Spelling suggestions: "subject:"thinfilm solar cell"" "subject:"thinkfilm solar cell""
11 |
Fabrication and Characterization of a Wrinkled Polydimethylsiloxane Thin Film Bilayer SystemIngale, Himanshu A. January 2017 (has links)
No description available.
|
12 |
Plasmonic properties of subwavelength structures and their applications in optical devicesWang, Wei, 1983 July 24- 09 February 2011 (has links)
A metallic hole array of a rectangular converging-diverging channel (RCDC) shape exhibits extraordinary transmission for wavelengths larger than the periodicity of the holes. We use a three-dimensional (3D) finite element method to analyze the transmission characteristics of two-dimensional metallic hole arrays (2D-MHA) with RCDC. For a straight channel MHA, when the aperture size is reduced, the transmission peaks have a blue-shift. The same result is observed for a smaller gap throat for the RCDC structure. For the rectangular holes with a high length-width ratio, a similar blue-shift in the transmission peaks as well as a narrower full width at half maximum (FWHM) are observed. The asymmetry from the rectangular shape gives this structure high selectivity for light with different polarizations. Furthermore, the RCDC shape gives extra degrees of geometrical variables to 2D-MHA for tuning the location of the transmission peak and the FWHM. Tunable extraordinary transmission via changing temperature of a porous metallic layer on top of a thin layer of dielectric strontium titanate (STO) is then studied. The metallic layer has a through-hole array and each hole has a circular converging-diverging channel (CDC) shape, which induces the excitation of surface plasmon polaritons (SPPs) and then results in a controllable extraordinary optical transmission in the terahertz (THz) frequency range. We use a three-dimensional (3D) finite element method to analyze the transmission characteristics of the structure. Location and magnitude of the transmission peaks can be adjusted by the hole size, converging angle, and thicknesses of metal and STO layers. Remarkably, the suggested structure presents a strong transmission dependency on temperature, which offers a new approach to actively and externally tune the transmission. Currently, the performances of thin film solar cells are limited by poor light absorption and carrier collection. In this research, large, broadband, and polarization-insensitive light absorption enhancement is realized via integrating with unique metallic nanogratings. Through simulation, three possible mechanisms are identified to be responsible for such an enormous enhancement. A test for totaling the absorption over the solar spectrum shows an up to ~30% broadband absorption enhancement when comparing to bare thin film cells. Overall performance of a thin film solar cell is determined by the efficiency of conversing photons to electrons that include light absorption, carrier generation and carrier collection processes. Photon management via hybrid designing has been emerging as a powerful means to further boost the conversion efficiency. Here a new nanograting solar cell design, which can be universal and a new solar cell platform technology, is proposed with goals to achieve large enhancement on broadband light absorption and carrier generation, most importantly, under the much reduced usage of active and non-earth-abundant materials. A test for the short circuit current density in CuIn[subscript x]Ga([subscript 1-x])Se₂ (CIGS) thin film solar cells shows an up to ~250% enhancement when comparing to the corresponding bare thin film cells. Besides that, by placing metal strips on top of the nanograting, which act as the top electrode, this design is able to reduce the use of non-earth-abundant materials such as indium that is normally used in both active and transparent conducting materials. / text
|
13 |
Investigation of CdS Nanowires and Planar Films for Enhanced Performance as Window Layers in CdS-CdTe Solar Cell DevicesChen, Jianhao 01 January 2013 (has links)
Cadmium sulfide (CdS) and cadmium telluride (CdTe) are two leading semiconductor materials used in the fabrication of thin film solar cells of relatively high power conversion efficiency and low manufacturing cost. In this work, CdS/CdTe solar cells with a varying set of processing parameters and device designs were fabricated and characterized for comparative evaluation. Studies were undertaken to elucidate the effects of (i) each step in fabrication and (ii) parameters like thickness, sheet resistance, light absorptivity solution concentration, inert gas pressure etc. Best results were obtained when the thickness of CdS planar film for the window layer was in the range of 150 nm to 200 nm. Also, CdS nanowires were fabricated for use as the window layer in CdS-CdTe solar cells. Their materials characteristics were studied with scanning electron microscopy (SEM) and X-ray Diffraction (XRD). Spectral absorption measurements on the planar CdS films and nanowire CdS layers were performed and results compared. It was established that the nanowire CdS design was superior because its absorption of sunlight was far less than that of planar CdS film, which would lead to enhanced performance in the CdS-CdTe solar cell through higher short circuit current density and higher open circuit voltage. Diode behavior of CdS-CdTe devices on planar CdS and nanowire CdS was analyzed and compared.
