• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 675
  • 123
  • 72
  • 67
  • 67
  • 53
  • 45
  • 8
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 1484
  • 1484
  • 323
  • 323
  • 277
  • 237
  • 218
  • 161
  • 130
  • 128
  • 126
  • 115
  • 115
  • 110
  • 108
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
621

Runx2-Genetically Engineered Dermal Fibroblasts for Orthopaedic Tissue Repair

Phillips, Jennifer Elizabeth 29 October 2007 (has links)
Tissue engineering has emerged as a promising alternative to conventional orthopaedic grafting therapies. The general paradigm for this approach, in which phenotype-specific cells and/or bioactive growth factors are integrated into polymeric matrices, has been successfully applied in recent years toward the development of bone, ligament, and cartilage tissues in vitro and in vivo. Despite these advances, an optimal cell source for skeletal tissue repair and regeneration has not been identified. Furthermore, the lack of robust, functional orthopaedic tissue interfaces, such as the bone-ligament enthesis, severely limits the integration and biological performance of engineered tissue substitutes. This works aims to address these limitations by spatially controlling the genetic modification and differentiation of fibroblasts into a mineralizing osteoblastic phenotype within three-dimensional polymeric matrices. The overall objective of this project was to investigate transcription factor-based gene therapy strategies for the differentiation of fibroblasts into a mineralizing cell source for orthopaedic tissue engineering applications. Our central hypothesis was that fibroblasts genetically engineered to express Runx2 via conventional and biomaterial-mediated ex vivo gene transfer approaches will differentiate into a mineralizing osteoblastic phenotype. We have demonstrated that a combination of retroviral Runx2 overexpression and glucocorticoid hormone treatment synergistically induces osteoblastic differentiation and biological mineral deposition in primary dermal fibroblasts cultured in monolayer. We report for the first time that glucocorticoids induce osteoblastic differentiation in this model system by modulating the phosphorylation state of a negative regulatory serine residue (Ser125) on Runx2 through an MKP-1-dependent mechanism. Furthermore, we utilized these Runx2-genetically engineered fibroblasts to create mineralized templates for bone repair in vitro and in vivo. Finally, we engineered a heterogeneous bone-soft tissue interface with a novel biomaterial-mediated gene transfer approach. Overall, these results are significant toward the ultimate goal of regenerating complex, higher-order orthopaedic grafting templates which mimic the cellular and microstructural characteristics of native tissue. Cellular therapies based on primary dermal fibroblasts would be particularly beneficial for patients with a compromised ability to recruit progenitors to the sight of injury as result of traumatic injury, radiation treatment, or osteodegenerative disease.
622

The use of stem cell synthesized extracellular matrix for bone repair

Deutsch, Eric R. 27 July 2009 (has links)
Stem cell synthesized extracellular matrix (ECM) may serve as a replacement for current bone grafting techniques. The overall goal of this thesis is to quantify the osteoinductivity of the ECM produced by human amniotic fluid stem cells (AFS cells), compare it to that of human mesenchymal stem cells (MSC), and assess its potential for use in bone tissue engineering therapies. Each stem cell type was cultured in osteogenic media to produce the ECM, which was then decellularized via freeze/thaw cycling and DNase treatment. The success of the decellularization was confirmed with live/dead staining and DNA quantification. A series of in vitro studies were performed to evaluate the characteristics of the ECM relevant to a bone tissue engineering therapy. Reseeded MSCs were able to attach to and proliferate on both ECM types in both 2D and 3D culture. In 2D, cells cultured on both ECM types showed increased levels of calcium deposition. Additionally, cells cultured on the MSC ECM showed increased alkaline phosphatase activity. A synergistic effect on osteogenic differentiation was observed when the osteoinductive factor dexamethasone was added to the culture. In 3D, both ECM types increased the mineralized matrix production of reseeded MSCs. The AFS ECM had a greater effect than the MSC ECM. When ECM was used to treat a rat femoral segmental defect in vivo, it was found that each ECM type increased the rate of bridging of the defect when compared to collagen coated scaffolds. However the ECM did not have a significant effect on the volume of mineralized matrix within the defect site in this study.
623

Biomaterials for tissue engineering for rheumatoid arthritis based on controlling dendritic cell phenotype

