Spelling suggestions: "subject:"systèmes tempsréel"" "subject:"systèmes tempsréel.le""
11 |
Research on virtualisation technlogy for real-time reconfigurable systems / Étude des techniques de virtualisation pour des systèmes temps-réel et reconfigurables dynamiquementXia, Tian 05 July 2016 (has links)
Cette thèse porte sur l'élaboration d'un micro-noyau original de type hyperviseur, appelé Ker-ONE, permettant de gérer la virtualisation pour des systèmes embarqués sur des plateformes de type SoC et fournissant un environnement pour les machines virtuelles en temps réel. Nous avons simplifié l'architecture du micro-noyau en ne gardant que les caractéristiques essentielles requises pour la virtualisation, et fortement réduit la complexité de la conception du noyau. Sur cette base, nous avons mis en place un mécanisme capable de gérer des ressources reconfigurables dans un système supportant des machines virtuelles. Les accélérateurs matériels reconfigurables sont mappés en tant que dispositifs classiques dans chaque machine. Grâce à une gestion efficace de la mémoire dédiée, nous détectons automatiquement le besoins de ressources et permettons une allocation dynamique des ressources sur FPGA. Suite à diverses expériences et évaluations sur la plateforme Zynq-7000, combinant ARM et ressources FPGA, nous avons montré que Ker-ONE ne dégrade que très peu les performances en termes de temps d'exécution. Les surcoûts engendrés peuvent généralement être ignorés dans les applications réelles. Nous avons également étudié l'ordonnançabilité temps réel dans les machines virtuelles. Les résultats montrent que le respect de l'échéance des tâches temps réel est garanti. Nous avons également démontré que le noyau proposé est capable d'allouer des accélérateurs matériels très rapidement. / This thesis describes an original micro-kernel that manages virtualization and that provides an environment for real-time virtual machines. We have simplified the micro-kernel architecture by only keeping critical features required for virtualization, and massively reduced the kernel design complexity. Based on this micro-kernel, we have introduced a framework capable of DPR resource management in a virtual machine system. DPR accelerators are mapped as ordinary devices in each VM. Through dedicated memory management, our framework automatically detects the request for DPR resources and allocates them dynamically. According to various experiments and evaluations on the Zynq-7000 platform we have shown that Ker-ONE causes very low virtualization overheads, which can generally be ignored in real applications. We have also studied the real-time schedulability in virtual machines. The results show that RTOS tasks are guaranteed to be scheduled while meeting their intra-VM timing constraints. We have also demonstrated that the proposed framework is capable of virtual machine DPR allocation with low overhead.
|
12 |
Adaptability and reconfiguration of automotive embedded systems / Adaptabilité et reconfiguration des systémes embarqués automobilesBelaggoun, Amel 10 October 2017 (has links)
Les véhicules modernes sont de plus en plus informatisés pour satisfaire les exigences de sureté les plus strictes et pour fournir de meilleures expériences de conduite. Par conséquent, le nombre d'unités de contrôle électronique (ECU) dans les véhicules modernes a augmenté de façon continue au cours des dernières années. En outre, les applications à calcul complexe offrent une demande de calcul plus élevée sur les ECU et ont des contraintes de temps-réel dures et souples, d'où le besoin d’une approche unifiée traitant les deux types de contraintes. Les architectures multi-cœur permettent d'intégrer plusieurs niveaux de criticité de sureté sur la même plate-forme. De telles applications ont été conçues à l'aide d'approches statiques; cependant, les approches dites statiques ne sont plus réalisables dans des environnements très dynamiques en raison de la complexité croissante et les contraintes de coûts strictes, d’où la nécessite des solutions plus souples. Cela signifie que, pour faire face aux environnements dynamiques, un système automobile doit être adaptatif; c'est-à-dire qu'il doit pouvoir adapter sa structure et / ou son comportement à l'exécution en réponse à des changements fréquents dans son environnement. Ces nouvelles exigences ne peuvent être confrontées aux approches actuelles des systèmes et logiciels automobiles. Ainsi, une nouvelle