KEYWORDS: Thin Film Solar Cell, Nanowire, UV Absorption, Open-circuit Voltage, Close Space Sublimation
|
14 |
Herstellung und Charakterisierung periodisch strukturierter Dünnschichten für den Einsatz in optoelektronischen BauteilenSchumm, Benjamin 08 August 2013 (has links) (PDF)
Transparente Elektroden finden breite Verwendung in unterschiedlichen kommerziellen Produkten. Dünnschichtsolarzellen basieren ebenso auf diesen Funktionsschichten wie Displays oder organische Leuchtdioden. Im Falle von Dünnschichtsolarzellen kann durch gezielte Einstellung der Oberflächentextur der transparenten Elektrode ein entscheidender Einfluss auf die erreichbare Effizienz genommen werden. Dabei wird eine Verlängerung der Weglänge des Lichtes im Absorbermaterial durch Mehrfachreflexionen angestrebt. Häufig werden dafür Schichten transparenter leitfähiger Oxide (TCO) gezielt texturiert. Eine weitere Möglichkeit zur Erzeugung transparenter Elektroden stellt die Verwendung feiner Metallgitter dar. Diese ermöglichen hohe Leitfähigkeiten im Bereich der Gitterstege und hohe Transparenz im Bereich zwischen den Stegen.
In dieser Arbeit sollte ein auf nasschemischen Prozessen basierendes Verfahren entwickelt werden, mit dem es möglich ist, sowohl strukturierte TCO-Elektroden als auch Metallgitter unterschiedlicher Geometrien gezielt herzustellen. Die Leistungsfähigkeit der Elektroden sollte anhand der Integration in entsprechende Bauteile bewertet werden. Namentlich sollte dieser Prozess für Cd2SnO4 (engl. Cadmium Tin Oxide, CTO) als ein TCO-Material hoher Transparenz und Leitfähigkeit sowie für Silber und Kupfer als metallische Systeme anwendbar sein. Als zielführende Methode kam die Nanoprägelithographie (von engl. Nanoimprint Lithography, NIL) zum Einsatz. Dieses Verfahren erlaubt die schnelle, einfache und kostengünstige Herstellung strukturierter Oberflächen. Grundsätzlich wird dazu ein strukturierter Elastomerstempel in eine Schicht eines zu vernetzenden Materials gepresst. Während des Pressens findet die Vernetzung statt. Nach anschließender Separation von Stempel und Schicht resultiert eine strukturierte Oberfläche. Gängige Präkursorensysteme für anorganische Verbindungen, bei denen Vernetzungsprozesse ablaufen, stellen Sol-Gel-Methoden und sogenannte polymere Präkursoren dar. Für letztere werden Metallzitrate mit Ethylenglykol verestert, um ein vernetztes Polymer zu generieren. Nach thermischem Entfernen der Organik bleibt das Metalloxid zurück.
Im Rahmen dieser Arbeit ist ein Präkursorensystem entwickelt worden, das Metallionen komplexiert, auf Glassubstrate beschichtet werden kann und eine thermische Polymerisation erlaubt. Aus dem erhaltenen polymeren Präkursor konnten die Zielverbindungen durch thermisches Zersetzen einerseits in Pulverform und andererseits über vorhergehende Schleuderbeschichtung in Form dünner Schichten erhalten werden. Im Falle des kubischen Cd2SnO4 wurde im Rahmen dieser Arbeit erstmals eine Nanopulver-Synthese mit phasenreinem Produkt aus flüssigem Präkursor beschrieben. Dafür stellten sich der Anteil der verwendeten organischen Bestandteile sowie die Zersetzungsgeschwindigkeit als entscheidende Einflussparameter heraus. Zudem wurden CTO Dünnschichten mit dem beschriebene Präkursor hergestellt. Eine optimale Brenntemperatur zur Erzeugung phasenreiner CTO-Schichten von 700 wurde ermittelt. Die Zersetzungsgeschwindigkeit (bzw. Aufheizrate) beeinflusste die Oberflächenmorphologie der erhaltenen Schichten maßgeblich. Eine schrittweise Zersetzung (100 °C, 200 °C, Zieltemperatur) führte dabei in effizienter Weise zu kompakten Schichten. Diese zeigten sehr gute optische und elektronische Eigenschaften. So konnten etwa 300 nm dicke CTO-Schichten mit spezifischen Widerständen von ca. 1 • 10^(−5) Ohm m bei einer Transmission von etwa 80 % (inklusive Glassubstrat) erhalten werden. Derartige CTO-Schichten konnten erfolgreich als transparente Frontelektroden für a-Si Dünnschichtsolarzellen verwendet werden. Ein positiver Einfluss periodischer Linienstrukturen auf die Lichteinfangeigenschaften und den resultierenden Photostrom im Vergleich zu flachen CTO-Schichten wurde bestätigt.
