151 |
Surface-Bonded Sol-Gel Sorbents for On-Line Hyphenation of Capillary Microextraction with High-Performance Liquid ChromatographySegro, Scott S 24 March 2010 (has links)
High-performance liquid chromatography (HPLC) is the most widely used analysis technique. However, its sensitivity is limited. Sample preconcentration methods, such as fiber-based solid-phase microextraction (SPME) and in-tube SPME (capillary microextraction) offer improved detection limits. It is, however, difficult to couple fiber SPME on-line with HPLC due to the need for complicated desorption devices. Such coupling is further complicated due to the limited solvent stability of the extracting phase both in the fiber and in-tube formats of SPME. In this research, surface-bonded sol-gel sorbents were developed to provide the solvent stability required for effective on-line hyphenation of capillary microextraction (CME) with HPLC. These sol-gel sorbents were prepared using (1) silica-based, (2) titania-based, and (3) germania-based sol-gel precursors. Sol-gel reactions were performed within fused silica capillaries to create a number of organic-inorganic hybrid sorbents in the form of surface-bonded coatings: (1) alkyl (methyl, octyl, octadecyl), (2) polydimethyldiphenylsiloxane, (3) titania poly(tetrahydrofuran), and (4) germania tri-block polymer. The sol-gel coated microextraction capillaries were capable of efficiently extracting a wide variety of analytes, including polycyclic aromatic hydrocarbons, ketones, aldehydes, aromatic compounds, amines, alcohols, and phenols with ng/L to pg/L detection limits. The sol-gel methyl coating demonstrated a counterintuitive ability to extract polar analytes. Sol-gel polydimethyldiphenylsiloxane coatings were found to be resistant to high temperature solvent exposure (150°C and 200°C), making them suitable for use in high-temperature liquid phase separations. To better understand how extraction takes place, effects of alkyl chain length and sol-gel precursor concentration were evaluated in the study on sol-gel alkyl coatings. The sol-gel titania poly(tetrahydrofuran) coating was also capable of extracting underivatized aromatic acids and polypeptides at pHs near their respective isolectric points. The sol-gel titania poly(tetrahydrofuran) coatings and the sol-gel germania tri-block polymer coatings demonstrated impressive resistance to extreme pH conditions, surviving prolonged exposure to 1.0 M HCl (pH approx. 0.0) and 1.0 M NaOH (pH approx. 14.0) with virtually no change in extraction behavior. Sol-gel germania tri-block polymer coatings were also stable under high temperature solvent conditions (200°C). In addition, for the first time, the analyte distribution constants between a sol-gel germania coating and the aqueous samples (Kcs) were determined.
|
152 |
Interactions between freeze lining and slag bath in ilmenite smeltingZietsman, Johannes Hendrik 05 November 2004 (has links)
This study focused on the dynamic behaviour of the freeze lining and slag bath, and the interactions between these components in an ilmenite-smelting furnace process. The purpose of the work was to gain a better understanding of these issues and to ultimately contribute to an improved understanding of the ilmenite-smelting process in its entirety, and to future improvements in the design, operation and control of these processes. A mathematical model of the freeze lining and furnace sidewall was developed. This model was used in isolation for focused characterisation of the dynamic behaviour and interactions of the freeze lining and slag bath. The influences of net power input and slag composition were studied and various aspects of the freeze lining and slag bath were considered. These aspects included freeze lining thickness, temperature distribution through the freeze lining and furnace sidewall, composition distribution through the freeze lining, slag bath temperature and slag bath composition. The thermal response of thermocouples installed in the furnace sidewall to changing conditions on the inside of the furnace was also investigated. A mathematical model of the crust that forms on the slag bath surface was developed. This model was not used in isolation, and was only incorporated into a complete model of the process. A mathematical model of the entire ilmenite-smelting furnace process was constructed. This model incorporated the two models mentioned above and was able to describe the metal bath, slag bath, furnace atmosphere, freeze lining, furnace sidewall