conception de l'architecture électrique / électronique (E / E) d'un véhicule doit être développé. Récemment, l'industrie automobile a convenu de changer la plate-forme AUTOSAR actuelle en "AUTOSAR Adaptive Platform". Cette plate-forme est développée par le consortium AUTOSAR en tant que couche supplémentaire de la plate-forme classique. Il s'agit d'une étude de faisabilité continue basée sur le système d'exploitation POSIX qui utilise une communication orientée service pour intégrer les applications dans le système à tout moment. L'idée principale de cette thèse est de développer de nouveaux concepts d'architecture basés sur l'adaptation pour répondre aux besoins d'une nouvelle architecture E / E pour les véhicules entièrement électriques (VEF) concernant la sureté, la fiabilité et la rentabilité, et les intégrer à AUTOSAR. Nous définissons l'architecture ASLA (Adaptive System Level in AUTOSAR), qui est un cadre qui fournit une solution adaptative pour AUTOSAR. ASLA intègre des fonctions de reconfiguration au niveau des tâches telles que l'addition, la suppression et la migration des tâches dans AUTOSAR. La principale différence entre ASLA et la plate-forme Adaptive AUTOSAR est que ASLA permet d'attribuer des fonctions à criticité mixtes sur le même ECU ainsi que des adaptations bornées temps-réel, tant dis que Adaptive AUTOSAR sépare les fonctions temps réel critiques (fonctionnant sur la plate-forme classique) des fonctions temps réel non critiques (fonctionnant sur la plate-forme adaptative). Pour évaluer la validité de notre architecture proposée, nous fournissons une implémentation prototype de notre architecture ASLA et nous évaluons sa performance à travers des expériences. / Modern vehicles have become increasingly computerized to satisfy the more strict safety requirements and to provide better driving experiences. Therefore, the number of electronic control units (ECUs) in modern vehicles has continuously increased in the last few decades. In addition, advanced applications put higher computational demand on ECUs and have both hard and soft timing constraints, hence a unified approach handling both constraints is required. Moreover, economic pressures and multi-core architectures are driving the integration of several levels of safety-criticality onto the same platform. Such applications have been traditionally designed using static approaches; however, static approaches are no longer feasible in highly dynamic environments due to increasing complexity and tight cost constraints, and more flexible solutions are required. This means that, to cope with dynamic environments, an automotive system must be adaptive; that is, it must be able to adapt its structure and/or behaviour at runtime in response to frequent changes in its environment. These new requirements cannot be faced by the current state-of-the-art approaches of automotive software systems. Instead, a new design of the overall Electric/Electronic (E/E) architecture of a vehicle needs to be developed. Recently, the automotive industry agreed upon changing the current AUTOSAR platform to the “AUTOSAR Adaptive Platform”. This platform is being developed by the AUTOSAR consortium as an additional product to the current AUTOSAR classic platform. This is an ongoing feasibility study based on the POSIX operating system and uses service-oriented communication to integrate applications into the system at any desired time. The main idea of this thesis is to develop novel architecture concepts based on adaptation to address the needs of a new E/E architecture for Fully Electric Vehicles (FEVs) regarding safety, reliability and cost-efficiency, and integrate these in AUTOSAR. We define the ASLA (Adaptive System Level in AUTOSAR) architecture, which is a framework that provides an adaptive solution for AUTOSAR. ASLA incorporates tasks-level reconfiguration features such as addition, deletion and migration of tasks in AUTOSAR. The main difference between ASLA and the Adaptive AUTOSAR platform is that ASLA enables the allocation of mixed critical functions on the same ECU as well as time-bound adaptations while adaptive AUTOSAR separates critical, hard real-time functions (running on the classic platform) from non-critical/soft-real-time functions (running on the adaptive platform). To assess the validity of our proposed architecture, we provide an early prototype implementation of ASLA and evaluate its performance through experiments.