Auch für die Herstellung von CdTe-Dünnschichtsolarzellen konnten die CTO-Schichten erfolgreich eingesetzt werden. Die erreichten Effizienzen lagen jedoch lediglich im Bereich von 3 bis 3,6 %. Ein signifikanter Unterschied zwischen flachen und strukturierten Proben konnte nicht ausgemacht werden. Durch die reduzierenden Eigenschaften von Zitronensäure und Ethylenglykol gegenüber Ag+ und Cu2+ Ionen war es möglich, die Metalle in elementarer Form durch einfache thermische Behandlung des Präkursors zu erhalten. Während dieser Prozess für silberhaltige Systeme relativ einfach zu realisieren war, musste bei kupferhaltigen Proben die Bildung oxidischer Nebenphasen festgestellt werden. So war für Letzteres eine reduktive Nachbehandlung vollständig oxidierter Proben im Wasserstoffplasma zielführend und lieferte leitfähige Dünnschichten mit hohem Cu(0)-Anteil. Im Falle von Silber führte eine geeignete thermische Behandlung der Präkursorschicht zu dünnen, leitfähigen Silberschichten mit spezifischen Widerständen von ca. 6 • 10^(−8) Ohm m (Festkörper: ca.1 • 10^(−8) Ohm m). Die Übertragung des NIL-Prozesses gelang sowohl für silber- als auch kupferhaltige Systeme. Mit NIL-strukturierten Silberdünnschichten gelang so die Herstellung semitransparenter Elektroden mit spezifischen Widerständen von 2,2 • 10^(−7) Ohm m, welche in Elektrolumineszenzbauteilen verwendet wurden. Aufgrund der relativ niedrigen Temperaturen, die für die Zersetzung des Silberpräkursors nötig waren (ca. 250 ), war die Fertigung entsprechender Elektroden und Bauteile auch auf Polyimidfolien möglich.
Insgesamt bleibt die Erkenntnis, dass NIL-strukturierte dünne Schichten erfolgreich in optoelektronische Bauteile integriert werden konnten. Variable Präkursorsysteme erlauben die Herstellung verschiedener Schichten und somit Anwendungen in unterschiedlichen Bauteilen. Polymere Präkursoren haben sich als geeignet für dieses Vorgehen erwiesen und können relativ einfach auf diverse oxidische Stoffsysteme übertragen werden. Gleichzeitig eignen sie sich zur Herstellung metallischer transparenter Elektroden durch NIL-Strukturierung, was insbesondere im Hinblick auf flexible Bauteile von Vorteil ist.