and the crust that is sometimes present on top of the slag bath. The model was used to study the influence of changes in operational parameters on the slag bath and freeze lining. The operational parameters that were studied included electrical power and reductant feed rate, both relative to ilmenite feed rate. The influence of severe operational errors and furnace down time were also investigated. Operational errors included loss of all feed while maintain electrical power input, and loss of reductant feed while maintaining power input and ilmenite feed. The above-mentioned studies were conducted by executing numerous experiments with two of the mathematical models. The experimental results were processed into sets of graphs displaying variations in the aspects that were considered. Many valuable insights resulted from the interpretation of these results. One specific aspect that formed part of the scope of this work was the origin of the compositional invariance of the slag close to the stoichiometric M3O5composition. This invariance was studied and a mechanism was proposed that explains the observed behaviour. The proposed mechanism created some questions about other mechanisms in the process. These mechanisms were also considered and elaborated on. The models and results produced in this study provide valuable insights into the behaviour of the ilmenite-smelting process. It also represents a useful foundation for future modelling work, and finally, it presents numerous opportunities for organisations operating ilmenite-smelting furnaces to improve their understanding and even the performance of their processes. / Thesis (PhD (Metallurgical Engineering))--University of Pretoria, 2004. / Materials Science and Metallurgical Engineering / unrestricted
|
153 |
Fischer-Tropsch Cobalt Catalyst Improvements with the Presence of TiO2, La2O3, and ZrO2 on an Alumina SupportKlettlinger, Jennifer Lindsey Suder 17 May 2012 (has links)
No description available.
|
154 |
Conductive Tracks in Carbon Implanted Titania Nanotubes: Atomic-Scale Insights from Experimentally Based Ab Initio Molecular Dynamics ModelingHolm, Alexander, Kupferer, Astrid, Mändl, Stephan, Lotnyk, Andriy, Mayr, Stefan G. 09 November 2023 (has links)
Ion implantation of titania nanotubes is a highly versatile approach for
tailoring structural and electrical properties. While recently self-organized
nanoscale compositional patterning has been reported, the atomistic
foundations and impact on electronic structure are not established at this
point. To study these aspects, ab initio molecular dynamic simulations based
on atomic compositions in C implanted titania nanotubes according to elastic
recoil detection analysis are employed. Consistent with experimental data,
carbon accumulates in chainlike precipitates, which are favorable for
enhancing conductivity, as revealed by density-functional theory electronic
ground states calculations are demonstrated.
|
155 |
Nano-Catalyst Synthesized by Flame Spray Pyrolysis (FSP) for Visible Light PhotocatalysisInturi, Siva Nagi Reddy January 2017 (has links)
No description available.
|
156 |
Mesoporous Inorganic Membranes for Water PurificationSchillo, Melissa C. 12 September 2011 (has links)
No description available.
|
157 |
Nanocrystalline Titania Based Dye Sensitized Solar Cells - Effect Of Electrodes And Electrolyte On The PerformanceMathew, Ambily 07 1900 (has links) (PDF)
Dye-sensitized solar cells (DSC) have attracted considerable scientific and industrial interest during the past decade as an economically feasible alternative to conventional photovoltaic devices. DSCs have the potential to be as efficient as silicon solar cells, but at a fraction of the cost of silicon solar cells. The unique advantage of DSC compared to conventional solar cells is that the light absorption, electron transport and hole transport are handled by different components which reduces the chance of recombination. In the present work, to facilitate DSC with good energy conversion efficiency, its performance have been evaluated as a function of titania layer morphology, redox couple concentration and the catalytic layer on the counter electrode. The results that are obtained in the present investigations have been organized as follows
Chapter 1 gives a brief exposure to DSC technology. Special emphasize has been on the structure and individual components of the DSC.
Chapter 2 describes various experimental techniques that are employed to fabricate and characterize DSCs under study.
