Spelling suggestions: "subject:"supervisé""
31 |
Etude des systèmes dynamiques hybrides par représentation d'état discrète et automate hybrideKurovszky, Monika 12 December 2002 (has links) (PDF)
Le travail présenté dans ce mémoire propose une méthodologie de synthèse de la commande pour des systèmes hybrides, qui permet de calculer l'ensemble de toutes les lois de commande telles que le fonctionnement du système respecte les spécifications imposées par le cahier des charges. Notre approche consiste à représenter la dynamique continue par un système linéaire discrétisé et la dynamique événementielle par un automate à états finis. L'ensemble donne un automate hybride sur lequel les techniques d'analyse d'atteignabilité sont appliquées. Ces techniques permettent d'obtenir l'automate atteignable, qui ne contient que les trajectoires possibles du système pour une condition initiale donnée. En quelque sorte, nous avons ici une généralisation de la méthode clock translation. L'utilisation du temps discrétisé permet d'obtenir un automate à états finis modélisant le système hybride. Ce modèle est obtenu par le dépliage temporel de la dynamique continue du système dans chaque sommet de l'automate hybride. La technique est similaire avec celle proposée par Brandin et Wonham pour les systèmes temporisés. Par ce modèle les trajectoires du système hybride seront explicitement représentées. L'approche de synthèse de la commande présentée dans ce mémoire est basée sur une extension de la théorie classique de la commande supervisée. Le modèle de commande synthétisé est représenté par un automate temporisé. Celui-ci indique les dates d'occurrence auxquelles les événements contrôlables intervenant dans le fonctionnement du système doivent être exécutés. On notera que l'on s'affranchit ici de l'aspect hybride du système. Les résultats de la synthèse sont optimaux. Les résultats de recherche de ce travail peuvent s'appliquer aussi bien au pilotage des systèmes de production qu'au contrôle des flux dans un procédé batch.
|
32 |
Classification parcimonieuse et discriminante de données complexes. Une application à la cytologieBrunet, Camille 01 December 2011 (has links) (PDF)
Les thèmes principaux de ce mémoire sont la parcimonie et la discrimination pour la modélisation de données complexes. Dans une première partie de ce mémoire, nous nous plaçons dans un contexte de modèle de mélanges gaussiens: nous introduisons une nouvelle famille de modèles probabilistes qui simultanément classent et trouvent un espace discriminant tel que cet espace discrimine au mieux les groupes. Une famille de 12 modèles latents discriminants (DLM) modèles est introduite et se base sur trois idées: tout d'abord, les données réelles vivent dans un sous-espace latent de dimension intrinsèque plus petite que celle de l'espace observé; deuxièmement, un sous-espace de K-1 dimensions est suffisant pour discriminer K groupes; enfin, l'espace observé et celui latent sont liés par une transformation linéaire. Une procédure d'estimation, appelée Fisher-EM, est proposée et améliore la plupart du temps les performances de clustering grâce à l'utilisation du sous-espace discriminant. Dans un second travail, nous nous sommes intéressés à la détermination du nombre de groupes en utilisant le cadre de la sériation. nous proposons d'intégrer de la parcimonie dans les données par l'intermédiaire d'une famille de matrices binaires. Ces dernière sont construites à partir d'une mesure de dissimilarité basée sur le nombre de voisins communs entre paires d'observations. En particulier, plus le nombre de voisins communs imposé est important, plus la matrice sera parcimonieuse, i.e. remplie de zéros, ce qui permet, à mesure que le seuil de parcimonie augmente, de retirer les valeurs extrêmes et les données bruitées. Cette collection de matrices parcimonieuses est ordonnée selon un algorithme de sériation de type forward, nommé PB-Clus, afin d'obtenir des représentations par blocs des matrices sériées. Ces deux méthodes ont été validées sur une application biologique basée sur la détection du cancer du col de l'utérus.
