Spelling suggestions: "subject:"stuck""
91 |
Ausweitung der Machbarkeitszone: Ästhetisch-technische Modernitätskonzepte von Film und Partitur in Arnold Fancks und Paul Hindemiths »In Sturm und Eis« (1921)Münzmay, Andreas 09 May 2019 (has links)
No description available.
|
92 |
Ionospheric response to the 25 - 26 August 2018 intense geomagnetic stormVaishnav, Rajesh Ishwardas, Jacobi, Christoph 08 March 2021 (has links)
The thermosphere-ionosphere regions are mainly controlled by the solar, but
also by geomagnetic activity. In this case study, the Earth’s ionospheric response to the
25-26 August 2018 intense geomagnetic storm is investigated using the International
GNSS System (IGS) Total Electron Content (TEC) observations. During this major storm,
the minimum disturbance storm time (Dst) index reached -174 nT. We use observations
and model simulations to analyse the ionospheric response during the initial phase and the
main phase of the magnetic storm. A significant difference between storm day and quiet
day TEC is observed. The O/N2 ratio observed from the GUVI instrument onboard the
TIMED satellite is used to analyse the storm effect. The result shows a clear depletion of
the O/N2 ratio in the high latitude region, and an enhancement in the low latitude region
during the main phase of the storm. Furthermore, the Coupled Thermosphere Ionosphere
Plasmasphere electrodynamics (CTIPe) model simulations were used. The results suggest
that the CTIPe model can capture the ionospheric variations during storms. / Die Regionen der Ionosphären und Thermosphäre werden hauptsächlich
von der Sonne sowie auch von geomagnetische Aktivität beeinflusst. In dieser
Fallstudie wurde die ionosphärische Reaktion der Erde auf den starken geomagnetischen
Sturm vom 25./26. August 2018 unter Verwendung der Gesamtelektronengehaltsdaten
(Total Electron Content, TEC) vom Internationalen GNSS Service untersucht. Während
dieses großen Sturms wurde ein ”Disturbance Storm Time Index” Dst von -174
nT erreicht. Beobachtungen und Modellsimulationen wurden verwendet, um die ionosphärische
Reaktion während der Anfangsphase und der Hauptphase des magnetischen
Sturms zu untersuchen. Ein signifikanter Unterschied zwischen TEC während eines
Sturmtages und eines ruhigen Tages wurde beobachtet. Das vom GUVI-Instrument an
Bord des TIMED-Satelliten beobachtete O/N2 -Verhältnis wurde verwendet, um den
Sturmeffekt weiter zu untersuchen. Das Ergebnis zeigt eine deutliche Abnahme/Zunahme
des O/N2 Verhältnis in hohen/niedrigen Breiten während der Hauptphase des Sturms.
Darüber hinaus wurde das Coupled Thermosphere Ionosphere Plasmasphere ectrodynamics
(CTIPe) Modell verwendet. Die Ergebnisse legen nahe, dass das CTIPe-Modell die
ionosphärischen Schwankungen während eines Sturms erfassen kann.
