• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 354
  • 256
  • 59
  • 38
  • 36
  • 20
  • 16
  • 16
  • 13
  • 13
  • 7
  • 6
  • 6
  • 6
  • 3
  • Tagged with
  • 1024
  • 131
  • 114
  • 97
  • 95
  • 92
  • 67
  • 64
  • 57
  • 57
  • 54
  • 52
  • 52
  • 51
  • 50
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
231

Influence of High Mobility Polymer Semiconductors in Organic Photovoltaics

Murphy, Leanne 22 April 2013 (has links)
Increasing global energy demands and diminishing supplies of conventional fuels are forcing the world to focus more on alternative power sources that are both renewable and ecologically benign. Solar energy is clean, regularly available and can be harvested without sacrificing valuable land space. Due to the associated cost of solar cells, however a very small portion of the world’s energy needs are supplied by the sun. Solution-processable organic photovoltaics (OPVs) offer the promise of lower production costs relative to conventional (silicon) solar cell technology. Solution-processing can be performed using reel-to-reel manufacturing, with printing and coating techniques that are significantly cheaper than current processing methods for inorganic semiconductors. Although OPV efficiency values currently remain inferior to those of conventional solar cells, the rate of improvement is much higher in OPVs than in other solar cell technologies. Recently an efficiency exceeding 10% was reported for organic solar cells. An important difference between organic and conventional solar cells is the charge carrier mobility of the semiconductors, which tends to be relatively low in organic semiconductors. Recent advances in molecular design have led to polymer semiconductor materials that possess hole mobility values similar to that of amorphous silicon. The present study investigates potential improvements in OPV devices that can be achieved through the application of high hole mobility polymer semiconductor donors. Two diketopyrrolopyrrole-based polymers, PDQT and PDBFBT, were selected for the role of electron donor in OPV devices due to their high mobilities and their optimum optical and electrical properties. Optimization of the process parameters was performed using PC61BM as the acceptor. A relatively high quantity of PC61BM (3 - 4 × the weight of the donor) is required in the donor-acceptor blends of both polymers in order to balance the high hole mobility. For these donor-acceptor blends, a solvent system consisting of chloroform/ortho-dichlorobenzene (4:1 v/v) is necessary for proper solubility, and an additive, 1,8-diiodooctane, is required to achieve an acceptable morphology. The main benefit expected from the use of high mobility semiconductors is reduced charge recombination. This was studied in relation to the active layer thickness in standard and inverted OPV devices prepared using PC61BM as the acceptor. Normally the thickness of the active layer is required to be low (~100 nm) due to the poor charge transport mobility of the carriers. In this study, rather consistent power conversion efficiencies were achieved throughout a wide range of active layer thicknesses (~100 nm to ~800 nm). A comparison between standard and inverted device configurations demonstrates that the inverted configuration is more suitable for achieving thicker active layers when a high hole mobility donor is used. This is attributed to the longer hole collection path in the inverted structure, which can benefit from using a high hole mobility material. Increasing the absorption spectra of the donor-acceptor blend was studied by substituting PC71BM for PC61BM. The improved absorption leads to greater charge generation. In PDQT devices, the increase in absorption that is contributed by PC71BM appears to be of greatest benefit when active layers are not very thick. Therefore, when thick active layers (>500 nm) are required, the use of PC61BM is sufficient, in conjunction with a high mobility donor. Finally, an increase in a polymer’s crystallinity can often lead to greater mobility. This can be accomplished through various annealing techniques. The improved crystallinity of PDBFBT that occurs as a result of thermal annealing was studied in OPV applications. Although hole mobility of PDBFBT in the lateral direction improves with thermal annealing, mobility in the vertical direction decreases with increasing temperature. This suggests that the crystallinity of PDBFBT is oriented in the lateral direction as opposed to the vertical direction, thereby directing charge flow horizontal to the surface. With thermal annealing, an optimal amount of PC61BM added to PDBFBT can increase the vertical mobility to fairly high values. Nevertheless, the efficiency of standard and inverted OPV devices decreases with increased annealing temperature. This is attributed to agglomeration of PC61BM that occurs from an increase in annealing temperature. The results of this study demonstrate that thermal annealing is not beneficial for PDBFBT:PC61BM films in OPV applications due to the vertical orientation of devices. All of the studies presented in this work involve the use of high hole mobility polymer semiconductors as donor materials for OPV applications. This work will provide a deeper understanding of the properties required for the development of new semiconductor materials in OPV applications. Furthermore, this work will be very useful for the design of device structures for more feasible manufacturing of large area OPV devices via high speed roll-to-roll printing processes.
232

Spring back behaviour of hole expansion with various punch movement and positions.