Chapter 3 presents a systematic study of the characteristics of DSC made of three different types of electrodes namely: TiO2 nanotubes (TNT) which have excellent electron transport properties, TiO2 microspheres (TMS) which possess high surface area and light scattering ability and TiO2 nano particles (TNP) possessing high surface area. The electronic, morphological, optical and surface properties of individual electrodes are studied. The highest efficiency of 8.03% is obtained for DSCs prepared with TMS electrodes. A higher value of effective diffusion coefficient (Deff) and diffusion length (Ln) of electrons as obtained by electrochemical impedance spectroscopy (EIS) analysis confirms a high charge collection efficiency in microsphere based cell.
Chapter 4 gives a detailed study of DSCs fabricated with a tri-layer photo anode with TNTs as light scattering layer. The tri-layer structure has given an enhanced efficiency of 7.15% which is 16% higher than TNP based cell and 40% higher than TNT based cells.
Chapter 5 deals with the investigations on the effect of concentration of redox couple on the photovoltaic properties of DSC for different ratios of [I2] to [LiI] (1:2, 1:5 and 1:10) with five viii concentrations of I2 namely 0.01 M, 0.03 M, 0.05 M, 0.08 M and 0.1M in acetonitrile. It is found that the open circuit potential (Voc) decreases with increase in the ratio of redox couple whereas short circuit current density (Jsc) and fill factor (FF) increase. The reason for the decline in Voc is the higher recombination between electrons in the conduction band of TiO2 and the I3- ions present in the electrolyte, induced by the absorptive Li+ ions. In addition using EIS it is found that the τ improves with the increase in [LiI] at a particular [I2], whereas at a fixed [I2]/ [LiI] ratio the increase in [I2] is found to reduce the τ and Deff due to the enhanced recombination.
Chapter 6 describes the application of carbon based counter electrode (CE) materials for DSCs. Two counter electrode materials have been investigated namely (1) Multiwalled carbon nanotubes (MWCNT) synthesized by pyrolysis method and (2) Platinum decorated multiwalled carbon nanotubes (Pt/MWCNT) prepared by chemical reduction of platinum precursors. Using Pt/MWCNT composite electrode the DSC achieved an energy conversion efficiency of 6.5 %. From the analysis on symmetric cells, it is found that electro catalytic activity of Pt/MWCNT CE is similar to that of platinum CE, though the platinum loading is very less for the former. This is attributed to the effective utilization of catalyst owing to high surface area arising from the increased surface roughness.
Chapter 7 discusses the application of titanium foil in place of glass substrate for the photo anode. The titanium foil offers fabrication of flexible DSC. The performance of DSC with TMS layers and aligned titania nanotube arrays (TNA) prepared by anodization method is studied. Compared to TMS based cell, TNA has given a better efficiency at a lower thickness.
Chapter 8 presents the scheme used to seal DSCs and its stability analysis. We have employed the usual hot melt sealing for edge whereas hole sealing is carried out with tooth pick and a UV curable adhesive. The degradation in efficiency is found to be 20% for low efficiency cells whereas, for high efficiency cells it is found to be 45% after 45 days. The leakage of highly volatile acetonitrile through the edge and hole is found to be responsible for the reduction in the performance of the device. Hence a high temperature sealing method is proposed to fabricate stable cells.
Chapter 9 gives summary and conclusions of the present work
|
158 |
Design and development of a new generation of UV-visible-light-driven nanosized codoped titanium dioxide photocatalysts and biocides/sporocides, and environmental applicationsHamal, Dambar B. January 1900 (has links)
Doctor of Philosophy / Department of Chemistry / Kenneth J. Klabunde / For solar environmental remediation, a new generation of nanosized (< 10 nm) titanium dioxide photocatalysts codoped with metals and nonmetals, or metals only were prepared by the xero-gel and aero-gel methods. For silver or cobalt-based xero-gel titanium dioxide photocatalysts, photoactivities tests revealed that codoping of titanium dioxide with a metal (1% Ag or 2% Co) and nonmetals (carbon and sulfur) is necessary to achieve high-activities for acetaldehyde degradation under visible light (wavelength > 420 nm). It was concluded that high visible-light-activities for acetaldehyde degradation over codoped titanium dioxide were attributed to an interplay of anatase crystallinity, high-surface area, reduced band-gap (< 3.0 eV), uniform dispersion of doped metal ions, and suppressed recombination rate of photogenerated electron-hole pairs. Moreover, the nature and amount of codoped metals play a significant role in visible-light-induced photocatalysis.
