• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 191
  • 137
  • 119
  • 30
  • 24
  • 18
  • 14
  • 7
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 636
  • 95
  • 85
  • 79
  • 75
  • 72
  • 66
  • 53
  • 48
  • 47
  • 45
  • 42
  • 41
  • 39
  • 37
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
171

Dynamic analysis of a floating barge with a liquid container

Feng, Chih-ting 27 May 2010 (has links)
This study is to develop a 2D fully nonlinear numerical wave tank used to investigate the wave-induced dynamic properties of a dual pontoon floating structure (DPFS) with a liquid container on the top. The nonlinear numerical wave tank, developed based on the velocity potential function and the boundary element method (BEM), is to simulate dynamic properties including sway, heave, roll, and tension response. In addition, a physical model of the dual floating pontoon is tested in a hydrodynamic wave tank to validate the numerical model for simulation of wave and structure interaction. In the numerical model, a boundary integral equation method (BIEM) with linear element scheme is applied to establish a 2D fully nonlinear numerical wave tank (NWT). The nonlinear free surface condition is treated by combining the Mixed Eulerian and Lagrangian method (MEL), the fourth-order Runge-Kutta method (RK4) and a cubic spline scheme. The second-order Stokes wave theory is used to generate the velocity flux on the input boundary. Numerical damping zones are deployed at both ends of the NWT to dissipate or absorb the transmitted and reflected waves. Acceleration potential method and modal decomposition method are adopted to solve the unsteady potential functions £X1,t and £X2,t, while the system of motion equation is established according to Newton's 2nd law. Finally, the RK4 is applied to predict the motion of the platform, and the variation of free surface. As for the hydrodynamic laboratory model test, an image process scheme is applied to trace the floating structure motion and the variation of water surface inside the sloshing tank, while the mooring tension is measured by a load cell and stored in a data logger. The comparisons of numerical simulations and experimental data indicate that the numerical predictions are larger than measurements especially near the resonance frequency. This discrepancy is probably due to the fluid viscous effect. To overcome this problem and maintain the calculation efficiency, an uncoupled damping coefficient obtained through a damping ratio (£a=C/Ccr=0.02) is incorporated into the vibration system. Results reveal that responses of body motion near the resonant frequencies of each mode have significantly reduced and close to the measurements. Therefore, the suitable value of the damping ratio for the floating platform is £a=0.02. Then the numerical model with a damping ratio is applied to investigate the dynamic properties of the floating platform for different arrangements, including different mooring angle, spring constant, spacing, and the liquid container. Results demonstrate that the resonant frequency of each mode, responses of body motion and mooring tensions change along with the settings. As a whole, the platform with smaller mooring angle, longer spacing between the pontoons, higher water depth and wider width of the liquid container has relatively stable body motions and less mooring tension. Finally, the comparisons of the effects of random and regular waves on the floating structure illustrate that the variation of water surface in the liquid container is much severe in random waves than in regular waves such that the interaction between liquid and floating structure is more chaotic and thus reduces the amplitude of each response mode. As a result, the mooring tensions for random waves become much gentler than the regular waves. Key words: Boundary integral equation method; fully nonlinear numerical wave tank; dual pontoon floating structure
172

Wave energy capture system - A pitching tank

ZHANG, Yan-ru 26 July 2011 (has links)
In this study we set a pitching fluid tank on a floating platform with two vertical springs on both sides to support it. By assuming that the fluid in the tank is un-compressible and in-viscous and that there are no breaking waves existing, we observe the dynamic responses of the fluid in the tank and the interactions between the tank and the floating platform under wave forces. Using numerical simulations to analyze sloshing forces of the fluid and responses of the floating platform, we compute the work of the couple system in different cases and finally get normalizing results to provide for different sizes. The main purpose of this study is to gather wave power into a composite floating platform via the vibration of the floating and the pitching motion of the tank induced by wave forces, to transform the wave power into mechanical energy, and to reduce the angle of the vibration, making the floating platform stable and improving the safety.
173

A Hopfield-Tank Neural Network Approach to Solving the Mobile Agent Planning Problem

Wang, Jin-Fu 27 June 2006 (has links)
Mobile agent planning (MAP) is increasingly viewed as an important technique of information retrieval systems to provide location aware services of minimum cost in mobile computing environment. Although Hopfield-Tank neural network has been proposed for solving the traveling salesperson problem, little attention has been paid to the time constraints on resource validity for optimizing the cost of the mobile agent. Consequently, we hypothesized that Hopfield-Tank neural network can be used to solve the MAP problem. To test this hypothesis, we modify Hopfield-Tank neural network and design a new energy function to not only cope with the dynamic temporal features of the computing environment, in particular the server performance and network latency when scheduling mobile agents, but also satisfy the location-based constraints such as the starting and end node of the routing sequence must be the home site of the traveling mobile agent. In addition, the energy function is reformulated into a Lyapunov function to guarantee the convergent stable state and existence of the valid solution. The connection weights between the neurons and the activation function of state variables in the dynamic network are devised in searching for the valid solutions. Moreover, the objective function is derived to estimate the completion time of the valid solutions and predict the optimal routing path. Simulations study was conducted to evaluate the proposed model and algorithm for different time variables and various coefficient values of the energy function. The experimental results quantitatively demonstrate the computational power and speed of the proposed model by producing solutions that are very close to the minimum costs of the location-based and time-constrained distributed MAP problem rapidly. The spatio-temporal technique proposed in this work is an innovative approach in providing knowledge applicable to improving the effectiveness of solving optimization problems.
174