|
93 |
Correction to: Ionospheric response to the 25 - 26 August 2018 intense geomagnetic stormVaishnav, Rajesh Ishwardas, Jacobi, Christoph 29 May 2021 (has links)
The thermosphere-ionosphere regions are mainly controlled by the solar, but
also by geomagnetic activity. In this case study, the Earth’s ionospheric response to the
25-26 August 2018 intense geomagnetic storm is investigated using the International
GNSS System (IGS) Total Electron Content (TEC) observations. During this major storm,
the minimum disturbance storm time (Dst) index reached -174 nT. We use observations
and model simulations to analyse the ionospheric response during the initial phase and the
main phase of the magnetic storm. A significant difference between storm day and quiet
day TEC is observed. The O/N2 ratio observed from the GUVI instrument onboard the
TIMED satellite is used to analyse the storm effect. The result shows a clear depletion of
the O/N2 ratio in the high latitude region, and an enhancement in the low latitude region
during the main phase of the storm. Furthermore, the Coupled Thermosphere Ionosphere
Plasmasphere electrodynamics (CTIPe) model simulations were used. The results suggest
that the CTIPe model can capture the ionospheric variations during storms. / Die Regionen der Ionosphären und Thermosphäre werden hauptsächlich
von der Sonne sowie auch von geomagnetische Aktivität beeinflusst. In dieser
Fallstudie wurde die ionosphärische Reaktion der Erde auf den starken geomagnetischen
Sturm vom 25./26. August 2018 unter Verwendung der Gesamtelektronengehaltsdaten
(Total Electron Content, TEC) vom Internationalen GNSS Service untersucht. Während
dieses großen Sturms wurde ein ”Disturbance Storm Time Index” Dst von -174
nT erreicht. Beobachtungen und Modellsimulationen wurden verwendet, um die ionosphärische
Reaktion während der Anfangsphase und der Hauptphase des magnetischen
Sturms zu untersuchen. Ein signifikanter Unterschied zwischen TEC während eines
Sturmtages und eines ruhigen Tages wurde beobachtet. Das vom GUVI-Instrument an
Bord des TIMED-Satelliten beobachtete O/N2 -Verhältnis wurde verwendet, um den
Sturmeffekt weiter zu untersuchen. Das Ergebnis zeigt eine deutliche Abnahme/Zunahme
des O/N2 Verhältnis in hohen/niedrigen Breiten während der Hauptphase des Sturms.
Darüber hinaus wurde das Coupled Thermosphere Ionosphere Plasmasphere ectrodynamics
(CTIPe) Modell verwendet. Die Ergebnisse legen nahe, dass das CTIPe-Modell die
ionosphärischen Schwankungen während eines Sturms erfassen kann.
|
94 |
Ansätze zur Abschätzung des Risikos von Sturmschäden am Beispiel von KölnRadtke, Kai Sven, Tetzlaff, Gerd 11 January 2017 (has links)
Hier werden einige Ansätze dargestellt, um das Schadenspotential von Stürmen abzuschätzen. Dabei sollen auch Aussagen zur Größenordnung des Schadens bei sehr unwahrscheinlichen Ereignissen gemacht werden. Die Naturgefahr Sturm wird getrennt nach außertropischen Zyklonen und Tornados betrachtet. Im ersten Fall werden empirische Verteilungsfunktion und mittels einer Markov Methode erzeugte synthetische Windreihen zur Abschätzung extremer Windgeschwindigkeiten genutzt. Eine Abschätzung der Böen wird durchgeführt und der Schaden mit Hilfe einer einfachen Beziehung zwischen Böengeschwindigkeit und Schaden ermittelt. Für die Abschätzung des Schadens im Falle eines Tornados werden von Dotzek angegebene Wahrscheinlichkeiten für Tornados in Deutschland und die Definition einer Tornadointensitätsskala als Schadensfunktion verwendet. / Some conceptions were explained, to estimate the risk of storm caused damages. The amount of damage by unlikely events is assessed. The natural hazard storm is considered separately for extratropical cyclones and tornadoes. Empirical distribution functions and synthetic series of wind speeds generated by a Markov chain model are used to derive the extreme wind speeds for cyclones. An estimation of gust speeds are performed and a simple relationship between gust speed and damage is applied. The likelihood of tornadoes to occur in Germany provided by Dotzek and the definition of an intensity scale are used to estimate the damage in the case of tornadoes.
|
95 |
Etude de l'observabilité de systèmes de Sturm-Liouville : application aux réacteurs biochimiques à paramètres répartisDelattre, Cédric 22 December 2003 (has links)
Du fait du manque de capteurs fiables et bon marché, la
problématique de la reconstruction d'état est cruciale pour les
bioprocédés, particulièrement pour les (bio)réacteurs à paramètres
répartis. C'est pourquoi il est essentiel d'étudier leurs
propriétés d'observabilité, qui peuvent notamment dépendre des
dimensions spatiales des capteurs.