Metals (Al, Ga, and In) doped/codoped titanium dioxide photocatalysts were prepared by the aero-gel method. The photocatalytic studies showed that activities of metal doped/codoped photocatalysts under UV light (wavelength < 400 nm) were found to be dependent on pollutants. Indium demonstrated beneficial effects in both textural and photocatalytic properties. Gallium and indium codoped titanium dioxide photocatalysts displayed even better performance in the CO oxidation reaction under UV light. Notably, titanium dioxide codoped with Ga, In, and Pt, exhibited unique photoactivities for the CO oxidation under both UV and visible light irradiation, indicating that this system could have promise for the water-gas shift reaction for hydrogen production.
Silver-based nanostructured titanium dioxide samples were developed for killing human pathogens (Escherichia coli cells and Bacillus subtilis spores). Biocidal tests revealed that silver, carbon, and sulfur codoped titanium dioxide nanoparticles (< 10 nm) possess very strong antimicrobial actions on both E. coli (logarithmic kill > 8) and B. subtilis spores (logarithmic kill > 5) for 30 minute exposures in dark conditions compared with Degussa P25. It was believed that the carbon and sulfur codoped titanium dioxide support and Ag species acted synergistically during deactivation of both E. coli and B. subtilis spores. Thus, titanium dioxide codoped with silver, carbon, sulfur can serve as a multifunctional generic biocide and a visible- light-active photocatalyst.
|
159 |
Ανάπτυξη στερεών καταλυτών για την παραγωγή π-κυμενίου από λεμονένιο / Development of solid catalysts for the production of p–cymene from limoneneΚαμίτσου, Μαρία 11 October 2013 (has links)
Το π–κυμένιο (p–ισοπρόπυλο τολουόλιο) είναι ένα πολύ σημαντικό προϊόν με μεγάλο εμπορικό ενδιαφέρον, καθώς αποτελεί κύριο συστατικό πολλών καλλυντικών, αρωμάτων, φαρμακευτικών προϊόντων, καθώς και την πρώτη ύλη για την παραγωγή της p–κρεσόλης. Η τρέχουσα διαδικασία παραγωγής του π–κυμενίου είναι η κατά Friedel–Crafts αλκυλίωση του τολουολίου με προπυλένιο ή προπανόλη–2, η οποία χρησιμοποιεί μεγάλες ποσότητες επιβλαβών οξέων, προκαλώντας πολλά προβλήματα χειρισμού στους εργαζόμενους με αυτό, προβλήματα διάβρωσης και προβλήματα διάθεσης των παραγόμενων αποβλήτων.
Τα τελευταία χρόνια, η Πράσινη Χημεία έχει παρουσιασθεί ως η νέα προσέγγιση της Χημείας για την πρόληψη της μόλυνσης του περιβάλλοντος, καθώς και του σχεδιασμού χημικών προϊόντων και διεργασιών που είναι περισσότερο φιλικά προς το περιβάλλον. Η κατάλυση αποτελεί μία από τις κύριες αρχές, αλλά ταυτόχρονα και εργαλείο της Πράσινης Χημείας. Πιο συγκεκριμένα η ετερογενής κατάλυση, που εξυπηρετεί τους στόχους της Πράσινης Χημείας, λόγω της εξάλειψης της ανάγκης διαχωρισμού του παραγόμενου προϊόντος από τον καταλύτη. Επίσης, μία άλλη βασική παράμετρος της Πράσινης Χημείας είναι η χρήση της βιομάζας, ως ανανεώσιμη πρώτη ύλη, με σκοπό την παραγωγή ενέργειας και χημικών προϊόντων.