|
15 |
Photochemistry of Copper Coordination Complexes / Fotokemi av kopparkoordinationskomplexBlad, Amanda, Glisén, Helena, Ludvig, Filippa January 2021 (has links)
The United Nations have set a number of sustainability goals, Agenda 2030, in order to combat the worlds largest challenges and injustices. The energy market is one of these urgent issues which must be solved. Solar energy is expected to be the fastest growing energy source in the future energy mix. It can be a great way to provide zero emission energy and also become a key part in equality as it can provide energy to people who live off the grid today and raise quality of life all over the world. The aim of this study is to compare different ligands in a copper halide complex to conclude what structural properties of the ligand might be better suited for photoluminescent applications, and especially in solar cells. Eight ligands were chosen for the complexes depending on their level of conjugation: 4,4’-bipyridine, tri(o-tolyl)phosphine, 3,6-di-2-pyridyl-1,2,4,5-tetrazine, pyridine, pyrimidine, pyrazine, phenanthroline, and 2,2’-bipyridine. A series of analytical methods were used to compare the complexes properties; X-Ray diffraction, emission and excitation spectroscopy, time-resolved photoluminescence spectroscopy, microscopy and thermochromism. From these measurements, pyridine and pyrimidine proved to have the greatest potential for working in a solar cell. This was deduced because of the detected crystallinity, having luminescence under UV-light, forming distinct wavelength peaks during excitation and emission in the flourometer, having the longest excited state lifetime and and finally, emitting distinctive colours during thermochromism. When creating the solar cell, pyridine was chosen as ligand due to higher availability than pyrimidine. The method used in this project for making the solar cell is directly applied form a previously tested method, but which was designed for another type of electron donor. This project compared the different ways of applying the copper halide complex on to the cell. The methods used were spin-coating and SILAR for creating the copper iodide thin film and vapour diffusion and immersion to introduce the ligand. These four methods were combined systematically for all combinations. The solar cells were then put in a solar simulator where voltage, current, efficiency and fill factor was measured. The best results came form the solar cell where spin coating and immersion was used, though the overall efficiency of the created cells were low. Copper halide complexes in previous studies have been proven to be reactive with oxygen and the experiments in this project were not carried out in an inert environment. This could have had significant impact on the measurements, as reactions between the complexes and oxygen may have resulted in oxidation and thus inactivation of the complexes. Therefore, it would be interesting to conduct the syntheses again but instead in an inert environment to determine whether oxygen made a major impact on the measurements. In further studies, it would also be worthwhile to investigate how the different layers of the solar cell would have to be adapted for this particular complex to obtain higher efficiency and voltage. Also, making thin film of pyrimidine to be used in a solar cell as it showed the attributes required for a solar cell. Furthermore, it would be interesting to use derivatives of pyrimidine, such as uracil and cytosine which are abundant in nature, as they might be more sustainable choices. This is due to their inherent biodegradability and not posing a threat to either health or environment when handled.
|
16 |
Fabrication and analysis of CIGS nanoparticle-based thin film solar cellsGhane, Parvin 20 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Fabrication and analysis of Copper Indium Gallium di-Selenide (CIGS) nanoparticles-based thin film solar cells are presented and discussed. This work explores non-traditional fabrication processes, such as spray-coating for the low-cost and highly-scalable production of CIGS-based solar cells.
CIGS nanoparticles were synthesized and analyzed, thin CIGS films were spray-deposited using nanoparticle inks, and resulting films were used in low-cost fabrication of a set of CIGS solar cell devices. This synthesis method utilizes a chemical colloidal process resulting in the formation of nanoparticles with tunable band gap and size. Based on theoretical and experimental studies, 100 nm nanoparticles with an associated band gap of 1.33 eV were selected to achieve the desired film characteristics and device performances. Scanning electron microcopy (SEM) and size measurement instruments (Zetasizer) were used to study the size and shape of the nanoparticles. Electron dispersive spectroscopy (EDS) results confirmed the presence of the four elements, Copper (Cu), Indium (In), Gallium (Ga), and Selenium (Se) in the synthesized nanoparticles, while X-ray diffraction (XRD) results confirmed the tetragonal chalcopyrite crystal structure. The ultraviolet-visible-near infra-red (UV-Vis-NIR) spectrophotometry results of the nanoparticles depicted light absorbance characteristics with good overlap against the solar irradiance spectrum.
The depositions of the nanoparticles were performed using spray-coating techniques. Nanoparticle ink dispersed in ethanol was sprayed using a simple airbrush tool. The thicknesses of the deposited films were controlled through variations in the deposition steps, substrate to spray-nozzle distance, size of the nozzle, and air pressure. Surface features and topology of the spray-deposited films were analyzed using atomic force microscopy (AFM). The deposited films were observed to be relatively uniform with a minimum thickness of 400 nm. Post-annealing of the films at various temperatures was studied for the photoelectric performance of the deposited films. Current density and voltage (J/V) characteristics were measured under light illumination after annealing at different temperatures. It was observed that the highest photoelectric effect resulted in annealing temperatures of 150-250 degree centigrade under air atmosphere.