|
33 |
Apprentissage statistique : application au trafic routier à partir de données structurées et aux données massives / Machine learning : Application to road traffic as structured data and to Big DataGuillouet, Brendan 18 November 2016 (has links)
Cette thèse s'intéresse à l'apprentissage pour données massives. On considère en premier lieu, des trajectoires définies par des séquences de géolocalisations. Une nouvelle mesure de distance entre trajectoires (Symmetrized Segment-Path Distance) permet d'identifier par classification hiérarchique des groupes de trajectoires, modélisés ensuite par des mélanges gaussiens décrivant les déplacements par zones. Cette modélisation est utilisée de façon générique pour résoudre plusieurs types de problèmes liés aux trafic routier : prévision de la destination finale d'une trajectoire, temps d'arrivée à destination, prochaine zone de localisation. Les exemples analysés montrent que le modèle proposé s'applique à des environnements routiers différents et, qu'une fois appris, il s'applique à des trajectoires aux propriétés spatiales et temporelles différentes. En deuxième lieu, les environnements technologiques d'apprentissage pour données massives sont comparés sur des cas d'usage industriels. / This thesis focuses on machine learning techniques for application to big data. We first consider trajectories defined as sequences of geolocalized data. A hierarchical clustering is then applied on a new distance between trajectories (Symmetrized Segment-Path Distance) producing groups of trajectories which are then modeled with Gaussian mixture in order to describe individual movements. This modeling can be used in a generic way in order to resolve the following problems for road traffic : final destination, trip time or next location predictions. These examples show that our model can be applied to different traffic environments and that, once learned, can be applied to trajectories whose spatial and temporal characteristics are different. We also produce comparisons between different technologies which enable the application of machine learning methods on massive volumes of data.
|
34 |
Handling imperfections for multimodal image annotation / Gestion des imperfections pour l’annotation multimodale d’imagesZnaidia, Amel 11 February 2014 (has links)
La présente thèse s’intéresse à l’annotation multimodale d’images dans le contexte des médias sociaux. Notre objectif est de combiner les modalités visuelles et textuelles (tags) afin d’améliorer les performances d’annotation d’images. Cependant, ces tags sont généralement issus d’une indexation personnelle, fournissant une information imparfaite et partiellement pertinente pour un objectif de description du contenu sémantique de l’image. En outre, en combinant les scores de prédiction de différents classifieurs appris sur les différentes modalités, l’annotation multimodale d’image fait face à leurs imperfections: l’incertitude, l’imprécision et l’incomplétude. Dans cette thèse, nous considérons que l’annotation multimodale d’image est soumise à ces imperfections à deux niveaux : niveau représentation et niveau décision. Inspiré de la théorie de fusion de l’information, nous concentrons nos efforts dans cette thèse sur la définition, l’identification et la prise en compte de ces aspects d’imperfections afin d’améliorer l’annotation d’images. / This thesis deals with multimodal image annotation in the context of social media. We seek to take advantage of textual (tags) and visual information in order to enhance the image annotation performances. However, these tags are often noisy, overly personalized and only a few of them are related to the semantic visual content of the image. In addition, when combining prediction scores from different classifiers learned on different modalities, multimodal image annotation faces their imperfections (uncertainty, imprecision and incompleteness). Consequently, we consider that multimodal image annotation is subject to imperfections at two levels: the representation and the decision. Inspired from the information fusion theory, we focus in this thesis on defining, identifying and handling imperfection aspects in order to improve image annotation.