|
13 |
Formal Verification and Validation of Convex Optimization Algorithms For model Predictive Control / Vérification formelle et validation des algorithmes d'optimisation convexe appliqués à la commande prédictiveCohen, Raphaël P. 03 December 2018 (has links)
L’efficacité des méthodes d’optimisation modernes, associée à l’augmentation des ressources informatiques, a conduit à la possibilité d’utiliser ces algorithmes d’optimisation en temps réel agissant dans des rôles critiques. Cependant, cela ne peut se produire sans porter une certaine attention à la validité de ces algorithmes. Ce doctorat traite de la vérification formelle des algorithmes d'optimisation convexe lors qu'ils sont utilisés pour la guidance de systèmes dynamiques. En outre, nous démontrons comment les preuves théoriques des algorithmes d'optimisation en temps réel peuvent être utilisées pour décrire les propriétés fonctionnelles au niveau du code, les rendant ainsi accessibles à la communauté des méthodes formelles. / The efficiency of modern optimization methods, coupled with increasing computational resources, has led to the possibility of real-time optimization algorithms acting in safety critical roles. However, this cannot happen without addressing proper attention to the soundness of these algorithms. This PhD thesis discusses the formal verification of convex optimization algorithms with a particular emphasis on receding-horizon controllers. Additionally, we demonstrate how theoretical proofs of real-time optimization algorithms can be used to describe functional properties at the code level, thereby making it accessible for the formal methods community.
|
14 |
Synthèse de gestionnaires mémoire pour applications Java temps-réel embarquéesSalagnac, Guillaume 10 April 2008 (has links) (PDF)
La problématique abordée dans ce travail est celle de la gestion mémoire automatique pour des programmes Java temps-réel embarqués. Dans des langages comme le C ou le C++, la mémoire est typiquement gérée explicitement par le programmeur, ce qui est la source de nombreuses erreurs d'exécution causées par des manipulations hasardeuses. Le coût de correction de telles erreurs est très important car ces erreurs sont rarement reproductibles et donc difficiles à appréhender. En Java la gestion mémoire est entièrement automatique, ce qui facilite considérablement le développement. Cependant, les techniques classiques de recyclage de la mémoire, typiquement basées sur l'utilisation d'un ramasse-miettes, sont souvent considérées comme inapplicables dans le contexte des applications temps-réel embarquées, car il est très difficile de prédire leur temps de réponse. Cette incompatibilité est un frein important à l'adoption de langages de haut niveau comme Java dans ce domaine.<br />Pour résoudre le problème de la prévisibilité du temps d'exécution des opérations mémoire, nous proposons une approche fondée sur l'utilisation d'un modèle mémoire en régions. Cette technique, en groupant physiquement les objets de durées de vie similaires dans des zones gérées d'un seul bloc, offre en effet un comportement temporel prévisible. Afin de décider du placement des objets dans les différentes régions, nous proposons un algorithme d'analyse statique qui calcule une approximation des relations de connexion entre les objets. Chaque structure de données est ainsi placée dans une région distincte. L'analyse renvoie également au programmeur des informations sur le comportement mémoire du programme, de façon à le guider vers un style de programmation propice à la gestion mémoire en régions, tout en pesant le moins possible sur le développement. <br />Nous avons implanté un gestionnaire mémoire automatique en régions dans la machine virtuelle JITS destinée aux systèmes embarqués à faibles ressources. Les résultats expérimentaux ont montré que notre approche permet dans la plupart des cas de recycler la mémoire de façon satisfaisante, tout en présentant un comportement temporel prévisible. Le cas échéant, l'analyse statique indique au développeur quels sont les points problématiques dans le code, afin de l'aider à améliorer son programme.