The developed CIGS films were implemented in solar cell devices that included Cadmium Sulfide (CdS) and Zinc Oxide (ZnO) layers. The CdS film served as the n-type layer to form a pn junction with the p-type CIGS layer. In a typical device, a 300 nm CdS layer was deposited through chemical bath deposition on a 1 $mu$m thick CIGS film. A thin layer of intrinsic ZnO was spray coated on the CdS film to prevent shorting with the top conductor layer, 1.5 μm spray-deposited aluminum doped ZnO layer. A set of fabricated devices were tested using a Keithley semiconductor characterization instrument and micromanipulator probe station. The highest measured device efficiency was 1.49%. The considered solar cell devices were simulated in ADEPT 2.0 solar cell simulator based on the given fabrication and experimental parameters. The simulation module developed was successfully calibrated with the experimental results. This module can be used for future development of the given work.
|
17 |
Herstellung und Charakterisierung periodisch strukturierter Dünnschichten für den Einsatz in optoelektronischen BauteilenSchumm, Benjamin 18 July 2013 (has links)
Transparente Elektroden finden breite Verwendung in unterschiedlichen kommerziellen Produkten. Dünnschichtsolarzellen basieren ebenso auf diesen Funktionsschichten wie Displays oder organische Leuchtdioden. Im Falle von Dünnschichtsolarzellen kann durch gezielte Einstellung der Oberflächentextur der transparenten Elektrode ein entscheidender Einfluss auf die erreichbare Effizienz genommen werden. Dabei wird eine Verlängerung der Weglänge des Lichtes im Absorbermaterial durch Mehrfachreflexionen angestrebt. Häufig werden dafür Schichten transparenter leitfähiger Oxide (TCO) gezielt texturiert. Eine weitere Möglichkeit zur Erzeugung transparenter Elektroden stellt die Verwendung feiner Metallgitter dar. Diese ermöglichen hohe Leitfähigkeiten im Bereich der Gitterstege und hohe Transparenz im Bereich zwischen den Stegen.
In dieser Arbeit sollte ein auf nasschemischen Prozessen basierendes Verfahren entwickelt werden, mit dem es möglich ist, sowohl strukturierte TCO-Elektroden als auch Metallgitter unterschiedlicher Geometrien gezielt herzustellen. Die Leistungsfähigkeit der Elektroden sollte anhand der Integration in entsprechende Bauteile bewertet werden. Namentlich sollte dieser Prozess für Cd2SnO4 (engl. Cadmium Tin Oxide, CTO) als ein TCO-Material hoher Transparenz und Leitfähigkeit sowie für Silber und Kupfer als metallische Systeme anwendbar sein. Als zielführende Methode kam die Nanoprägelithographie (von engl. Nanoimprint Lithography, NIL) zum Einsatz. Dieses Verfahren erlaubt die schnelle, einfache und kostengünstige Herstellung strukturierter Oberflächen. Grundsätzlich wird dazu ein strukturierter Elastomerstempel in eine Schicht eines zu vernetzenden Materials gepresst. Während des Pressens findet die Vernetzung statt. Nach anschließender Separation von Stempel und Schicht resultiert eine strukturierte Oberfläche. Gängige Präkursorensysteme für anorganische Verbindungen, bei denen Vernetzungsprozesse ablaufen, stellen Sol-Gel-Methoden und sogenannte polymere Präkursoren dar. Für letztere werden Metallzitrate mit Ethylenglykol verestert, um ein vernetztes Polymer zu generieren. Nach thermischem Entfernen der Organik bleibt das Metalloxid zurück.
Im Rahmen dieser Arbeit ist ein Präkursorensystem entwickelt worden, das Metallionen komplexiert, auf Glassubstrate beschichtet werden kann und eine thermische Polymerisation erlaubt. Aus dem erhaltenen polymeren Präkursor konnten die Zielverbindungen durch thermisches Zersetzen einerseits in Pulverform und andererseits über vorhergehende Schleuderbeschichtung in Form dünner Schichten erhalten werden. Im Falle des kubischen Cd2SnO4 wurde im Rahmen dieser Arbeit erstmals eine Nanopulver-Synthese mit phasenreinem Produkt aus flüssigem Präkursor beschrieben. Dafür stellten sich der Anteil der verwendeten organischen Bestandteile sowie die Zersetzungsgeschwindigkeit als entscheidende Einflussparameter heraus. Zudem wurden CTO Dünnschichten mit dem beschriebene Präkursor hergestellt. Eine optimale Brenntemperatur zur Erzeugung phasenreiner CTO-Schichten von 700 wurde ermittelt. Die Zersetzungsgeschwindigkeit (bzw. Aufheizrate) beeinflusste die Oberflächenmorphologie der erhaltenen Schichten maßgeblich. Eine schrittweise Zersetzung (100 °C, 200 °C, Zieltemperatur) führte dabei in effizienter Weise zu kompakten Schichten. Diese zeigten sehr gute optische und elektronische Eigenschaften. So konnten etwa 300 nm dicke CTO-Schichten mit spezifischen Widerständen von ca. 1 • 10^(−5) Ohm m bei einer Transmission von etwa 80 % (inklusive Glassubstrat) erhalten werden. Derartige CTO-Schichten konnten erfolgreich als transparente Frontelektroden für a-Si Dünnschichtsolarzellen verwendet werden. Ein positiver Einfluss periodischer Linienstrukturen auf die Lichteinfangeigenschaften und den resultierenden Photostrom im Vergleich zu flachen CTO-Schichten wurde bestätigt.