Balina, Kranthi Kumar January 2011 (has links)
A methodology for making a spring back behaviour of hole expansion in gas tank. Work is initiated for SAAb automobile and the geometry of model is created by using the software’s called Unigraphics and hyper mesh and secondly the simulation of the model is done in Ls-dyna to know the spring back behaviour of hole with various depth and positions of the punch. The yield strength of the element and stress, strain distribution and different radius of the blank are used to reduce the cracks at the lower edge of the blank. Steel material is used and the thickness of the material (0.229mm). The simulation of the work includes loading of punch and its displacement. This study demonstrates the efficiency of the model to simulate the hole expansion and better understanding of the expansion of radius and spring back angle. / Measurement of spring back behaviour
233

Optimal väggisoleringstjocklek på hyresfastighet vid begränsad byggyta / Optimum of wall insulation in an apartment building for renting, built on a limited area

Perman, Daniel January 2011 (has links)
Miljömedvetenheten och ökat intresse för energieffektiva hus har gjort att byggnader isoleras som aldrig förr. Oftast är det på lång sikt ganska så lätt att räkna hem en ökad isoleringsmängd och det är just den ekonomiska vinsten som brukar lyftas fram som det främsta argument varför en beställare bör välja den tjockare isoleringen. För en beställare av hyresfastigheter är det oftast ekonomin som avgör ifall ett projekt ska påbörjas eller inte och denna studie ska därför vara en hjälp till att välja den mest ekonomiska isoleringstjockleken i väggar. Syftet med denna studie är att utreda var den optimala väggisoleringstjocken hamnar på en hyresfastighet med flerfamiljsbostäder som byggs på en begränsad byggyta. Inte sällan finns det krav på maximal byggyta från kommunen och då innebär det att ju tjockare isoleringen är desto mindre blir den uthyrningsbara boytan. Kvalitativa intervjuer låg till grund för att bestämma några vanligt förekommande ytterväggskonstruktioner som isoleringen sedan skulle optimeras på. Dessa ytterväggar placerades på en teoretisk referensbyggnad som därefter energiberäknades med hjälp av handberäkningar där matematiska uttryck för en varierande isoleringstjocklek användes. De teoretiska ytterväggarna kalkylerades därefter med hjälp av kalkylprogrammet Sektionsdata.  En livscykelkostnadsanalys utfördes sedan där historisk statistik på hyror, energipriser och räntor utnyttjades. Slutligen kunde en optimal isoleringstjocklek hittas för varje väggtyp. Väggkonstruktionerna som valts var två betongväggar och två träregelväggar, båda med puts respektive tegel. Optimal isoleringstjocklek för väggkonstruktionen betongstomme med tegel hamnade på 84mm. För väggkonstruktionen betongstomme med puts hamnade optimal isoleringstjocklek på 88mm. För väggkonstruktionerna med trästomme kunde en optimal isoleringstjocklek inte hittas eftersom väggarnas uppbyggnad med två respektive tre isoleringsskikt gjorde att väggarna förblev överisolerade i ett ekonomiskt perspektiv även vid minsta möjliga tjocklek på isoleringsskiktet som skulle optimeras.  Studien visar på att det med dagens byggregler ger en stor vinst att hålla nere på väggisoleringstjockleken på flerfamiljsbostäder som byggs på en begränsad byggyta. / Environmental awareness and increased interest in energy-efficient housing have made the buildings more insulated in Sweden. Usually, it is quite easy to calculate a profit from a greater amount of insulation, in the long term. This is usually the seller’s main argument to why the client should choose the thicker insulation. For a client that wants to build a rental property, it is usually the economy that determines whether a project should be started or not. Hopefully this study will be a help to choose the most economic insulation thickness in walls. The purpose of this study is to investigate where the optimum of wall insulation thickness is in an apartment building for renting which is built on a limited area. Quite often there are requirements for a maximum building area from the municipality, which means that the rentable living space will come smaller when the insulation gets thicker. Qualitative interviews were used to determinate the common wall constructions which the insulation would be optimized for. These walls were placed in a theoretical reference building in which the energy use were estimated using hand calculations where mathematical expressions of a variety of insulation thickness were used. Thereafter, the prices of the walls were calculated using a spreadsheet program called Sektionsdata. A life cycle cost analysis was performed in which the historical statistics on rents, energy prices and interest rates were used. Finally, the optimal insulation thickness was found for each wall type. The wall types chosen were a wall of concrete and brick, a wall of concrete and rendering, a wall of wood and brick and a wall of wood and rendering. Optimal insulation thickness of the wall with concrete and brick ended up at 84mm. For the wall of rendered concrete, the optimal insulation thickness ended up at 88mm. The optimal insulation thickness of the walls of wood could not be found as the wall structure with two and three insulation layers made the walls too isolated in an economic perspective even at a minimal thickness of the layer that was going to be optimized. The study shows that with current building codes in Sweden it is profitable to keep down the wall insulation thickness in an apartment building for renting, built on a limited area.
234