Park, Jaehyung 09 June 2009 (has links)
The host response toward biomaterial component of tissue-engineered devices has been extensively investigated. The objective of this research was to understand the response of dendritic cells (DCs) to different biomaterials upon contact and identify biomaterials suitable for use in tissue engineering constructs for rheumatoid arthritis (RA) applications. Differential levels of functional DC maturation were observed depending on the type of biomaterial in 2-dimensional films or 3-dimensional scaffolds used to treat immature DCs; Poly(lactic-co-glycolic acid) (PLGA) or chitosan supported higher levels of DC maturation, as compared to immature DCs. Alginate supported moderate levels of DC maturation. Agarose did not support DC maturation whereas hyaluronic acid inhibited DC maturation. Further, these DCs treated with different biomaterials induced differential phenotype and polarization of autologous T cells upon co-culture of DCs and T cells; DCs treated with PLGA induced T helper type I with immunogenic response while DCs treated with agarose did T helper type II with tolerogenic response. Effect of different biomaterials (PLGA and agarose) was assessed in vivo upon implantation of them into the knee joint of RA-induced rabbit. Total leukocyte concentrations in the peripheral blood or in the joint lavage of the left knees (untreated control) were observed in differential levels depending on the biomaterial implant, possibly due to the systemic circulation of the peripheral blood. Furthermore, cartilage and bone healing progression was differentially observed in the osteochondral defect of the knee joint of RA-induced rabbit, depending on type of biomaterial scaffold implanted into the defect. Collectively, these results demonstrate the multifunctional impacts of inherently different biomaterials on in vitro immunomodulation of phenotype and polarization of DCs and autologous T cells. Furthermore, taken together with these immunomodulatory impacts of biomaterials, in vivo effects of different biomaterial scaffolds on RA environment shown in this study can suggest the criteria of selection and design of biomaterials for orthopedic tissue engineering, which may ultimately be best integrated into the diseased cartilage and bone.
624

Recombinant elastin analogues as cell-adhesive matrices for vascular tissue engineering

Ravi, Swathi 23 August 2010 (has links)
Biomimetic materials that recapitulate the complex mechanical and biochemical cues in load-bearing tissues are of significant interest in regenerative medicine and tissue engineering applications. Several investigators have endeavored to not only emulate the mechanical properties of the vasculature, but to also mimic the biologic responsiveness of the blood vessel in creating vascular substitutes. Previous studies in our lab generated the elastin-like protein polymer LysB10, which was designed with the capability of physical and chemical crosslinks, and was shown to display a range of elastomeric properties that more closely matched those of the native artery. While extensive validation of the mechanical properties of elastin-mimetic polymers has demonstrated their functionality in a number of tissue engineering applications, limited cell growth on the surfaces of the polymers has motivated further optimization for biological interaction. Recent biologically-inspired surface strategies have focused on functionalizing material surfaces with extracellular matrix molecules and bioactive motifs in order to encourage integrin-mediated cellular responses that trigger precise intracellular signaling processes, while limiting nonspecific biomaterial interactions. Consequently, this dissertation addresses three approaches to modulating cellular behavior on elastin-mimetic analogs with the goal of promoting vascular wall healing and tissue regeneration: genetic engineering of elastin-like protein polymers (ELPs) with cell-binding domains, biofunctionalization of elastin-like protein polymers via chemoselective ligation of bioactive ligands, and incorporation of matrix protein fibronectin for engineering of cell-seeded multilamellar collagen-reinforced elastin-like constructs. The synthesis of recombinant elastin-like protein polymers that integrate biologic functions of the extracellular matrix provides a novel design strategy for generating clinically durable vascular substitutes. Ultimately, the synthesis of model protein networks provides new insights into the relationship between molecular architecture, biomimetic ligand presentation, and associated cellular responses at the cell-material interface. Understanding how each of these design parameters affects cell response will contribute significantly to the rational engineering of bioactive materials. Potential applications for polymer blends with enhanced mechanical and biological properties include surface coatings on vascular grafts and stents, as well as composite materials for tissue engineered scaffolds and vascular substitutes.
625

Entwicklung neuartiger Scaffolds für das Tissue Engineering mittels Flocktechnologie

Walther, Anja 04 October 2010 (has links) (PDF)
Flocktechnologie ist eine im Bereich der Textiltechnik angewandte Methode, bei der kurze Fasern nahezu senkrecht auf ein vorher mit Klebstoff beschichtetes Substrat aufgebracht werden. In der vorliegenden Arbeit wurde die elektrostatische Beflockung als Methode zur Herstellung von porösen, dreidimensionalen Scaffolds für das Tissue Engineering von Knorpel und Knochen etabliert. Dieser neuartige Scaffoldtyp wurde eingehend charakterisiert und in Zellversuchen im Hinblick auf seine Biokompatibilität untersucht. Dabei zeigte sich, dass verschiedene Zellen im Scaffold proliferieren und differenzieren können. Die in der Arbeit beschriebenen Flockscaffolds stellen somit eine vielversprechende Matrix für die Therapie von Gelenkknorpeldefekten dar.
626

Development of hydrodynamically engineered cartilage in response to insulin-like growth factor-1 and transforming growth factor-beta1: formation and role of a type I collagen-based fibrous capsule