Dans cette thèse, on étudie tout d'abord l'observabilité d'une
classe de réacteurs tubulaires à lit fixe mettant en oeuvre une
seule réaction biochimique, où un substrat est dégradé suivant une
cinétique non linéaire. Plus précisément, l'analyse porte sur un
modèle linéarisé, consistant notamment en une Équation aux
Dérivées Partielles (EDP) parabolique linéaire comportant un
coefficient non uniforme (c.-à-d. dépendant de la variable
spatiale). Ce modèle entre dans le cadre d'une classe particulière
de systèmes : les systèmes de Sturm-Liouville. Il s'en déduit que
tout nombre fini de modes dominants du système est observable par
un capteur (de concentration en substrat) situé en sortie et de
largeur suffisamment petite. En outre, considérant un minorant et
un majorant du coefficient non uniforme, on détermine une
expression numérique, fonction du nombre de modes à observer, qui
minore cette largeur. La pertinence de ce résultat est confirmée
par un exemple numérique : un biofiltre de dénitrification.
Cette étude est étendue à un procédé-pilote de digestion anaérobie
de l'INRA-Narbonne. On montre l'existence d'un état d'équilibre,
autour duquel le comportement du système est modélisé par deux EDP
linéaires, dont une à coefficient non uniforme. La démarche
précédente est généralisée et on calcule des expressions des
largeurs de deux capteurs en fonction du nombre de modes dont on
veut s'assurer qu'ils sont observables. Ce résultat s'applique
notamment à la conception d'un estimateur d'état.
|
96 |
[en] A STRUCTURED CONTINUATION METHOD FOR PROBLEMS WITH MULTIPLE SOLUTIONS / [pt] UM MÉTODO DE CONTINUAÇÃO ESTRUTURADO PARA PROBLEMAS COM MÚLTIPLAS SOLUÇÕESDIEGO SOARES MONTEIRO DA SILVA 07 December 2021 (has links)
[pt] Seja F uma função definida de um espaço de Banach real X para um espaço de Banach real Y e g um ponto pertencente a Y. Descrevemos um algoritmo para calcular as soluções u da equação F de u igual a g. Inicialmente, o algoritmo parte de uma curva c no domínio, a qual é escolhida de modo a interceptar substancialmente o conjunto crítico de F. Calculamos através de métodos de continuação uma componente da imagem inversa de F de c e definimos essa componente de forma abstrata: grafo completamente espelhado. Claramente, os métodos de continuação padrão têm melhores chances de sucesso em diferentes pontos iniciais. Fornecemos argumentos geométricos para a abundância ocasional de soluções e uma busca estruturada dessas. Três exemplos são considerados detalhadamente. O primeiro é uma função do plano no plano, em que podemos validar os resultados com auxílio de um software. O segundo conjunto de exemplos é obtido a partir da discretização de um problema de Sturm-Liouville não linear com um número inesperado de soluções. Por último, calculamos as seis soluções aproximadas de um problema estudado por Solimini. / [en] Let F be a definite function from a real Banach space X to a real Banach space Y and g a point belonging to Y. We describe an algorithm for calculating the solutions u of the equation F of u equal to g. Initially, the algorithm starts from a curve c in the domain, which is chosen so as to substantially intercept the critical set of F. We calculate through continuation methods a component of the inverse image of F of c and define this component in an abstract way: graph completely mirrored. Clearly, standard continuation methods have better chances of success at different starting points. We provide geometric arguments for the occasional abundance of solutions and a structured search for these. Three examples are considered in detail. The first is a function of the plan in the plan, in which we can validate the results with the help of software. The second set of examples is obtained from the discretization of a non-linear Sturm-Liouville problem with an unexpected number of solutions. Finally, we calculate the six approximate solutions of a problem studied by Solimini.
