• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Etude moléculaire de la bactérie intracellulaire féminisante Wolbachia chez Armadillidium vulgare (crustacé isopode terrestre)

Felix, Christine 26 March 2004 (has links) (PDF)
Wolbachia est une bactérie Gram(-) intracellulaire symbiote de nombreux arthropodes. Chez A. vulgare, elle entraîne la féminisation des mâles (souche wVul). Nous avons caractérisé le chromosome de wVul (ADN circulaire de 1.75 Mb) qui semble comporter de façon atypique plusieurs opéron rrn et dont les profils de restriction sont différents de ceux des autres souches de Wolbachia. La purification de l'ADN bactérien a permis d'amorcer le séquençage de ce génome. Un système de sécrétion de type IV caractérisé par deux opérons vir a été mis en évidence. L'expression de ces gènes dans les ovocytes et l'étude des protéines impliquées révèlent que ce système pourrait être fonctionnel. Des cartographies bidimensionnelles de profils protéiques de tissus d'individus infectés ou non indiquent des différences d'expression correspondant à des protéines du métabolisme et du cytosquelette de l'hôte surexprimées, et à une RNA hélicase qui pourrait interagir avec le déterminisme du sexe de l'hôte.
2

Structural and Biochemical Characterization of VirB8 Protein in Type IV Secretion Systems

Sharifahmadian, Mahzad 07 1900 (has links)
Secretion is the passage of macromolecules across cellular membranes. In bacteria, secretion is essential for virulence and survival. Gram-negative bacteria use specialized envelope-spanning multiprotein complexes to secrete macromolecules called type IV secretion system (T4SS). T4SSs mediate the secretion of monomeric proteins, multisubunit protein toxins and nucleoprotein complexes. Also, they contribute to the horizontal spread of plasmid-encoded antibiotic resistance genes. Consequently, they are potential targets for antivirulence drugs. Gram- negative bacteria have two membranes that the secretion complex spans. As a result, the T4SS consists of proteins inserted in the membranes and of soluble proteins that face into or out of the bacterial cell. The details of channel assembly and structure are not known, although recent advances have revealed the structure of the core secretion channel. VirB8 is an inner membrane protein of the complex that interacts with many other T4SS subunits and works as nucleation factor for T4SS channel assembly. Biophysical studies and NMR experiments in particular were conducted to characterize the structural aspects of VirB8 interactions. Dynamic regions of VirB8 during monomer-to-dimer transition were identified by NMR spectroscopy. X-ray crystal and NMR analyses revealed structural differences at the helical regions (α-1 and α-4) of wild-type VirB8 and its monomeric variant VirB8M102R. Fragment screening identified small molecules binding to the wild-type and monomeric variant. In silico docking analyses suggested that the surface groove in the VirB8 structure is important for effective binding of the small molecules. NMR experiments and biochemical assays demonstrated that the β-sheet domain (β1 in particular) is the binding interface of VirB8 for the interaction with VirB10. The identified interface has functional importance for T4SS-mediated conjugation. In addition, I used NMR spectroscopy to identify changes in the structure of VirB8 upon interaction with VirB5. Altogether, structural and biochemical studies on periplasmic and full length VirB8 enabled us to characterize the sequence of interactions between VirB8 and other VirB proteins during T4SS complex assembly and function. The results of this research may lead to an innovative strategy for the development of novel antimicrobial drugs. / La sécrétion est le passage de macromolécules à travers les membranes cellulaires. Chez les bactéries, la sécrétion est essentielle pour la virulence et la survie. Les bactéries à Gramnégatif utilisent le système de sécrétion de type IV (SST4) pour la sécrétion de toxines et de nucléoprotéines. Les SST4 contribuent notamment à la propagation des gènes de résistance aux antibiotiques. Pour cette raison, les composants du SST4 sont des cibles potentielles pour le développement de médicaments antivirulence. Le SST4 est un complexe protéique qui s’étend entre la double membrane de la bactérie à Gram-négatif. Les protéines qui le composent sont insérées dans les membranes cellulaires ou solubles. Bien que la structure du pore central du SST4 ait été résolue récemment, les détails de l'assemblage et la structure de ce complexe ne sont pas connus. VirB8 est une protéine de la membrane interne qui interagit avec de nombreuses autres sous-unités du SST4. Il s’agit d’un acteur central de l'assemblage du SST4. Des études biophysiques, et notamment des expériences de RMN ont ainsi été réalisées pour caractériser les aspects structuraux des interactions avec VirB8. Des regions dynamiques dans la structure de VirB8 ont été identifiées par spectroscopie RMN lors de la transition entre la forme monomérique et dimérique. Les analyses de cristallographie et de RMN ont révélé des différences structurales dans les régions hélicoïdales (α1 et α4) de VirB8 wild-type et du variant monomérique VirB8M102R. Le criblage de fragments a permis d’identifier de petites molécules capables de se lier à VirB8 ainsi qu’au variant monomérique. Les analyses d’arrimage moléculaire in silico suggèrent que la rainure de surface dans la structure VirB8 est importante pour laliaison de ces petites molécules. Les expériences de RMN et les essais biochimiques révèlent que le feuillet β (β1 en particulier) constitue l'interface d’interaction entre VirB8 et VirB10. Cette interface d’interaction est d’ailleurs importante pour la conjugaison du SST4. De plus, j'ai identifié des changements dans la structure de VirB8 lors de l'interaction avec VirB5. Les études sur la protéine VirB8 nous ont permis de caractériser la séquence d'événements entre VirB8 et d'autres protéines VirB, régulant l'assemblage et la fonction du SST4.
3