|
15 |
Architectures pour la stéréovision passive dense temps réel : application à la stéréo-endoscopieNaoulou, Abdelelah 05 September 2006 (has links) (PDF)
L'émergence d'une robotique médicale en chirurgie laparoscopique destinée à automatiser et améliorer la précision des interventions nécessite la mise en Suvre d'outils et capteurs miniaturisés intelligents dont la vision 3D temps réel est un des enjeux. Bien que les systèmes de vision 3D actuels représentent un intérêt certain pour des manipulations chirurgicales endoscopiques précises, ils ont l'inconvénient de donner une image 3D qualitative plutôt que quantitative, laquelle nécessite un appareillage spécifique rendant l'acte chirurgical inconfortable et empêche le couplage avec un calculateur dans le cadre d'une chirurgie assistée. Nous avons développé dans la cadre du projet interne « PICASO » (Plate-forme d'Intégration de CAméras multiSenOrielles) dont les enjeux scientifiques concernent le conditionnement de capteurs intégrés et le traitement et la fusion d'images multi spectrales, un dispositif de vision 3D compatible avec les temps d'exécution des actes chirurgicaux. Ce système est basé sur le principe de la stéréoscopie humaine et met en Suvre des algorithmes de stéréovision passive dense issus de la robotique mobile. Dans cette thèse nous présentons des architectures massivement parallèles, implémentées dans un circuit FPGA, et capables de fournir des images de disparité à la cadence de 130 trames/sec à partir d'images de résolution 640x480 pixels. L'algorithme utilisé est basé sur la corrélation Census avec une fenêtre de calcul de 7 x 7 pixels. Celui-ci a été choisi pour ses performances en regard de sa simplicité de mise en Suvre et la possibilité de paralléliser la plupart des calculs. L'objectif principal de cet algorithme est de rechercher, pour chaque point, la correspondance entre deux images d'entrées (droite et gauche) prises de deux angles de vue différents afin d'obtenir une "carte de disparités" à partir de laquelle il est possible de reconstruire la scène 3D. Pour mettre en Suvre cet algorithme et tenir les contraintes « temps réel » nous avons développé des architectures en « pipeline » (calcul des moyennes, transformation Census, recherche des points stéréo-correspondants, vérification droite-gauche, filtrage...). L'essentiel des différentes parties qui composent l'architecture est décrit en langage VHDL synthétisable. Enfin nous nous sommes intéressés à la consommation en termes de ressources FPGA (mémoires, macro-cellules) en fonction des performances souhaitées.
|
16 |
Contrôle d'exécution pour robots mobiles autonomes: architecture, spécification et validationDE MEDEIROS, Adelardo A.D. 19 February 1997 (has links) (PDF)
Le travail présenté dans le mémoire traite des problèmes liés au contrôle d'exécution des actions des robots mobiles autonomes. Une première partie présente l'architecture de contrôle globale et la compare à d'autres approches. On décrit les niveaux hiérarchiques qui la constituent et leurs rôles dans le fonctionnement du système. Le niveau inférieur, composé d'un ensemble de modules, rassemble les fonctions de perception, de modélisation et d'action du système. La seconde partie présente le niveau exécutif. L'exécutif doit suivre l'exécution des fonctions, résoudre les conflits entre modules, accomplir certaines actions réflexes et maintenir une information sur l'utilisation des ressources non partageables du robot. Il peut être vu comme un ensemble d'automates, qui interagissent et changent d'état selon les requêtes qui arrivent du niveau supérieur et les répliques qui proviennent des modules. La mise en oeuvre de l'exécutif utilise le système à base de règles KHEOPS. La compilation faite par KHEOPS permet, à partir d'un ensemble de variables d'entrée et de sortie et des règles qui les relient, d'obtenir un arbre de décision équivalent et de profondeur connue, ce qui garantit un temps d'exécution borné pour l'exécutif. La compilation permet aussi de garantir certaines propriétés logiques des automates mis en place. La troisième partie présente les relations entre le niveau fonctionnel (modules et exécutif) et la couche immédiatement supérieure, le niveau tache. Ce niveau est basé sur le système PRS, qui transforme des taches de haut niveau d'abstraction en procédures d'actions reconnues par le niveau fonctionnel et surveille leur exécution. Le mémoire présente une équivalence entre un sous-ensemble de PRS et les réseaux de Pétri colorés, ce qui permet de faire une vérification du niveau tache quand l'équivalence existe. Enfin, on présente quelques rés ultats de la mise en oeuvre expérimentale de ces travaux avec le robot Hilare 2.