Vascular Aging: Influences on cerebral blood flow and executive function

Robertson, Andrew Donald January 2007 (has links)
An age-related decline in cerebral blood flow (CBF) is widely acknowledged. However, uncertainty exists as to whether this reduction is the result of a reduced metabolic demand (cerebral atrophy) or an impaired delivery system (cerebrovascular disease). The purpose of these experiments was to examine the relationship of CBF and dynamic cerebrovascular regulation with changes in common carotid intima-media thickness (cIMT), brachial-ankle pulse wave velocity (baPWV) and common carotid distensibility. Additionally, we took an exploratory view into the effect of vascular aging and CBF reduction on brain function, as expressed through the performance of motor and cognitive tasks. An important finding in elderly participants was that seated anterior CBF declined as a function of arterial stiffness, independently of age. Linear regression analysis developed a model that predicts CBF drops 22 ml/min (95% confidence interval (CI): 6, 38) for each 100 cm/s increase in baPWV and 8 ml/min (95% CI: 1, 15) for each additional year in age. The effect of baPWV appears to be mediated through an increase in cerebrovascular resistance (r2 = 0.84, p < 0.0001). Additionally, CBF showed postural dependency and the volume of the drop in CBF between supine and seated positions was greatest in elderly participants (YOUNG: 65 ± 81 ml/min; ELDERLY: 155 ± 119 ml/min; p = 0.001). Despite this negative impact of vascular aging on steady state flow, dynamic regulation does not appear to be affected. Cerebrovascular responses to an acute drop in blood pressure or to activation of the motor cortex were not attenuated in the elderly participants. Finally, seated CBF had modest directionally relevant relationships with perceptuo-motor and complex sequencing processes; while cIMT appeared to influence performance on initiation and inhibition tasks.
235

A Quantitative Determination of Electrode Kinetics using Micropatterned Electrodes

Koep, Erik Kenneth 11 April 2006 (has links)
Interfacial polarization resistances limit the performance of many thin film solid-state devices, especially at low temperatures. To improve performance, a fundamental understanding of the electrode kinetics that govern interfacial reaction rates must be developed. The goal of this work is to determine site-specific reaction mechanisms and the relative significance of various reactions in order to quantify optimum structural parameters within the cathode microstructure. Key parameters include the length of triple phase boundary (TPB), the quantity of exposed electrolyte/electrode surface, and the ratio of electrolyte to electrode material. These parameters, when studied in a specific system, can be incorporated into broader models, which will encompass the specific conductivity of each component to develop an optimized three-dimensional network. The emphasis of this work is the systematic control and manipulation of potential cathodic reaction sites in order to develop an understanding of the relative importance of specific reaction sites. Since the physical dimensions of reaction sites are relatively small, an approach has been developed that utilizes micro-fabrication (similar to that used in integrated-circuit fabrication) to produce small and highly controlled microstructures. Investigations were made into the nature and reactivity of Triple Phase Boundaries (hereafter TPB) through the use of patterned platinum electrodes since only the TPBs are active in these electrodes. After the processing details of micro-fabrication were established for the platinum electrodes, patterned Mixed-Ionic/Electronic Conducting (MIEC) electrodes were fabricated and studied using impedance spectroscopy to determine the contributions from the MIEC surface versus the TPB. Systematically changing the geometry of the MIEC electrodes (thickness and line width) allowed for the determination of the effect of ambipolar transport within the MIEC on the activity of MIEC surfaces versus the TPB. This information is critical to rational design of functionally graded electrodes (with optimal particle size, shape, porosity and conductivity). In addition to experimental studies, representative patterned electrode samples were made available for collaborative studies with surface scientists at other institutions to provide additional techniques (such as Raman Spectroscopy) on the carefully designed and controlled cathode surfaces.
236