|
97 |
Espectro e dimensão Hausdorff de operadores bloco-Jacobi com perturbações esparsas distribuídas aleatoriamente / Spectrum and Hausdorff dimension of block-Jacobi matrices with sparse perturbations randomly distributedCarvalho, Silas Luiz de 17 September 2010 (has links)
Neste trabalho buscamos caracterizar o espectro de uma classe de operadores bloco--Jacobi limitados definidos em $l^2(\\Lambda,\\mathbb{C}^L)$ ($\\Lambda: \\mathbb{Z}_+\\times\\{0,1,\\ldots,L-1\\}$ representa uma faixa de largura $L\\ge 2$ no semi--plano $\\mathbb{Z}_+^2$) e sujeitos a perturbações esparsas (no sentido que as distâncias entre as ``barreiras\'\' crescem geometricamente à medida que estas se afastam da origem) distribuídas aleatoriamente. Tais operadores são construídos a partir da soma de Kronecker de matrizes de Jacobi $J$, cada qual atuando em uma direção do espaço. Demonstramos, por meio da bloco--diagonalização do operador, que %o estudo de suas principais propriedades espectrais dependem da %se limita à caracterização da ``medida de mistura\'\' $\\frac{1}{L}\\sum_{j=0}^{L-1}\\mu_j$, $\\mu_j$ a medida espectral associada à matriz de Jacobi $J^j=J+2\\cos(2\\pi j/L)I $. Para tanto, buscamos primeiramente caracterizar cada uma das medidas $\\mu_j$, explorando e aperfeiçoando algumas técnicas bastante conhecidas no estudo de operadores esparsos unidimensionais. Demonstramos, por exemplo, que a seqüência de ângulos de Prüfer (variáveis que, juntamente com os raios de Prüfer, parametrizam as soluções da equação de autovalores) é uniformemente distribuída no intervalo $[0,\\pi)$, o %que %resultado que nos permite determinar o comportamento assintótico médio das soluções da equação de autovalores. Tal resultado, aliado às técnicas desenvolvidas por Marchetti \\textit{et. al.} em \\cite{MarWre} e a uma adaptação dos critérios de Last e Simon \\cite{LS} para operadores esparsos, nos permitem demonstrar a existência de uma transição aguda (pontual) entre os espectros singular--contínuo e puramente pontual. Empregamos em seguida os resultados de Jitomirskaya e Last presentes em \\cite{JitLast} e obtemos a dimensão Hausdorff exata associada à medida $\\mu_j$, dada por $\\alpha_j=1+\\frac{4(1-p^2)^2}{p^2(4- (\\lambda-2\\cos(2\\pi j/L))^2)}$ ($\\lambda\\in[-2,2]$), recuperando um resultado análogo obtido por Zlato\\v s em \\cite{Zla}. Por fim, adaptamos tais resultados à situação da medida de mistura associada à matriz bloco--Jacobi, obtendo $\\alpha=\\min_{j\\in\\mathcal{I}(\\lambda)}\\alpha_j$, $\\mathcal{I}(\\lambda):\\{m \\in\\{0,1,\\ldots,L-1\\}:\\lambda\\in[-2+2\\cos(2\\pi j/L),2+2\\cos(2\\pi j/L)]\\}$, como sua dimensão Hausdorff exata. Estudamos modelos idênticos com esparsidades sub e super-geométricas, obtendo na primeira situação um espectro puramente pontual (de dimensão Hausdorff nula) e na segunda um espectro puramente singular--contínuo (de dimensão Hausdorff 1). Finalmente, verificamos a existência de transição entre os espectros puramente pontual e singular--contínuo