Molécules anti-facteurs de virulence : étude de l’efficacité et de l’amélioration d’une molécule inhibitrice du système de sécrétion de type IV de Helicobacter pylori

Morin, Claire 08 1900 (has links)
Helicobacter pylori est une bactérie à Gram négatif qui colonise plus de 50% de la population humaine. Cette bactérie est l'un des pathogènes les plus présents dans la population et la colonisation se fait dans l'enfance et l'adolescence. H. pylori est responsable de l'apparition de maladies gastriques chez l'humain comme des ulcères gastriques, mais aussi des cancers gastriques. Plusieurs mécanismes contribuent aux maladies gastriques dont une infection chronique à long terme ainsi que des facteurs de virulence comme le système de sécrétion de type 4 (SST4). Le SST4 forme une seringue protéique utilisée par la bactérie pour injecter la protéine CagA dans les cellules humaines. Cette protéine a été la première protéine bactérienne classifiée comme une oncoprotéine par sa capacite à interférer et modifier de nombreuses fonctions et signaux métaboliques des cellules épithéliales gastriques. Afin d'éradiquer Helicobacter, une antibiothérapie est utilisée, cependant depuis les 10 dernières années plus de 50% des bactéries isolées de patients ont été identifiés comme étant porteuses de résistances contre aux moins un antibiotique de première ligne. L’utilisation de petites molécules organiques capables d'interférer avec les facteurs de virulence est une alternative intéressante à la thérapie aux antibiotiques. L'utilisation de ces molécules possède des avantages dont la faible pression de sélection de résistance parce qu’elles n’impactent pas des fonctions vitales des bactéries. Le SST4 de H. pylori est composé de nombreuses protéines essentielles qui pourraient être de potentielles cibles pour des molécules inhibitrices. Nous avons choisi la cible Cagα, une ATPase homologue à VirB11 de Agrobacterium tumefaciens. Cette protéine est essentielle pour l’injection de CagA. Précédemment, notre laboratoire a identifié une petite molécule nommée 1G2 qui était capable d’interagir avec Cagα et de diminuer l’induction de l’interleukine 8 produit par les cellules gastriques lors de l’infection par des souches de H. pylori possédant un SST4 fonctionnel. A partir d’une structure cristallographique de Cagα liée à 1G2 et nous avons créé des protéines Cagα avec des mutations aux site de liaison de 1G2. En utilisant la fluorimétrie différentielle à balayage (DSF) nous avons pu identifier les acides aminés qui contribuent à la liaison de 1G2 (K41, R73 et F39). Basé sur cette information nous avons utilisé la chimie médicinale pour créer une librairie de molécules dérivées de 1G2 dans le but d’identifier des inhibiteurs plus puissants. Après avoir éliminé les molécules ayant un effet toxique sur les cellules gastriques et H. pylori, nous avons sélectionné cinq molécules (1313, 1338, 2886, 2889 et 2902) qui inhibent la production d’IL-8 plus que 1G2 dans notre modèle d’infection cellulaire. Nous avons montré par DSF que les molécules interagissent toujours avec Cagα et 1338, 2889 et 2902 sont des inhibiteurs plus puissants de son activité d’ATPase. Avec le modèle d’infection, nous avons déterminé que les cinq molécules n’affectent par la présence de CagA dans le lysat de l’infection. Cependant, nous avons observé par microscopie électronique à balayage que le SST4 pilus n’était pas présent en présence des inhibiteurs. En plus, nous avons testé les effets de 1G2 sur des souches de H. pylori résistantes, à un ou plusieurs antibiotiques de première ligne, isolées de biopsie gastriques de patients. Comme dans le cas de la bactérie modèle de laboratoire, nous avons observé une diminution