Autopilot And Guidance For Anti-tank Imaging Infrared Guided Missiles

Ozcan, Ali Erdem 01 October 2008 (has links) (PDF)
An anti-tank guided missile is a weapon system primarily designed to hit and destroy armored tanks and other armored vehicles. Developed first-generation command-guided and second-generation semi-automatic command guided missiles had many disadvantages and lower hit rates. For that reason, third generation imaging infrared fire-and-forget missile concept is very popular nowadays. In this thesis, mainly, a mathematical model for a fire-and-forget anti-tank missile is developed and a flight control autopilot design is presented using PID and LQR techniques. For target tracking purposes, &ldquo / correlation&rdquo / , &ldquo / centroid&rdquo / and &ldquo / active contour&rdquo / algorithms are studied and these algorithms are tested over some scenarios for maximizing hit rate. Different target scenarios and countermeasures are discussed in an artificially created virtual environment.
175

Modeling And Simulation Of Shaped Charges

Gurel, Eser 01 June 2009 (has links) (PDF)
Shaped charges are explosive devices with a high penetration capability and are used for both civilian and military purposes. In civilian applications shaped charge devices are used in demolition works, oil drilling and mining. In the military applications, shaped charges are used against different kinds of armors, primarily as anti-tank devices. This thesis work involves the modeling and simulation of shaped charge devices, with the focus being on anti-tank warhead design. Both numerical simulation and analytical calculation methods are used to predict shaped charge performance / in the aspects of jet formation, breakup and penetration. The results are compared within themselves and with the data available in the literature. AUTODYN software is used for the numerical simulations. Different solver and modeling alternatives of AUTODYN are evaluated for jet formation and penetration problems. AUTODYN&rsquo / s Euler solver is used to understand how the jet formation is affected by the mesh size and shape and the presence of air as the surrounding medium. Jetting option in the AUTODYN-Euler simulations are used to simulate jet formation as an alternative to simulations performed using AUTODYN&rsquo / s Euler solver. In the jetting option liner elements are modeled as Lagrangian shell elements, rather than Eulerian elements. Analytical codes are written to study the jet formation, breakup and penetration processes. Many alternative formulas that can be used in the analytical calculations are listed and discussed. Parameters of these formulas are varied to investigate their effects on the results. Necessary constants for the analytical formulas are obtained using the results of AUTODYN simulations.
176

Analysis And Control Of Gun Barrel Vibrations

Buyukcivelek, Firat 01 December 2011 (has links) (PDF)
Modern battle tanks are equipped with gun stabilization systems using gyro and encoder data to stabilize the gun barrel, although these systems are very sensitive and reliable, these systems assume the gun barrel as a rigid beam, and do not use information from
177

Fully nonlinear wave-body interactions by a 2D potential numerical wave tank

Koo, Weoncheol 15 November 2004 (has links)
A 2D fully nonlinear Numerical Wave Tank (NWT) is developed based on the potential theory, mixed Eulerian-Lagrangian (MEL) time marching scheme, and boundary element method (BEM). Nonlinear Wave deformation and wave forces on stationary and freely floating bodies are calculated using the NWT. For verification, the computed mean, 1st, 2nd, and 3rd order wave forces on a single submerged cylinder are compared with those of Chaplin's experiment, Ogilvie's 2nd-order theory, and other nonlinear computation called high-order spectral method. Similar calculations for dual submerged cylinders are also conducted. The developed fully nonlinear NWT is also applied to the calculations of the nonlinear pressure and force of surface piercing barge type structures and these obtained results agree with experimental and theoretical results. Nonlinear waves generated by prescribed body motions, such as wedge type wave maker or land sliding in the coastal slope area, can also be simulated by the developed NWT. The generated waves are in agreement with published experimental and numerical results. Added mass and damping coefficients can also be calculated from the simulation in time domain. For the simulation of freely floating barge-type structure, only fully nonlinear time-stepping scheme can accurately produce nonlinear body motions with large floating body simulations. The acceleration potential method, which was developed by Tanizawa (1996), is known to be the most accurate, consistent and stable. Using acceleration potential method, in the present study, the series of motions and drift forces were calculated over a wide range of incident wave frequencies including resonance region. To guarantitatively compare the nonlinear contribution of free-surface and body-boundary conditions, the body-nonlinear-only case with linearized free-surface condition is separately simulated. All the floating body motions and forces are in agreement with experimental results. Finally, the NWT is extended to fully nonlinear wave-body-current interactions of freely floating bodies, which has not been published in the open literature until now.
178