Yang, Yueh-Hsun 20 September 2013 (has links)
Articular cartilage which covers the surfaces of synovial joints is designed to allow smooth contact between long bones and to absorb shock induced during joint movement. Tissue engineering, a means of combining cells, biomaterials, bioreactors and bioactive agents to produce functional tissue replacements suitable for implantation, represents a potential long-term strategy for cartilage repair. The interplay between environmental factors, however, gives rise to complex culture conditions that influence the development of tissue-engineered constructs. A fibrous capsule that is composed of abundant type I collagen molecules and resembles fibrocartilage usually forms at the outer edge of neocartilage, yet the understanding of its modulation by environmental cues is still limited. Therefore, this dissertation was aimed to characterize the capsule formation, development and function through manipulation of biochemical parameters present in a hydrodynamic environment while a chemically reliable media preparation protocol for hydrodynamic cultivation of tissue-engineered cartilage was established. To this end, a novel wavy-wall bioreactor (WWB) that imparts turbulent flow-induced shear stress was employed as the model system and polyglycolic acid scaffolds seeded with bovine primary chondrocytes were cultivated under varied biochemical conditions. The results demonstrated that tissue morphology, biochemical composition and mechanical strength of hydrodynamically engineered cartilage were maintained as the serum content decreased by 80% (from 10% to 2%). Transient exposure of the low-serum constructs to exogenous insulin-like growth factor-1 (IGF-1) or transforming growth factor-β1 (TGF-β1) further accelerated their development in comparison with continuous treatment with the same bioactive molecules. The process of the capsule formation was found to be activated and modulated by the concentration of serum which contains soluble factors that are able to induce fibrotic processes and the capsule development was further promoted by fluid shear stress. Moreover, the capsule formation in hydrodynamic cultures was identified as a potential biphasic process in response to concentrations of fibrosis-promoting molecules such as TGF-β. Comparison between the capsule-containing and the capsule-free constructs, both of which had comparable tissue properties and were produced by utilizing the WWB system in combination with IGF-1 and TGF-β1, respectively, showed that the presence of the fibrous capsule at the construct periphery effectively improved the ability of engineered cartilage to integrate with native cartilage tissues, but evidently compromised its tissue homogeneity. Characterization of the fibrous capsule and elucidation of the conditions under which it is formed provide important insights for the development of tissue engineering strategies to fabricate clinically relevant cartilage tissue replacements that possess optimized tissue homogeneity and properties while retaining a minimal capsule thickness required to enhance tissue integration.
627

Development of a tissue engineering strategy to create highly compliant blood vessels

Crapo, Peter Maughan 16 December 2008 (has links)
Compliance mismatch is a significant hurdle to long-term patency in small-diameter arterial bypass grafts. Vascular tissue engineering has the potential to produce compliant, non-thrombogenic small-diameter grafts. However, current engineered grafts are relatively non-compliant, resulting in intimal hyperplasia and graft occlusion when subjected to arterial pressures. This research investigates the mechanical and biological properties of engineered constructs based on a biodegradable synthetic elastomer, poly(glycerol sebacate) (PGS). Several methods for fabricating porous PGS scaffolds in a tubular geometry were developed and compared. Adult baboon vascular cells were cultured in the scaffolds under various in vitro experimental conditions, including variations in initial cell seeding density, the type of scaffold used for culture, culture time, scaffold material, and hydrostatic pressure, and properties of the resultant constructs were compared. Scaffold fabrication using heat-shrinkable mandrels and glass tubes coated with hyaluronic acid significantly decreased tolerances of wall thickness and mechanical properties, improved handling, and decreased culture time required to reach luminal cellular confluence compared to scaffolds made with other fabrication techniques. Altering scaffold material from PGS to poly(lactide-co-glycolide) (PLGA), a benchmark biomaterial, did not affect scaffold yield, porosity, or luminal cellular confluence. Extracellular matrix (ECM) deposition increased with SMC-only culture time, and ECM deposition and remodeling during culture influenced construct compliance. Compared to PLGA scaffolds, PGS scaffolds promoted elastin crosslinking by SMCs and elastic tissue properties but attenuated collagen deposition. Hydrostatic pressure promoted ECM synthesis and deposition by SMCs and decreased construct compliance. Collagen and crosslinked elastin content in constructs correlated positively with construct burst pressure, and a negative correlation dependent on scaffold type was found between collagen content and construct compliance at low pressures. The systematic investigation of culture conditions in this research provides insights into the control of engineered blood vessel properties. The central hypothesis of this work, that grafts engineered from PGS scaffolds and adult vascular cells under biomimetic in vitro culture conditions can possess compliance comparable to autologous vessels, is true at pressures below 60 mmHg and demonstrates potential for PGS-based vascular tissue engineering. Overall, this work provides tools for engineering tubular soft tissues based on porous PGS scaffolds.
628