Auch für die Herstellung von CdTe-Dünnschichtsolarzellen konnten die CTO-Schichten erfolgreich eingesetzt werden. Die erreichten Effizienzen lagen jedoch lediglich im Bereich von 3 bis 3,6 %. Ein signifikanter Unterschied zwischen flachen und strukturierten Proben konnte nicht ausgemacht werden. Durch die reduzierenden Eigenschaften von Zitronensäure und Ethylenglykol gegenüber Ag+ und Cu2+ Ionen war es möglich, die Metalle in elementarer Form durch einfache thermische Behandlung des Präkursors zu erhalten. Während dieser Prozess für silberhaltige Systeme relativ einfach zu realisieren war, musste bei kupferhaltigen Proben die Bildung oxidischer Nebenphasen festgestellt werden. So war für Letzteres eine reduktive Nachbehandlung vollständig oxidierter Proben im Wasserstoffplasma zielführend und lieferte leitfähige Dünnschichten mit hohem Cu(0)-Anteil. Im Falle von Silber führte eine geeignete thermische Behandlung der Präkursorschicht zu dünnen, leitfähigen Silberschichten mit spezifischen Widerständen von ca. 6 • 10^(−8) Ohm m (Festkörper: ca.1 • 10^(−8) Ohm m). Die Übertragung des NIL-Prozesses gelang sowohl für silber- als auch kupferhaltige Systeme. Mit NIL-strukturierten Silberdünnschichten gelang so die Herstellung semitransparenter Elektroden mit spezifischen Widerständen von 2,2 • 10^(−7) Ohm m, welche in Elektrolumineszenzbauteilen verwendet wurden. Aufgrund der relativ niedrigen Temperaturen, die für die Zersetzung des Silberpräkursors nötig waren (ca. 250 ), war die Fertigung entsprechender Elektroden und Bauteile auch auf Polyimidfolien möglich.
Insgesamt bleibt die Erkenntnis, dass NIL-strukturierte dünne Schichten erfolgreich in optoelektronische Bauteile integriert werden konnten. Variable Präkursorsysteme erlauben die Herstellung verschiedener Schichten und somit Anwendungen in unterschiedlichen Bauteilen. Polymere Präkursoren haben sich als geeignet für dieses Vorgehen erwiesen und können relativ einfach auf diverse oxidische Stoffsysteme übertragen werden. Gleichzeitig eignen sie sich zur Herstellung metallischer transparenter Elektroden durch NIL-Strukturierung, was insbesondere im Hinblick auf flexible Bauteile von Vorteil ist.