de l’induction des IL-8 lors de l’infection ainsi qu’une inhibition de la formation du SST4 pilus. Nous avons aussi identifié que le gène de la protéine Cagα d’une des bactéries résistantes à 1G2 (souche #3822) porte un remplacement de R73 à K ce qui pourrait expliquer la résistance à 1G2. Pour conclure, nous avons dans cette étude caractérisé le site de liaison de 1G2 à Cagα et nous avons identifié des molécules qui sont plus puissantes comme inhibiteurs que 1G2. / Helicobacter pylori is a Gram-negative bacterium that colonizes more than 50% of the human population. This bacterium is one of the most common pathogens in the population and colonization occurs in childhood and adolescence. H. pylori is implicated in the manifestation of gastric diseases in humans such as gastric ulcers and also gastric cancer. Several mechanisms are involved in the formation of gastric diseases including long-term chronic infection as well as virulence factors such as the type 4 secretion system (T4SS). The T4SS forms a protein syringe used by the bacteria to inject the protein CagA into mammalian cells. This protein is the first bacterial protein classified as an oncoprotein by its ability to interact with numerous metabolic functions of gastric epithelial cells. To eradicate Helicobacter, antibiotic therapy is used, but for the last 10 years more than 50% of the bacteria isolated from patients have been identified as carrying resistance against at least one first-line antibiotic. The use of small molecules capable of interfering with virulence factors is being studied as an alternative to antibiotic therapy. The use of these molecules has many advantages, and they may cause lower selection pressure for resistance than antibiotics. The H. pylori T4SS is composed of many essential proteins that could be potential targets for inhibitory molecules. We chose the target Cagα, an ATPase homologous to the model VirB11 from Agrobacterium tumefaciens. This protein is essential for the injection of CagA. Previously, our laboratory identified a small molecule coined 1G2 that interacts with Cagα and decreases the induction of interleukin-8 produced by gastric cells upon infection with H. pylori strains with functional T4SS. Based on a crystallographic study of Cagα bound to 1G2, we created Cagα proteins with mutations at the 1G2 binding site. Using differential scanning fluorimetry, we identified amino acids that contribute to 1G2 binding (K41, R73 and F39). Based on these observations, we used medicinal chemistry to create a library of molecules derived from 1G2 to create more potent inhibitors. After eliminating the molecules with a toxic effect on gastric cells and H. pylori growth, we selected five molecules with stronger effects than 1G2 on IL8 induction in our cell infection model (1313, 1338, 2886, 2889 and 2902). We observed by DSF that the molecules interact with Cagα and 1338, 2889 and 2902 are stronger inhibitors of the ATPase 8 activity than 1G2. With our infection model, we determined that the five molecules do not affect the presence of CagA. However, by scanning electron microscopy we observed that the T4SS pilus was not present. In addition to the tests on a laboratory model bacterium, we evaluated 1G2 on resistant strains of H. pylori isolated from gastric biopsy from patients. Similar to the laboratory model bacterium, 1G2 decreased IL-8 induction and inhibited T4SS pilus formation. We have also identified that strain #3822 that is resistant to 1G2 carries a R73 to K mutation in the Cagα gene, which could explain the 1G2 resistance. To conclude, we have here characterized the 1G2 binding site on Cagα and we created inhibitors that are more potent than 1G2.
4