Biphasic Scaffolds from Marine Collagens for Regeneration of Osteochondral Defects

Bernhardt, Anne, Paul, Birgit, Gelinsky, Michael 11 June 2018 (has links) (PDF)
Background: Collagens of marine origin are applied increasingly as alternatives to mammalian collagens in tissue engineering. The aim of the present study was to develop a biphasic scaffold from exclusively marine collagens supporting both osteogenic and chondrogenic differentiation and to find a suitable setup for in vitro chondrogenic and osteogenic differentiation of human mesenchymal stroma cells (hMSC). Methods: Biphasic scaffolds from biomimetically mineralized salmon collagen and fibrillized jellyfish collagen were fabricated by joint freeze-drying and crosslinking. Different experiments were performed to analyze the influence of cell density and TGF-β on osteogenic differentiation of the cells in the scaffolds. Gene expression analysis and analysis of cartilage extracellular matrix components were performed and activity of alkaline phosphatase was determined. Furthermore, histological sections of differentiated cells in the biphasic scaffolds were analyzed. Results: Stable biphasic scaffolds from two different marine collagens were prepared. An in vitro setup for osteochondral differentiation was developed involving (1) different seeding densities in the phases; (2) additional application of alginate hydrogel in the chondral part; (3) pre-differentiation and sequential seeding of the scaffolds and (4) osteochondral medium. Spatially separated osteogenic and chondrogenic differentiation of hMSC was achieved in this setup, while osteochondral medium in combination with the biphasic scaffolds alone was not sufficient to reach this ambition. Conclusions: Biphasic, but monolithic scaffolds from exclusively marine collagens are suitable for the development of osteochondral constructs.
629

Cellular Events Under Flow States Pertinent to Heart Valve Function

Castellanos, Glenda L 12 November 2015 (has links)
Heart valve disease (HVD) or a damaged valve can severely compromise the heart's ability to pump efficiently. Balloon valvuloplasty is preferred on neonates with aortic valve stenosis. Even though this procedure decreases the gradient pressure across the aortic valve, restenosis is observed soon after balloon intervention. Tissue engineering heart valves (TEHV), using bone marrow stem cells (BMSCs) and biodegradable scaffolds, have been investigated as an alternative to current non-viable prosthesis. By observing the changes in hemodynamics following balloon aortic valvuloplasty, we could uncover a potential cause for rapid restenosis after balloon intervention. Subsequently, a tissue engineering treatment strategy based on BMSC mechanobiology could be defined. Understanding and identifying the mechanisms by which cytoskeletal changes may lead to cellular differentiation of a valvular phenotype is a first critical step in enhancing the promotion of a robust valvular phenotype from BMSCs.
630

Fiber Scaffolds of Poly (glycerol-dodecanedioate) and its Derivative via Electrospinning for Neural Tissue Engineering

Dai, Xizi 27 March 2015 (has links)
Peripheral nerves have demonstrated the ability to bridge gaps of up to 6 mm. Peripheral Nerve System injury sites beyond this range need autograft or allograft surgery. Central Nerve System cells do not allow spontaneous regeneration due to the intrinsic environmental inhibition. Although stem cell therapy seems to be a promising approach towards nerve repair, it is essential to use the distinct three-dimensional architecture of a cell scaffold with proper biomolecule embedding in order to ensure that the local environment can be controlled well enough for growth and survival. Many approaches have been developed for the fabrication of 3D scaffolds, and more recently, fiber-based scaffolds produced via the electrospinning have been garnering increasing interest, as it offers the opportunity for control over fiber composition, as well as fiber mesh porosity using a relatively simple experimental setup. All these attributes make electrospun fibers a new class of promising scaffolds for neural tissue engineering. Therefore, the purpose of this doctoral study is to investigate the use of the novel material PGD and its derivative PGDF for obtaining fiber scaffolds using the electrospinning. The performance of these scaffolds, combined with neural lineage cells derived from ESCs, was evaluated by the dissolvability test, Raman spectroscopy, cell viability assay, real time PCR, Immunocytochemistry, extracellular electrophysiology, etc. The newly designed collector makes it possible to easily obtain fibers with adequate length and integrity. The utilization of a solvent like ethanol and water for electrospinning of fibrous scaffolds provides a potentially less toxic and more biocompatible fabrication method. Cell viability testing demonstrated that the addition of gelatin leads to significant improvement of cell proliferation on the scaffolds. Both real time PCR and Immunocytochemistry analysis indicated that motor neuron differentiation was achieved through the high motor neuron gene expression using the metabolites approach. The addition of Fumaric acid into fiber scaffolds further promoted the differentiation. Based on the results, this newly fabricated electrospun fiber scaffold, combined with neural lineage cells, provides a potential alternate strategy for nerve injury repair.

Page generated in 0.0897 seconds