|
35 |
Problèmes de clustering liés à la synchronie en écologie : estimation de rang effectif et détection de ruptures sur les arbres / Clustering problems for synchrony in ecology : estimation of effective rank and change-points detection on treesThépaut, Solène 06 December 2019 (has links)
Au vu des changements globaux actuels engendrés en grande partie par l'être humain, il devient nécessaire de comprendre les moteurs de la stabilité des communautés d'êtres vivants. La synchronie des séries temporelles d'abondances fait partie des mécanismes les plus importants. Cette thèse propose trois angles différents permettant de répondre à différentes questions en lien avec la synchronie interspécifique ou spatiale. Les travaux présentés trouvent des applications en dehors du cadre écologique. Un premier chapitre est consacré à l'estimation du rang effectif de matrices à valeurs dans ℝ ou ℂ. Nous apportons ainsi des outils permettant de mesurer le taux de synchronisation d'une matrice d'observations. Dans le deuxième chapitre, nous nous basons sur les travaux existants sur le problème de détection de ruptures sur les chaînes afin de proposer plusieurs algorithmes permettant d'adapter ce problème au cas des arbres. Les méthodes présentées peuvent être utilisées sur la plupart des données nécessitant d'être représentées sous la forme d'un arbre. Afin d'étudier les liens entre la synchronie interspécifique et les tendances à long termes ou les traits d'espèces de papillons, nous proposons dans le dernier chapitre d'adapter des méthodes de clustering et d'apprentissage supervisé comme les Random Forest ou les Réseaux de Neurones artificiels à des données écologiques. / In the view of actual global changes widely caused by human activities, it becomes urgent to understand the drivers of communities' stability. Synchrony between time series of abundances is one of the most important mechanisms. This thesis offers three different angles in order to answer different questions linked to interspecific and spatial synchrony. The works presented find applications beyond the ecological frame. A first chapter is dedicated to the estimation of effective rank of matrices in ℝ or ℂ. We offer tools allowing to measure the synchronisation rate of observations matrices. In the second chapter, we base on the existing work on change-points detection problem on chains in order to offer algorithms which detects change-points on trees. The methods can be used with most data that have to be represented as a tree. In order to study the link between interspecific synchrony and long term tendencies or traits of butterflies species, we offer in the last chapter adaptation of clustering and supervised machine learning methods, such as Random Forest or Artificial Neural Networks to ecological data.
|
36 |
Détection non-supervisée de contours et localisation de formes à l'aide de modèles statistiquesDestrempes, François January 2002 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
37 |
Classification de la surface de Mars par imagerie hyperspectrale OMEGA. Suivi spatio-temporel et étude des dépôts saisonniers de CO2 et H2O.Frédéric, Schmidt 25 October 2007 (has links) (PDF)
L'étude des surfaces planétaires a été profondément modifiée par la dernière génération d'instruments spatiaux : les spectro-imageurs. Ces détecteurs produisent de nombreuses images hyperspectrales, pour lesquelles chaque pixel est associé à un spectre. Ils permettent un suivi spatial et temporel des propriétés optiques des sols. Le premier objectif de cette thèse est de proposer des outils permettant de traiter la grande quantité d'images et de spectres afin d'aborder des problématiques planétologiques. Deux types d'analyse des images produites par l'instrument OMEGA (Mars Express/ESA) sont avancées : (i) WAVANGLET, une méthode rapide de détection des corps chimiques au sol, (ii) JADE+BPSS, une séparation de source en aveugle qui permet de détecter des corps chimiques sans a priori. <br />Les régions polaires de Mars sont le siège d'un cycle climatique annuel d'échange de CO2 entre atmosphère et surface. Pendant la nuit polaire, le CO2 atmosphérique se condense au sol, tandis qu'il se sublime à nouveau pour gonfler l'atmosphère, dès les premiers rayons du soleil au printemps. Ce cycle a été mis à jour depuis les années 60 mais aujourd'hui encore, le détail microphysique d'interaction entre atmosphère et surface demeure inconnu. Le second objectif de cette thèse est d'établir un modèle de sublimation des dépôts saisonniers martiens. Le bilan de masse est simulé par un bilan radiatif sur une surface rugueuse. La confrontation de ce modèle avec différents jeux de données spatiales a permis de montrer que la sublimation de la calotte saisonnière sud de Mars est contrôlée majoritairement par son albédo. Des études ultérieures seront nécessaires pour saisir quels sont les mécanismes à l'origine des variabilités d'albédo (métamorphisme, contamination en poussière, . . . ).