Study on the Floating Platform for Cage Aquaculture

Tang, Hung-jie 23 December 2008 (has links)
This paper is to investigate the wave-induced dynamic properties of the floating platform for cage aquaculture. Considering the calculation efficiency and its applicability, this problem is simplified by: (1) assuming the flow field is inviscid, incompressible and irrotational; (2) the form drag and inertia drag on the fish net is calculated by the modified Morison equation (or Morison type equation of relative motion), including the material and geometric properties; (3) the moorings is treated as a symmetric linear spring system and the influence of hydrodynamic forces on the mooring lines is neglected; and (4) the net-volume is assumed as un-deformable to avoid the inversely prolonging computing time because the mass of fish net with is too light comparing with the mass of floating platform and cause the marching time step tremendously small to reach the steady-state condition which may lead to larger numerical errors (e.g. truncation errors) in computation. The BIEM with linear element scheme is applied to establish a 2D fully nonlinear numerical wave tank (NWT). The nonlinear free surface condition is treated by combining the Mixed Eulerian and Lagrangian method (MEL), the fourth-order Runge-Kutta method (RK4) and the cubic spline scheme. The second-order Stokes wave theory is adopted to give the velocity on the input boundary. Numerical damping zones are deployed at both ends of the NWT to dissipate or absorb the transmitted and reflected wave energy. The velocity and acceleration fields should be solved simultaneously in order to obtain the wave-induced dynamic property of the floating platform. Thus, both the acceleration potential method and modal decomposition method are adopted to solve the wave forces on the floating body, while the wave forces on the fish net are calculated by the modified Morison equation. According to Newton¡¦s second law, the total forces on the gravity center of the floating platform form the equation of motion. Finally, the RK4 is applied to predict the displacement and velocity of the platform. Firstly, the NWT is validated by comparing the wave elevation, internal velocity and acceleration with those from the second-order Stokes wave theory. Moreover, the numerical damping zone is suitable for long time simulation with a wide range of wave depth. The simulated results on wave-body interactions of fixed or freely floating body also indicate good agreement with those of other published results. Secondly, in the case of the interaction of waves and the floating platform, the simulated results show well agreement with experimental data, except at the vicinity of resonant frequency of roll and heave motions. This discrepancy is due to the fluid viscous effect. To overcome this problem and maintain the calculation efficiency, an uncoupled damping coefficient obtained by a damping ratio (£i=0.1 ) is incorporated into the vibration system. Results reveal that responses of body motion near the resonant frequencies of each mode have significant reduction and close to the experimental data. Moreover, the results are also consistent well with experiments in different wave height, mooring angle, water depth either with or without fish net. Therefore, the suitable value of the damping ratio for the floating platform is £i=0.1. Finally, the present model is applied to investigate the dynamic properties of the floating platform under different draft, width, spacing, spring constant, mooring angle and depth of fish net. Results reveal that the resonant frequency and response of body motion, mooring force, reflection and transmission coefficients and wave energy will be changed. According to the resonant response, the platform with shallower draft, larger width, longer spacing between two pontoons, smaller spring constants, or deeper depth of fish net has more stable body motions and smaller mooring forces. Irregular wave cases are presented to illustrate the relationship with the regular wave cases. Results indicate that the dynamic responses of body motion and the reflection coefficient in irregular waves have similar trend with regular waves. However, in the irregular wave cases, the resonant frequency is moved to the higher frequency. Similarly, resonant response function is smaller but wider, which is due to the energy distribution in the wave spectrum.
179

Experimental Study of a new sloshing liquid U-column wave power converter in water-tank

Wu, Tzu-Ching 10 September 2009 (has links)
For an offshore platform structure applied to wave-energy conversion system, in order to catch the maximum waves to generate more powers, similar to wind-energy power generators, a range of angles for the devices normal to the propagating direction of incident waves is required, particularly when the power converting system has directional preference. That is one essential reason why a single mooring offshore platform system is so important in the development of an offshore wave-energy conversion system. The single mooring-system would allow the offshore wave-energy conversion system to turn freely in accordance to the action of strong directions of propagating waves and in this way, most energy induced from the incident waves can be caught and converted into reusable powers. The aims of this study are firstly, based on previous studies to further modify a single moored offshore platform system that may subject to less wave forces in the sea and, secondly, to verify the efficiency of single-moored system by carrying out an experimental testing on a simple single-moored floating platform system in the water tank.
180

A Remotely Operated Multi-Tracked Vehicle for Subterranean Exploration of Gopher Tortoise Burrows

Keese, William 01 January 2011 (has links)
The gopher tortoise is a land tortoise living in the southeastern United States. It is a species in decline and is listed as threatened or endangered in six different states. The gopher (as commonly referred) digs burrows that it uses for many reasons and spends most of its time underground. Problems occur when trying to estimate a population because a gopher tortoise digs more than one burrow. This thesis demonstrates an innovative way to survey and investigate a gopher tortoise burrow hole by using a multi-tracked remotely operated vehicle. The vehicle carried two cameras (fore and aft) and was equipped with a microphone and LED illumination. It has tracks on four sides to increase its propulsion ratio. Its performance was evaluated in a sand pit where parameters such as incline could be controlled, and in an actual tortoise burrow. This research was done in conjunction with the Hillsborough County Parks and Recreation Department.

Page generated in 0.5879 seconds