em um modelo com esparsidade super-geométrica cuja dimensão Hausdorff associada à medida espectral é nula. / In this work we attempt to caracterize the spectrum of a class of limited block--Jacobi operators defined in $l^2(\\Lambda,\\mathbb{C}^L)$ ($\\Lambda: \\mathbb{Z}_+\\times\\{0,1,\\ldots,L-1\\}$ represents a strip of width $L\\ge 2$ on the semi--plane $\\mathbb{Z}_+^2$) subject to a sparse perturbation (which means that the distance between the ``barries\'\' grow geometrically with their distance to the origin) randomly distributed. Such operators are defined as Kronecker sums of unidimensional Jacobi matrices $J$, each one acting in different directions of the space. We prove, by means of a block--diagonalization of the operator, that %the study of its most relevant spectral properties depend on %is related to the caracterization of the ``mixture measure\'\' $\\frac{1}{L}\\sum_{j=0}^{L-1}\\mu_j$, $\\mu_j$ the spectral measure of the Jacobi matrix $J^j=J+2\\cos(2\\pi j/L)I$. For this, we must characterize at first each one of the measures $\\mu_j$, exploiting and improving some well known techniques developed in the study of unidimensional sparse operators. We prove, for instance, that the sequence of Prüfer angles (variables which parametrize the solutions of the eigenvalue equation) are uniform distributed on the interval $[0,\\pi)$, a result which gives us condition to determine the average asymptotic behavior of the solutions of the eigenvalue equation. Such result, in association with the techniques developed by Marchetti \\textit{et. al.} in \\cite{MarWre} and with an adaptation of Last--Simon \\cite{LS} criteria for sparse operator, permit us to prove the existence of a sharp transition between singular continuous and pure point spectra. Following on, we use the results from Jitomirskaya--Last of \\cite{JitLast} and obtain the exact Hausdorff dimension of the measure $\\mu_j$, given by $\\alpha_j=1+\\frac{4(1-p^2)^2}{p^2(4-(\\lambda-2\\cos(2\\pi j/L))^2)}$ ($\\lambda\\in[- 2,2]$), recovering an analogous result due to Zlato\\v s in \\cite{Zla}. At last, we adapt these results to the mixture measure of the block--Jacobi matrix, obtaining $\\alpha=\\min_{j\\in\\mathcal{I}(\\lambda)}\\alpha_j$, $\\mathcal{I}(\\lambda):\\{m \\in\\{0,1,\\ldots,L-1\\}:\\lambda\\in[-2+2\\cos(2\\pi j/L),2+2\\cos(2\\pi j/L)]\\}$, as its exact Hausdorff dimension. We study as well identical models with sub and super geometric sparsities conditions, obtaining a pure point spectrum (with null Hausdorff dimension) in the first case, and a purely singular continuous spectrum (such that its Hausdorff dimension is 1) in the second. Finally, we prove the existence of a transition between pure point and singular continuous spectra in a model with sub--geometric sparsity whose Hausdorff dimension related to the spectral measure is null.
|
98 |
Möser und GoetheKass, Georg, January 1909 (has links)
Thesis (Ph. D.)--Universität Göttingen, 1909. / Vita. Includes bibliographical references.