|
17 |
Adaptabilité et reconfiguration des systèmes temps-réel embarquésBoukhanoufa, Mohamed-Lamine 26 September 2012 (has links) (PDF)
Les systèmes temps réel peuvent être grands, distribués et avoir un environnement dynamique. Cela exige la mise en place de différents modes de fonctionnement et techniques de fiabilité. Par ailleurs, ces différents changements dynamiques d'architecture et de comportement ont un impact sur les caractéristiques temporelles des systèmes qui nécessitent une étude particulière de la capacité des comportements d'adaptation à garantir les contraintes fixées aux systèmes. Le travail présenté dans cette thèse est focalisé sur la spécification de l'adaptabilité d'un système temps réel et l'étude sur de jeux de configurations prédéfinis de l'impact temporel des actions d'adaptation dynamique. Pour cela, nous présentons une méthodologie outillée basée sur la notion de Mode du profil MARTE. Chaque mode représente un comportement possible du système pour un environnement bien déterminé associé à une configuration logicielle. L'approche développée propose de modéliser le comportement adaptatif à travers la définition du contexte, de la variabilité, des opérations de reconfigurations et de la configuration de base. L'analyse d'ordonnançabilité est ensuite effectuée au niveau du modèle en intégrant l'impact des comportements d'adaptation. Deux paradigmes de modélisation peuvent alors être exploités pour effectuer cette analyse : les requêtes et les flots de données. Cela permet de vérifier que les contraintes temporelles de notre système resteront satisfaites en intégrant les opérations de reconfiguration issues du comportement adaptatif. Enfin, l'approche permet de générer des implantations des comportements adaptatifs à partir des modèles afin d'automatiser l'intégration des mécanismes d'adaptation dans les systèmes temps réel.
|
18 |
Contribution à la mise en oeuvre d'un moteur d'exécution de modèles UML pour la simulation d'applications temporisées et concurrentes.Benyahia, Abderraouf 26 November 2012 (has links) (PDF)
L'Ingénierie Dirigée par les Modèles (IDM) place les modèles au cœur des processus de d'ingénierie logicielle et système. L'IDM permet de maitriser la complexité des logiciels et d'améliorer la rapidité et la qualité des processus de développement. Le Model Driven Architecture (MDA) est une initiative de l'Object Management Group (OMG) définissant un cadre conceptuel, méthodologique et technologique pour la mise-en-œuvre de flots de conception basés sur l'IDM. Le MDA s'appuie particulièrement sur une utilisation intensive des formalismes normalisés par l'OMG pour la mise-en-œuvre des flots IDM (UML pour la modélisation, QVT pour les transformations, etc.). Ce travail s'intéresse à la sémantique d'exécution du langage UML appliqué à l'exécution de modèles des applications temps réel embarquées. Dans ce contexte, l'OMG propose une norme qui définit un modèle d'exécution pour un sous-ensemble d'UML appelé fUML (foundational UML subset). Ce modèle d'exécution définit une sémantique précise non ambigüe facilitant la transformation de modèles, l'analyse, l'exécution de modèles et la génération de code. L'objectif de cette thèse est d'étudier et mettre-en-œuvre un moteur d'exécution de modèles UML pour les systèmes temps réel embarqués en explicitant les hypothèses portant sur la sémantique d'exécution des modèles à un niveau d'abstraction élevé afin de permettre l'exécution d'un modèle le plus tôt possible dans le flot de conception de l'application. Pour cela, nous avons étendu le modèle d'exécution défini dans fUML, en apportant une contribution sur trois aspects importants concernant les systèmes temps réel embarqués : * Gestion de la concurrence: fUML ne fournit aucun mécanisme pour gérer la concurrence dans son moteur d'exécution. Nous répondons à ce problème par l'introduction d'un ordonnanceur explicite permettant de contrôler les différentes exécutions parallèles, tout en fournissant la flexibilité nécessaire pour capturer et simuler différentes politiques d'ordonnancements. * Gestion du temps : fUML ne fixe aucune hypothèse sur la manière dont les informations sur le temps sont capturées ainsi que sur les mécanismes qui les traitent dans le moteur d'exécution. Pour cela, nous introduisons une horloge, en se basant sur le modèle de temps discret, afin de prendre en compte les contraintes temporelles dans les exécutions des modèles. * Gestion des profils : les profils ne sont pas pris en compte par ce standard, cela limite considérablement la personnalisation du moteur d'exécution pour prendre en charge de nouvelles variantes sémantiques. Pour répondre à ce problème, nous ajoutons les mécanismes nécessaires qui permettent l'application des profils et la capture des extensions sémantiques impliquées par l'utilisation d'un profil. Une implémentation de ces différentes extensions est réalisée sous forme d'un plugin Eclipse dans l'outil de modélisation Papyrus UML.