Acoustic Imaging of Bruises

Prabhakara, Sandeep 22 May 2006 (has links)
Ultrasound is a valuable tool to monitor wound healing. In this report, ultrasound is used to determine the features in the B-scans that correspond to a bruise. High frequency ultrasound scans show clear and distinct features that correspond to a laceration or a late stage pressure ulcer. This is because of the extensive damage and the rupture of the epidermis in both the cases. This study assumes significance because it is an effort to find such artifacts in the ultrasound scans of bruises caused by blunt forces where the epidermis remains intact. In this study, the structure of the skin was visualized using a 20 MHz ultrasound scanner. Skin thickness and echogenicity changes may result due to blood extravasations or edema. The thickness and the echogenicity values are plotted against time to determine the trend in the variation of these parameters. We see an intraday and a daily fluctuation of skin thickness and echogenicity albeit with no distinct trend on a day to day basis or between subjects. The results also give us a good estimation of the variation observable in these parameters in the event of an injury. A snapshot analysis is also performed, which describes qualitatively the structural changes in the B-scan of the bruise site compared to the control site. There are six different types of qualitative changes which can appear in the B-scan of a bruised site compared to the control. In the event of an injury, usually, more than one of these changes is manifested in the scan of a bruise. Skin thickness and echogenicity vary considerably due to a number of physiological factors which can seldom be controlled. Therefore, these parameters can give conclusive evidence of a bruise only if the change between a bruised region and a control region is much greater than the daily, normal variations. Snapshot analysis can help detect a bruise or a deep tissue injury. Further work involves the application of pattern recognition or face recognition algorithms to automate the detection.
237

Predictive Modeling for Ductile Machining of Brittle Materials

Venkatachalam, Sivaramakrishnan 12 October 2007 (has links)
Brittle materials such as silicon, germanium, glass and ceramics are widely used in semiconductor, optical, micro-electronics and various other fields. Traditionally, grinding, polishing and lapping have been employed to achieve high tolerance in surface texture of silicon wafers in semiconductor applications, lenses for optical instruments etc. The conventional machining processes such as single point turning and milling are not conducive to brittle materials as they produce discontinuous chips owing to brittle failure at the shear plane before any tangible plastic flow occurs. In order to improve surface finish on machined brittle materials, ductile regime machining is being extensively studied lately. The process of machining brittle materials where the material is removed by plastic flow, thus leaving a crack free surface is known as ductile-regime machining. Ductile machining of brittle materials can produce surfaces of very high quality comparable with processes such as polishing, lapping etc. The objective of this project is to develop a comprehensive predictive model for ductile machining of brittle materials. The model would predict the critical undeformed chip thickness required to achieve ductile-regime machining. The input to the model includes tool geometry, workpiece material properties and machining process parameters. The fact that the scale of ductile regime machining is very small leads to a number of factors assuming significance which would otherwise be neglected. The effects of tool edge radius, grain size, grain boundaries, crystal orientation etc. are studied so as to make better predictions of forces and hence the critical undeformed chip thickness. The model is validated using a series of experiments with varying materials and cutting conditions. This research would aid in predicting forces and undeformed chip thickness values for micro-machining brittle materials given their material properties and process conditions. The output could be used to machine brittle materials without fracture and hence preserve their surface texture quality. The need for resorting to experimental trial and error is greatly reduced as the critical parameter, namely undeformed chip thickness, is predicted using this approach. This can in turn pave way for brittle materials to be utilized in a variety of applications.
238

Effects of Thickness on the Thermal Expansion Coefficient of ITO/PET Film

Su, Fang-I 15 August 2011 (has links)
In this studing, application of the digital image correlation method (DIC) for determining the coefficient of thermal expansion (CTE) of Indium Tin Oxide/Polyethylene Terephthalate(ITO/PET) thin film/flexible substrate was proposed and the effects of thinkness variations of ITO and PET, respectively, on the CTE of the specimens was disscussed. The observation range of experimental temperature was chosen from room temperature to the glass transfer temperature of PET, 70¢J. A novel DIC experimental process for reducing the errors caused from the variations of the refractive index of the surrounding heated air was proposed. As a result, the experimental error of CTE measurement was reduced form 10~17% to less than 5%. The experimental results showed that the CTE of ITO/PET specimen is anisotropic. Futhermore, the CTE of an ITO/PET specimen will be increased by decreasing the thinkness of PET flexible substrate, and increased by increasing the thinkness of ITO film - which means decreasing the surface resistance of ITO film.
239