Analyse du rôle de l’interaction de VirB6 avec VirB10 dans le système de sécrétion de type IV

Mary, Charline 04 1900 (has links)
No description available.
5

Rôles des voies de signalisation à di-GMP cyclique chez Legionella pneumophila / Roles of cyclic di-GMP signaling pathways in Legionella pneumophila

Allombert, Julie 15 September 2014 (has links)
Legionella pneumophila est une bactérie aquatique qui prolifère en se répliquant à l’intérieur de cellules amibiennes. Elle peut persister dans ces environnements en vivant en communauté sous forme de biofilms. L’inhalation par l’Homme d’eau contaminée, vaporisée par les réseaux d’eau chaude ou les tours aéro‐réfrigérantes, peut mener à l’infection des macrophages pulmonaires qui se traduit par une grave pneumonie appelée légionellose. Le di‐GMP cyclique (diGMPc) est impliqué, chez diverses espèces bactériennes, dans la transition entre les modes de vie mobiles et sessiles, et chez certains pathogènes, dans la régulation de la virulence. Mon travail de thèse vise à démontrer l’implication des voies de signalisation à diGMPc dans le contrôle de la virulence et de la formation de biofilms par L. pneumophila. Cette implication a été étudiée grâce à l’inactivation systématique de chacun des gènes codant les protéines du métabolisme du diGMPc chez la souche L. pneumophila Lens. Notre étude a révélé que trois de ces protéines, Lpl0780, Lpl0922 et Lpl1118, sont spécifiquement requises pour le contrôle de la virulence et, plus particulièrement, pour la survie précoce lors de l’infection de cellules‐hôtes via l’orchestration de la sécrétion de facteurs de virulence dans la cellule‐hôte. Lpl1118 participerait également à la biogénèse de la vacuole de réplication. Cinq autres de ces protéines sont impliquées dans la régulation de la formation et de l’architecture des biofilms. L’une d’elles est, plus particulièrement, requise pour la formation de biofilms en présence d’oxyde nitrique. Ces résultats contribuent à une meilleure compréhension de l’organisation complexe et spécifique des voies de signalisation à diGMPc chez L. pneumophila et pourraient permettre d’envisager une lutte plus efficace contre ce pathogène / Legionella pneumophila is a bacterium that proliferates in fresh water environments through the replication within amoebas. These bacteria can persist in these environments through biofilm formation. The inhalation of aerosolized contaminated water through hot water systems or cooling towers can induce the infection of human lungs, leading to a severe pneumonia called legionellosis. Cyclic di‐GMP (c‐di‐GMP) in involved, in various bacterial species, in the motility‐to‐sessility transition, and in some pathogens, in virulence control. My work aims to demonstrate the involvement of signaling pathways that use c‐di‐GMP in virulence control and biofilm formation of L. pneumophila. This involvement was investigated by systematically inactivating each gene encoding a c‐di‐GMP‐metabolizing enzyme in L. pneumophila Lens strain. Our work revealed that 3 of these proteins, Lpl0780, Lpl0922 and Lpl1118 are specifically involved in virulence control and, particularly, in the early survival during host cell infection through the orchestration of virulence factors secretion within host cell. Lpl1118 is particularly required for replicative vacuole biogenesis. Five other proteins, participate in the formation and architecture of biofilms. One of them is more specifically involved in biofilm formation in the presence of nitric oxide. These results help to better understand the complexity and the specificity of c‐di‐GMP signaling pathways in L. pneumophila and should allow the exploration of more effective ways to fight this pathogen
6

Caractérisation biochimique, structurale et inhibition du système de sécrétion de type IV par l’étude des protéines VirB8

Casu, Bastien 03 1900 (has links)
No description available.

Page generated in 0.0957 seconds