|
99 |
Kompleksinių tikrinių reikšmių tyrimas vienam Šturmo Liuvilio uždaviniui / Investigation of complex eigenvalues for one Sturm Lioville problemLangaitytė, Aurelija 19 June 2008 (has links)
Darbą sudaro: įvadas, analitinė ir praktinės dalys. Analitinėje dalyje trumpai aptariama su nagrinėjamu uždaviniu susijusi teorija ir pats uždavinys. Analitinėje dalyje yra trys poskyriai, juose pateikiama teorija, reikalinga nagrinėjamo uždavinio tyrimui. Praktinėje dalyje nagrinėjamas Šturmo ir Liuvilio kraštinis uždavinys su viena klasikine ir kita nelokalia dvitaške kraštine sąlyga. Ištirti keturių nelokalių kraštinių sąlygų atvejai. Kiekvienu kraštinių sąlygų atveju ieškomos kompleksinės tikrinės reikšmės ir tiriama jų kokybinė priklausomybė nuo uždavinio nelokaliosios sąlygos parametrų ir . Darbas iliustruotas charakteristinių funkcijų grafikais. Nustatyta, kad dviejų pirmųjų sąlygų atveju yra pakankamai nesudėtinga charakterisitnių funkcijų priklausomybė nuo parametro . Kitiems dviems atvejams ta priklausomybė yra žymiai sudėtingesnė. Tokios situacijos kruopščiai ištirtos ketvirtame atvejyje. Surasta tikrinių reikšmių elgsena bifurkacinių taškų aplinkoje. / This master thesis consists of introduction, analitical and practical parts. In the analitical part are considered the master thesis problem and theoretical studies, that are correlative with it. This part is rubricated to tree sections. They are designed for theoretical studies that are used to solve all problem of the master thesis. In practical part are examinated four problems: Šturm Louville problem with classical and nonlocal boundary condition. Here are investigated types of four nonlocal boundary conditions. In case of every nonlocal boundary conditions locking for complex eigenvalues and investigating thier quality that dependsupon nonlocal boundary condition parametere and . The work is pictorial of charakterical fukcion graphics. Is determinated, that in case of two condition charakteristical funkcion dependen of parameter is simple. In case of other two condition the dependen is convulated. This situation is examinated in the fourth case. Besides here resolved behaviour of eigenvalues in their points environment.
|
100 |
Espectro e dimensão Hausdorff de operadores bloco-Jacobi com perturbações esparsas distribuídas aleatoriamente / Spectrum and Hausdorff dimension of block-Jacobi matrices with sparse perturbations randomly distributedSilas Luiz de Carvalho 17 September 2010 (has links)
Neste trabalho buscamos caracterizar o espectro de uma classe de operadores bloco--Jacobi limitados definidos em $l^2(\\Lambda,\\mathbb{C}^L)$ ($\\Lambda: \\mathbb{Z}_+\\times\\{0,1,\\ldots,L-1\\}$ representa uma faixa de largura $L\\ge 2$ no semi--plano $\\mathbb{Z}_+^2$) e sujeitos a perturbações esparsas (no sentido que as distâncias entre as ``barreiras\'\' crescem geometricamente à medida que estas se afastam da origem) distribuídas aleatoriamente. Tais operadores são construídos a partir da soma de Kronecker de matrizes de Jacobi $J$, cada qual atuando em uma direção do espaço. Demonstramos, por meio da bloco--diagonalização do operador, que %o estudo de suas principais propriedades espectrais dependem da %se limita à caracterização da ``medida de mistura\'\' $\\frac{1}{L}\\sum_{j=0}^{L-1}\\mu_j$, $\\mu_j$ a medida espectral associada à matriz de Jacobi $J^j=J+2\\cos(2\\pi j/L)I $. Para tanto, buscamos primeiramente caracterizar cada uma das medidas $\\mu_j$, explorando e aperfeiçoando algumas técnicas bastante conhecidas no estudo de operadores esparsos unidimensionais. Demonstramos, por exemplo, que a seqüência de ângulos de Prüfer (variáveis que, juntamente com os raios de Prüfer, parametrizam as soluções da equação de autovalores) é uniformemente distribuída no intervalo $[0,\\pi)$, o %que %resultado que nos permite determinar o comportamento assintótico médio das soluções da equação de autovalores. Tal resultado, aliado às técnicas desenvolvidas por Marchetti \\textit{et. al.