Voxel-based Cortical Thickness Measurement of Human Brain Using Magnetic Resonance Imaging

Chen, Wen-Fu 14 February 2012 (has links)
Cerebral cortex, classified as gray matter, is the superficial layer of the cerebrum. In recent years, many studies have shown the abnormality of cortical thickness is possibly correlated to the disease or disorder in central nervous system, such as Alzheimer¡¦s disease and lissencephaly. Therefore, this purpose of this work is to implement the measurement of the cortical thickness. In general, two approaches, surface-based and voxel-based methods, have been proposed to measure the cortical thickness. In this thesis, a procedure of the voxel-based method using Laplace¡¦s equation was developed on the basis of a 2008 publication reported by Chloe Hutton et al to obtain voxel-based cortical thickness (VBCT) map. The result of our home-made program was further compared with those calculated by Hutton¡¦s program, whic h was generously provided by the author. The difference between two implementations was consisted of four main parts. First of all, different strategies of the tissue classification were used to define boundary condition of Laplace¡¦s equation. When grey matter, white matter, and cerebrospinal fluid were classified by maximizing the tissue probability, Hutton¡¦s program tends to search more voxels of cerebrospinal fluid in sulci by skeletonizing the non-parenchyma area. Second, the algorithm of layer growing also differs. The single layer obtained by the 26-neighborhood algorithm in our program would be obviously thicker than that provided by Hutton¡¦s program using 6-neighborhood. Third, compared with a fixed step size (usually 0.5 mm) porposed in the main reference to track cortical streamline, we designed a variable step size, reducing the underestimation of cortical thickness. The last but not the least, the connecting points of the cortical streamline usually are not grid points, thus requiring interpolation to estimate the stepping gradient. We adapted the linear interpolation for better accuracy when Hutton et al searched for the closest grid point for replacement to achieve faster computation.
240

Analytical and Experimental Study of Annular Two-Phase Flow Friction Pressure Drop Under Microgravity

Nguyen, Ngoc Thanh 2009 December 1900 (has links)
Two-phase liquid-gas flow has a wide variety of applications in space, including active thermal control systems, high-power communications satellites, heat pumps and space nuclear reactors. Two-phase systems have many potential advantages over current single-phase systems due to reductions in system size, weight and power consumption. The mechanisms of pressure drop, heat transfer coefficients, void fractions, and flow regimes must be well understood under microgravity conditions in order to design reliable two-phase systems. The main objective of this present research is to develop a new mathematical model that can accurately predict the annular two-phase friction pressure drop to optimize the design of two-phase systems. The two-phase flow tests were conducted aboard the NASA KC-135 aircraft by the Interphase Transport Phenomena (ITP) group from Texas A&M University. The two-phase flow pressure drops were measured across a single transparent test section 12.7 mm ID and 1.63 m long in annular regimes under microgravity conditions during two flight campaigns. Different from previous work, this was the first time both the void fraction and the film thickness were measured under microgravity conditions. The empirical correlations for the interfacial friction factor and void fraction were developed from 57 experimental data using a linear least squares regression technique. The annular two-phase friction pressure drop can be predicted by the new mathematical model requiring only knowledge of the length and diameter of the tube, liquid and vapor mass flow rates, and properties of the working fluid. In addition, the new mathematical model was validated using Foster-Miller & ITP data collected over twelve flights aboard the KC-135 with working fluid R-12 (77 data points), Sundstrand data collected aboard the KC-135 with working fluid R-114 (43 data points) and Zhao and Rezkallah data aboard the KC-135 with working fluid water and air (43 data points). Compared with the LockhartMartinelli model, Wheeler model, Chen model and homogeneous model, the new mathematical model is the optimal model for predicting the two-phase friction pressure drop in annular regimes. The majority of the data falls within +-20% of the proposed correlation and the average error is 12%.

Page generated in 0.0648 seconds