|
18 |
Solution growth of polycrystalline silicon on glass using tin and indium as solventsBansen, Roman 14 July 2016 (has links)
Mit der vorliegenden Arbeit wird das Wachstum von polykristallinem Silicium auf Glas bei niedrigen Temperaturen aus metallischen Lösungen in einem Zweistufenprozess untersucht. Im ersten Prozessschritt werden nanokristalline Siliziumschichten (nc-Si) hergestellt, entweder durch die direkte Abscheidung auf geheizten Substraten oder durch als ''Amorphous-Liquid-Crystalline''(ALC)-Umwandlung bezeichnete metall-induzierte Kristallisation. Im zweiten Prozessschritt dienen die Saatschichten als Vorlage für das Wachstum von deutlich größeren Kristalliten durch stationäre Lösungszüchtung. Die ALC-Prozessdauer konnte durch umfassende Parameterstudien signifikant reduziert werden. Die Charakterisierung der durch direkte Abscheidung auf geheizten Substraten entstehenden nc-Si Saatschichten offenbarte, dass es sich dabei um individuelle Saatkörner handelt, die in eine quasi-amorphe Matrix eingebettet sind. Die Oxidation der Saatschichten vor dem zweiten Prozessschritt wurde als ein wesentliches Hindernis für das Wachstum identifiziert. Als erfolgreichste Lösung zur Überwindung dieses Problems hat sich ein anfänglicher Rücklöseschritt erwiesen. Da diese Methode jedoch schwierig zu kontrollieren ist, wurde ein UV-Laser-System entwickelt und installiert. Erste Resultate zeigen epitaktisches Wachstum an den Stellen, an denen das Oxid entfernt wurde. Bei der Lösungszüchtung auf ALC-Schichten beginnt das Wachstum an einigen größeren Saatkristallen, von wo aus umliegende Gebiete lateral überwachsen werden. Obwohl Kristallitgrößen bis zu 50 Mikrometern erreicht wurden, war es noch nicht möglich, geschlossene Schichten zu erzielen. Durch Lösungszüchtung auf nc-Si Saatschichten hingegen konnte dieses Ziel erreicht werden. Geschlossene, polykristalline Si-Schichten wurden erzeugt, auf denen alle Si-Kristallite miteinander verbunden sind. Neben den Wachstumsexperimenten wurden 3D-Simulationen durchgeführt, in denen u.a. unterschiedliche Heizerkonfigurationen simuliert wurden. / The subject of this thesis is the investigation of the growth of polycrystalline silicon on glass at low temperatures from metallic solutions in a two-step growth process. In the first process step, nanocrystalline Si (nc-Si) films are formed either by direct deposition on heated substrates, or by a metal-induced crystallization process, referred to as amorphous-liquid-crystalline (ALC) transition. In the second process step, these seed layers serve as templates for the growth of significantly larger Si crystallites by means of steady-state solution growth. Extensive parameter studies for the ALC process helped to bring down the process duration significantly. Characterization of the nc-Si seed layers, formed by direct deposition on heated substrates, showed that the layer is composed of individual seeds, embedded in a quasi-amorphous matrix. The oxidation of the seed layers prior to the second process step was found to be a major obstacle. The most successful solution has been an initial melt-back step. As the process is hard to control, though, a UV laser system has been developed and installed. First promising results show unobstructed epitaxial growth where the oxide has been removed. Steady-state solution growth on ALC seed layers was found to start from a few larger seed crystals, and then cover the surrounding areas by lateral overgrowth. Although crystallites with sizes of up to 50 micrometers were obtained, it was not yet possible to achieve full surface coverage with a continuous layer. By solution growth on nc-Si seed layers, however, it was eventually possible to achieve this goal. Continuous, polycrystalline Si layers were grown, on which all Si crystallites are interlocked. The growth experiments were accompanied by 3D simulations, in which e.g. different heater configurations have been simulated.
|
19 |
Design pouliční svítilny s nezávislým napájením. / Off-grid street lamp design.Hampl, Petr January 2009 (has links)
Oblast problémů, ze kterých konkrétní téma projektu vychází, zahrnuje současnou globální transformaci zdrojů energie a jejich dodávek se zvláštní pozorností na obnovitelné zdroje energie. Důraz je kladen zejména na hodnoty jež přináší produkt určený k užívání ve veřejných prostorách. Autorovým zadáním bylo navrhnout osvětlovací jednotku nezávislou na vnějším zdroji napájení. Cílem návrhu je přehodnotit způsob, jakým jsou dnes technologie využívání sluneční a větrné energie běžně používány, a navrhnout řešení přinášející nové vlastnosti a užitné hodnoty pro přímého uživatele i celou společnost. Autor přináší návrh produktu jenž je reakcí na současné globální hrozby a příležitosti. Výsledkem projektu je návrh pouliční lampy kombinující fotovoltaický článek a větrnou turbínu s cílem získat elektrickou energii jež je dočasně akumulována a následně dodávána svítidlu. V návrhu je kladen důraz na požadavky ergonomie a estetickou hodnotu produktu. Navržené řešení znamená finanční přínos z hlediska šetření neobnovitelnými zdroji energie a případnými finančními výhodami pro investora plynoucími z provozování veřejného osvětlení. Pouliční lampa nezávislá na vnějším zdroji napájení má navíc menší negativní dopad na životní prostředí a představuje technologie využívání větrné a solární energie v přívětivé a nerušivé podobě.
|
Page generated in 0.0816 seconds