|
19 |
Vers l'utilisation des réseaux de Petri temporels étendus pour la vérification de systèmes temps-réel décrits en RT-LOTOSSadani, Tarek 03 May 2007 (has links) (PDF)
Cette thèse porte sur la vérification formelle de systèmes temps réel et procède par transformation de modèle entre l'algèbre de processus temporisée RT-LOTOS et les réseaux de Petri temporels étendus par des chronomètres et des données. Des schémas de traduction de RT-LOTOS vers ces réseaux de Petri étendus sont proposés et formellement prouvés. L'approche transformationnelle développée pour la partie " contrôle " de RT-LOTOS est étendue à la partie " données ". Le langage RT-LOTOS est lui même enrichi d'un opérateur de suspension reprise qui permet de modéliser et vérifier une classe plus large de systèmes temps réel Plusieurs études de cas attestent de l'efficacité des schémas de traduction proposés par rapport à des outils LOTOS ou RT-LOTOS développés antérieurement. L'approche proposée s'avère transposable à d'autres langages de modélisation en particulier le profil UML temps réel TURTLE (Timed UML and RT-LOTOS Environment).
|
20 |
Implémentation rigoureuse des systèmes temps-réelsAbdellatif, Tesnim 05 June 2012 (has links) (PDF)
Les systèmes temps-réels sont des systèmes qui sont soumis à "des contraintes de temps", comme par exemple le délais de réponse d'un système à un événement physique. Souvent les temps de réponse sont de l'ordre du milliseconde et parfois même du microseconde. Construire des systèmes temps-réels nécessite l'utilisation de méthodologies de conception et de mise en œuvre qui garantissent la propriété de respect des contraintes de temps, par exemple un système doit réagir dans les limites définies par l'utilisateur tels que les délais et la périodicité. Un délai non respecté dans systèmes temps-réel critique est catastrophique, comme par exemple dans les systèmes automobiles. Si un airbag se déclanche tard dans un accident de voiture, même quelques millisecondes trop tard peuvent conduire à des répercussions graves. Dans les systèmes temps-réels non critiques, une perte significative de performance et de QoS peuvent se produire, comme par exemple dans les réseaux de systèmes multimédia. Contribution: Nous fournissons une méthode de conception rigoureuse des systèmes temps-réel. L'implèmentation est générée à partir d'une application logicielle temps-réel et une plate-forme cible, en utilisant les deux modèles suivants: * Un modèle abstrait représentant le comportement de l'application logicielle en temps réel sous forme d' un automate temporisé. Celui-ci décrit des contraintes temporelles définies par l'utilisateur qui sont indépendantes de la plateforme. Ses transitions sont intemporelles et correspondent à l'exécution des différentes instructions de l'application. * Un modèle physique représentant le comportement du logiciel en temps réel s'exécutant sur une plate-forme donnée. Il est obtenu par l'attribution des temps d'exécution aux transitions du modèle abstrait. Une condition nécessaire pour garantir l'implémentabilité dy système est la "time-safety", c'est à dire, toute séquence d'exécution du modèle physique est également une séquence d'exécution du modèle abstrait. "Time-safety" signifie que la plate-forme est assez rapide pour répondre aux exigences de synchronisation de l'application. Comme les temps d'exécution des actions ne sont pas connus avec exactitude, "time-safety" est vérifiée pour les temps d'exécution pire cas es actions en faisant l' hypothèse de la robustesse. La robustesse signifie que la "time-safety" est préservée lorsqu'on augmente la vitesse de la plate-forme d'exécution. Pour des logiciels et plate-forme d'exécution correspondant à un modèle robuste, nous définissons un moteur d'exécution qui coordonne l'exécution du logiciel d'application afin de répondre à ses contraintes temporelles. En outre, en cas de non-robustesse, le moteur d'exécution permet de détecter les violations de contraintes temporelles en arrêtant l'exécution. Nous avons mis en place le moteur d'exécution pour les programmes BIP. Nous avons validé la méthode pour la conception et la mise en œuvre du robot Dala. Nous montrons les avantages obtenus en termes d'utilisation du processeur et l'amélioration de la latence de la réaction.
|
Page generated in 0.0469 seconds