . . 49 4.1.1 Rastertransmissionsröntgenmikroskopie (STXM) . . . . . . . 51 4.1.2 Kontrastmechanismen . . . . . . . . . . . . . . . . . . . . . 53 4.1.3 Röntgenmagnetischer zirkularer Dichroismus (XMCD) . . . 54 4.2 Magneto-optische Kerr–Effekt Mikroskopie . . . . . . . . . . . . . . 57 4.2.1 Kerr–Mikroskop . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.2 Longitudinale Kerr–Geometrie . . . . . . . . . . . . . . . . . 58 5 STT–Experimente und Diskussion 61 5.1 Experimenteller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Eigenschaften der magnetischen Bauelemente . . . . . . . . . . . . . 64 5.2.1 MOKE-Mikroskopie . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.2 Mikromagnetische Simulation . . . . . . . . . . . . . . . . . 67 5.2.3 Analytische Berechnung zum Nanopillar . . . . . . . . . . . 70 5.2.4 Röntgentransmissionsmikroskopie . . . . . . . . . . . . . . . 72 5.3 Spin Transfer Torque-Schalten . . . . . . . . . . . . . . . . . . . . 74 5.3.1 STT-Schalten mit unterstützendem Magnetfeld . . . . . . . 74 5.3.2 STT-Schalten ohne unterstützendes Magnetfeld . . . . . . . 79 5.3.3 Betrachtung besonderer experimenteller Aspekte . . . . . . . 81 5.3.4 STT-Schalten ohne direkten Ladungstransport . . . . . . . . 89 5.3.5 Magnetisierungsumkehr durch Oersted-Feld . . . . . . . . . 93 6 Zusammenfassung und Ausblick 97 A STXM-Hysteresemessungen der Polarisatoren und Nanopillar 101 Literaturverzeichnis 105 / “Changing and detecting the orientation of nanomagnetic structures, which can be used for durable information storage, needs to be developed towards true nanoscale dimensions for keeping up the miniaturization speed of modern nano electronic components. Therefore, new concepts for controlling the state of nano magnets are currently in the focus of research in the field of nanoelectronics. Here, we demonstrate reproducible switching of a purely metallic nanopillar placed on a lead that conducts a spin-polarized current at room temperature. Spin diffusion across the metal-metal (Cu to CoFe) interface between the pillar and the lead causes spin accumulation in the pillar, which may then be used to set the magnetic orientation of the pillar by means of Spin Transfer Torque (STT). In our experiments, the detection of the magnetic state of the nanopillar is performed by direct imaging via scanning transmission x-ray microscopy (STXM)” [1]. Therefore it could be demonstrated, to reversibly switch the nanopillar’s magnetic state even against the Oersted field which is induced by the switching current. Furthermore we could show, that magnetization switching is possible by a pure spin current that is diffusively transported beneath the nanopillar.:Kurzfassung v Abstract vi Danksagung xi 1 Einleitung 1 2 Grundlagen zu Spintronic 5 2.1 Elektronenspins als Grundlage für den Ferromagnetismus . . . . . . 6 2.2 Magnetowiderstandseffekte . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.1 Anisotroper Magnetowiderstandseffekt (AMR) . . . . . . . . 8 2.2.2 Riesenmagnetowidersandseffekt (GMR) . . . . . . . . . . . . 10 2.2.3 Tunnelmagnetowiderstandeffekt (TMR) . . . . . . . . . . . 13 2.3 Spin–Transport . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 2.3.1 Spinpolarisation . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3.2 Spin-Injektion und Spin-Akkumulation . . . . . . . . . . . . 17 2.3.3 Spinpolarisierter elektrischer Transport . . . . . . . . . . . . 20 2.4 Spin Transfer Torque (STT) . . . . . . . . . . . . . . . . . . . . . . 25 2.5 Geometrien für Spintronic–Bauelemente . . . . . . . . . . . . . . . 30 3 Probenkonzept und Fabrikationsmethoden 35 3.1 Probenkonzept . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.1.1 Anforderungen an die CIP–STT-Struktur . . . . . . . . . . . 37 3.1.2 Anforderungen an die ferromagnetischer Materialien . . . . . 38 3.2 Techniken der Probenfabrikation . . . . . . . . . . . . . . . . . . . . 40 3.2.1 Elektronenstrahllithografie (EBL) . . . . . . . . . . . . . . . 41 3.2.2 Positiv- und Negtivlack Prozess . . . . . . . . . . . . . . . . 41 3.2.3 Physikalisches Ätzen . . . . . . . . . . . . . . . . . . . . . . 43 3.3 Probenfabrikation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4 Experimentelle Methoden 49 4.1 Transmissionsröntgenmikroskopie . . . . . . . . . . . . . . . . . . . 49 4.1.1 Rastertransmissionsröntgenmikroskopie (STXM) . . . . . . . 51 4.1.2 Kontrastmechanismen . . . . . . . . . . . . . . . . . . . . . 53 4.1.3 Röntgenmagnetischer zirkularer Dichroismus (XMCD) . . . 54 4.2 Magneto-optische Kerr–Effekt Mikroskopie . . . . . . . . . . . . . . 57 4.2.1 Kerr–Mikroskop . . . . . . . . . . . . . . . . . . . . . . . . . 58 4.2.2 Longitudinale Kerr–Geometrie . . . . . . . . . . . . . . . . . 58 5 STT–Experimente und Diskussion 61 5.1 Experimenteller Aufbau . . . . . . . . . . . . . . . . . . . . . . . . 62 5.2 Eigenschaften der magnetischen Bauelemente . . . . . . . . . . . . . 64 5.2.1 MOKE-Mikroskopie . . . . . . . . . . . . . . . . . . . . . . . 65 5.2.2 Mikromagnetische Simulation . . . . . . . . . . . . . . . . . 67 5.2.3 Analytische Berechnung zum Nanopillar . . . . . . . . . . . 70 5.2.4 Röntgentransmissionsmikroskopie . . . . . . . . . . . . . . . 72 5.3 Spin Transfer Torque-Schalten . . . . . . . . . . . . . . . . . . . . 74 5.3.1 STT-Schalten mit unterstützendem Magnetfeld . . . . . . . 74 5.3.2 STT-Schalten ohne unterstützendes Magnetfeld . . . . . . . 79 5.3.3 Betrachtung besonderer experimenteller Aspekte . . . . . . . 81 5.3.4 STT-Schalten ohne direkten Ladungstransport . . . . . . . . 89 5.3.5 Magnetisierungsumkehr durch Oersted-Feld . . . . . . . . . 93 6 Zusammenfassung und Ausblick 97 A STXM-Hysteresemessungen der Polarisatoren und Nanopillar 101 Literaturverzeichnis 105
30

Nanoscale resistive switching memory devices: a review

Slesazeck, Stefan, Mikolajick, Thomas 10 November 2022 (has links)
In this review the different concepts of nanoscale resistive switching memory devices are described and classified according to their I–V behaviour and the underlying physical switching mechanisms. By means of the most important representative devices, the current state of electrical performance characteristics is illuminated in-depth. Moreover, the ability of resistive switching devices to be integrated into state-of-the-art CMOS circuits under the additional consideration with a suitable selector device for memory array operation is assessed. From this analysis, and by factoring in the maturity of the different concepts, a ranking methodology for application of the nanoscale resistive switching memory devices in the memory landscape is derived. Finally, the suitability of the different device concepts for beyond pure memory applications, such as brain inspired and neuromorphic computational or logic in memory applications that strive to overcome the vanNeumann bottleneck, is discussed.

Page generated in 0.0541 seconds