} em \\cite{MarWre} e a uma adaptação dos critérios de Last e Simon \\cite{LS} para operadores esparsos, nos permitem demonstrar a existência de uma transição aguda (pontual) entre os espectros singular--contínuo e puramente pontual. Empregamos em seguida os resultados de Jitomirskaya e Last presentes em \\cite{JitLast} e obtemos a dimensão Hausdorff exata associada à medida $\\mu_j$, dada por $\\alpha_j=1+\\frac{4(1-p^2)^2}{p^2(4- (\\lambda-2\\cos(2\\pi j/L))^2)}$ ($\\lambda\\in[-2,2]$), recuperando um resultado análogo obtido por Zlato\\v s em \\cite{Zla}. Por fim, adaptamos tais resultados à situação da medida de mistura associada à matriz bloco--Jacobi, obtendo $\\alpha=\\min_{j\\in\\mathcal{I}(\\lambda)}\\alpha_j$, $\\mathcal{I}(\\lambda):\\{m \\in\\{0,1,\\ldots,L-1\\}:\\lambda\\in[-2+2\\cos(2\\pi j/L),2+2\\cos(2\\pi j/L)]\\}$, como sua dimensão Hausdorff exata. Estudamos modelos idênticos com esparsidades sub e super-geométricas, obtendo na primeira situação um espectro puramente pontual (de dimensão Hausdorff nula) e na segunda um espectro puramente singular--contínuo (de dimensão Hausdorff 1). Finalmente, verificamos a existência de transição entre os espectros puramente pontual e singular--contínuo em um modelo com esparsidade super-geométrica cuja dimensão Hausdorff associada à medida espectral é nula. / In this work we attempt to caracterize the spectrum of a class of limited block--Jacobi operators defined in $l^2(\\Lambda,\\mathbb{C}^L)$ ($\\Lambda: \\mathbb{Z}_+\\times\\{0,1,\\ldots,L-1\\}$ represents a strip of width $L\\ge 2$ on the semi--plane $\\mathbb{Z}_+^2$) subject to a sparse perturbation (which means that the distance between the ``barries\'\' grow geometrically with their distance to the origin) randomly distributed. Such operators are defined as Kronecker sums of unidimensional Jacobi matrices $J$, each one acting in different directions of the space. We prove, by means of a block--diagonalization of the operator, that %the study of its most relevant spectral properties depend on %is related to the caracterization of the ``mixture measure\'\' $\\frac{1}{L}\\sum_{j=0}^{L-1}\\mu_j$, $\\mu_j$ the spectral measure of the Jacobi matrix $J^j=J+2\\cos(2\\pi j/L)I$. For this, we must characterize at first each one of the measures $\\mu_j$, exploiting and improving some well known techniques developed in the study of unidimensional sparse operators. We prove, for instance, that the sequence of Prüfer angles (variables which parametrize the solutions of the eigenvalue equation) are uniform distributed on the interval $[0,\\pi)$, a result which gives us condition to determine the average asymptotic behavior of the solutions of the eigenvalue equation. Such result, in association with the techniques developed by Marchetti \\textit{et. al.} in \\cite{MarWre} and with an adaptation of Last--Simon \\cite{LS} criteria for sparse operator, permit us to prove the existence of a sharp transition between singular continuous and pure point spectra. Following on, we use the results from Jitomirskaya--Last of \\cite{JitLast} and obtain the exact Hausdorff dimension of the measure $\\mu_j$, given by $\\alpha_j=1+\\frac{4(1-p^2)^2}{p^2(4-(\\lambda-2\\cos(2\\pi j/L))^2)}$ ($\\lambda\\in[- 2,2]$), recovering an analogous result due to Zlato\\v s in \\cite{Zla}. At last, we adapt these results to the mixture measure of the block--Jacobi matrix, obtaining $\\alpha=\\min_{j\\in\\mathcal{I}(\\lambda)}\\alpha_j$, $\\mathcal{I}(\\lambda):\\{m \\in\\{0,1,\\ldots,L-1\\}:\\lambda\\in[-2+2\\cos(2\\pi j/L),2+2\\cos(2\\pi j/L)]\\}$, as its exact Hausdorff dimension. We study as well identical models with sub and super geometric sparsities conditions, obtaining a pure point spectrum (with null Hausdorff dimension) in the first case, and a purely singular continuous spectrum (such that its Hausdorff dimension is 1) in the second. Finally, we prove the existence of a transition between pure point and singular continuous spectra in a model with sub--geometric sparsity whose Hausdorff dimension related to the spectral measure is null.
|
Page generated in 0.0332 seconds