|
38 |
Représentation, Segmentation et Appariement de Formes Visuelles 3D Utilisant le Laplacient et le Noyau de la ChaleurSharma, Avinash 29 October 2012 (has links) (PDF)
Analyse de la forme 3D est un sujet de recherche extrêmement actif dans les deux l'infographie et vision par ordinateur. Dans la vision par ordinateur, l'acquisition de formes et de modélisation 3D sont généralement le résultat du traitement des données complexes et des méthodes d'analyse de données. Il existe de nombreuses situations concrètes où une forme visuelle est modélisé par un nuage de points observés avec une variété de capteurs 2D et 3D. Contrairement aux données graphiques, les données sensorielles ne sont pas, dans le cas général, uniformément répartie sur toute la surface des objets observés et ils sont souvent corrompus par le bruit du capteur, les valeurs aberrantes, les propriétés de surface (diffusion, spécularités, couleur, etc), l'auto occlusions, les conditions d'éclairage variables. Par ailleurs, le même objet que l'on observe par différents capteurs, à partir de points de vue légèrement différents, ou à des moments différents cas peuvent donner la répartition des points tout à fait différentes, des niveaux de bruit et, plus particulièrement, les différences topologiques, par exemple, la fusion des mains. Dans cette thèse, nous présentons une représentation de multi-échelle des formes articulés et concevoir de nouvelles méthodes d'analyse de forme, en gardant à l'esprit les défis posés par les données de forme visuelle. En particulier, nous analysons en détail le cadre de diffusion de chaleur pour représentation multi-échelle de formes 3D et proposer des solutions pour la segmentation et d'enregistrement en utilisant les méthodes spectrales graphique et divers algorithmes d'apprentissage automatique, à savoir, le modèle de mélange gaussien (GMM) et le Espérance-Maximisation (EM). Nous présentons d'abord l'arrière-plan mathématique sur la géométrie différentielle et l'isomorphisme graphique suivie par l'introduction de la représentation spectrale de formes 3D articulés. Ensuite, nous présentons une nouvelle méthode non supervisée pour la segmentation de la forme 3D par l'analyse des vecteurs propres Laplacien de graphe. Nous décrivons ensuite une solution semi-supervisé pour la segmentation de forme basée sur un nouveau paradigme d'apprendre, d'aligner et de transférer. Ensuite, nous étendre la représentation de forme 3D à une configuration multi-échelle en décrivant le noyau de la chaleur cadre. Enfin, nous présentons une méthode d'appariement dense grâce à la représentation multi-échelle de la chaleur du noyau qui peut gérer les changements topologiques dans des formes visuelles et de conclure par une discussion détaillée et l'orientation future des travaux.
|
39 |
Stratégie d'évaluation de l'état des transformateurs : esquisse de solutions pour la gestion intégrée des transformateurs vieillissants / Transformer condition assesment strategy : Outline solutions for aging transformers integrated managementEke, Samuel 11 June 2018 (has links)
Cette thèse de doctorat traite des méthodes d’évaluation de l’état des transformateurs de puissance à huile. Elle apporte une approche particulière de mise en oeuvre des méthodes de classification dans la fouille de données. Elle propose une stratégie qui met en oeuvre deux nouveaux indicateurs de santé de l’huile construit à partir d’un système neuro flou ANFIS (Adaptative Neuro-Fuzzy Inference System) et un classifieur ou prédicteur de défaut construit à partir des méthodes de classification supervisée, notamment le classifieur Bayésien naïf. Un organigramme simple et efficace d’évaluation de l’état des transformateurs y est proposé. Il permet de faire une analyse rapide des paramètres issus des analyses physico-chimiques de l’huile et de des gaz dissous. Une exploitation des méthodes de classification non supervisée, notamment les méthodes de k-moyennes et C-moyennes flous a permis de reconstruire les périodes de fonctionnement d’un transformateur marquées par des défauts particuliers. Il a aussi été démontré comment ces méthodes peuvent servir d’outil d’aide à l’organisation de la maintenance d’un groupe de transformateurs à partir des données d’analyses d’huile disponibles. / This PhD thesis deals the assessment method of the state of power transformers filled with oil. It brings a new approach by implementing classification methods and data mining dedicated to transformer maintenance. It proposes a strategy based on two new oil health indicators built from an adaptive Neuro-Fuzzy Inference System (ANFIS). Two classifiers were built on a labeled learning database. The Naive Bayes classifier was retained for the detection of fault from gases dissolved in oil. A simple and efficient flowchart for evaluating the condition of transformers is proposed. It allows a quick analysis of the parameters resulting from physicochemical analyzes of oil and dissolved gases. Using unsupervised classification techniques through the methods of kmeans and fuzzy C-means allowed to reconstruct operating periods of a transformer, with some particular faults. It has also been demonstrated how these methods can be used as tool to help the maintenance of a group of transformers from available oil analysis data.
|
40 |
Analyse des propriétés stationnaires et des propriétés émergentes dans les flux d'informations changeant au cours du tempsKassab, Randa 11 May 2009 (has links) (PDF)
De nombreuses applications génèrent et reçoivent des données sous la forme de flux continu, illimité, et très rapide. Cela pose naturellement des problèmes de stockage, de traitement et d'analyse de données qui commencent juste à être abordés dans le domaine des flux de données. Il s'agit, d'une part, de pouvoir traiter de tels flux à la volée sans devoir mémoriser la totalité des données et, d'autre part, de pouvoir traiter de manière simultanée et concurrente l'analyse des régularités inhérentes au flux de données et celle des nouveautés, exceptions, ou changements survenant dans ce même flux au cours du temps.<br /><br />L'apport de ce travail de thèse réside principalement dans le développement d'un modèle d'apprentissage - nommé ILoNDF - fondé sur le principe de la détection de nouveauté. L'apprentissage de ce modèle est, contrairement à sa version de départ, guidé non seulement par la nouveauté qu'apporte une donnée d'entrée mais également par la donnée elle-même. De ce fait, le modèle ILoNDF peut acquérir constamment de nouvelles connaissances relatives aux fréquences d'occurrence des données et de leurs variables, ce qui le rend moins sensible au bruit. De plus, doté d'un fonctionnement en ligne sans répétition d'apprentissage, ce modèle répond aux exigences les plus fortes liées au traitement des flux de données. <br /><br />Dans un premier temps, notre travail se focalise sur l'étude du comportement du modèle ILoNDF dans le cadre général de la classification à partir d'une seule classe en partant de l'exploitation des données fortement multidimensionnelles et bruitées. Ce type d'étude nous a permis de mettre en évidence les capacités d'apprentissage pures du modèle ILoNDF vis-à-vis de l'ensemble des méthodes proposées jusqu'à présent. Dans un deuxième temps, nous nous intéressons plus particulièrement à l'adaptation fine du modèle au cadre précis du filtrage d'informations. Notre objectif est de mettre en place une stratégie de filtrage orientée-utilisateur plutôt qu'orientée-système, et ceci notamment en suivant deux types de directions. La première direction concerne la modélisation utilisateur à l'aide du modèle ILoNDF. Cette modélisation fournit une nouvelle manière de regarder le profil utilisateur en termes de critères de spécificité, d'exhaustivité et de contradiction. Ceci permet, entre autres, d'optimiser le seuil de filtrage en tenant compte de l'importance que pourrait donner l'utilisateur à la précision et au rappel. La seconde direction, complémentaire de la première, concerne le raffinement des fonctionnalités du modèle ILoNDF en le dotant d'une capacité à s'adapter à la dérive du besoin de l'utilisateur au cours du temps. Enfin, nous nous attachons à la généralisation de notre travail antérieur au cas où les données arrivant en flux peuvent être réparties en classes multiples.
|
Page generated in 0.0538 seconds