Στην παρούσα εργασία, μελετάται η δυνατότητα καταλυτικής παραγωγής π–κυμενίου, βασιζόμενη στις αρχές της Πράσινης Χημείας. Για το σκοπό αυτό χρησιμοποιείται ως αντιδρών το α–λεμονένιο, ένα μονοτερπένιο το οποίο αποτελεί ανανεώσιμη πρώτη ύλη, καθώς είναι παραπροϊόν της βιομηχανίας χυμών λεμονιού και πορτοκαλιού, καθώς και της βιομηχανίας χάρτου και πολτού. Πιο αναλυτικά, μελετήθηκε η καταλυτική συμπεριφορά οξειδίων με μεγάλη ειδική επιφάνεια, όπως η SiO2, το MCM–41, ο ζεόλιθος NaY, η γ–Al2O3 και δύο δείγματα TiO2, με διαφορετικές ειδικές επιφάνειες, στην αντίδραση μετατροπής του λεμονενίου προς π–κυμένιο. Επίσης, ερευνήθηκε η επίδραση στη διεργασία τόσο της θερμοκρασίας της αντίδρασης, όσο και της σύστασης της ατμόσφαιρας κάτω από την οποία
διεξαγόταν η αντίδραση. Τα πειράματα διεξήχθησαν σε αντιδραστήρα σταθερής κλίνης – ατμοσφαιρικής πίεσης, ενώ για την ανάλυση των λαμβανόμενων προϊόντων χρησιμοποιήθηκε αέριος χρωματογράφος – φασματογράφος μάζας (GC–MS).
Από τους καταλύτες που μελετήθηκαν ο πιο αποτελεσματικός αποδείχθηκε η τιτάνια με τη σχετικά μεγάλη ειδική επιφάνεια ακολουθούμενη από την τιτάνια με την χαμηλότερη ειδική επιφάνεια, τον ζεόλιθο NaY και τη γ–Al2O3. Τόσο η σίλικα όσο και το MCM–41 παρουσίασαν μάλλον αμελητέα δραστικότητα. Επίσης, παρατηρήθηκε ότι η απόδοση σε π–κυμένιο αυξανόταν γενικά με τη θερμοκρασία, ενώ δεν επηρεαζόταν πρακτικά από την ατμόσφαιρα που διεξαγόταν η αντίδραση. Τέλος, στους 300 οC και χρησιμοποιώντας την τιτάνια με τη σχετικά μεγάλη ειδική επιφάνεια ως καταλύτη επιτεύχθηκε 90% απόδοση για το π–κυμένιο και 100% μετατροπή για το λεμονένιο. Η αυξημένη απόδοση της τιτάνιας αποδόθηκε σε επιτυχή συγκερασμό ανάμεσα στη σχετικά μεγάλη οξύτητα Brönsted και στη σχετικά εύκολη μεταβολή του λόγου Ti(IV)/Ti(III) κατά τη διάρκεια της αντίδρασης. Τα κινητικά αποτελέσματα επέτρεψαν να γραφεί ένα κινητικό σχήμα για τη διεργασία. / P–cymene is a very important product with great commercial interest because of its use as a main ingredient of cosmetics, perfumes and pharmaceutical products as well as raw material for the production of p–cresol. Current production is achieved by using the Friedel–Crafts reaction of toluene with propylene or propanol–2 which uses large quantities of harmful acids which, in turn, leads to industrial accidents, corrosion problems and the general difficulty of handling toxic wastes.
A new concept of chemistry has been developed for confronting environmental problems. Green Chemistry is related to products and processes that are environmentally friendly. One of the basic tools of Green Chemistry is catalysis, mainly heterogeneous catalysis, because it allows the easy separation of the catalysts used from the final product. Moreover, following the principles of the Green Chemistry, biomass should be used in the production of renewable energy and chemical products.
The present Thesis deals with the catalytic production of p–cymene based on the principles of Green Chemistry. In particular, we use a–limonene, by–product of the juice of orange and lemon industry as well as the paper industry, to produce p–cymene. A number of oxides with large specific surface area, such as SiO2, MCM–41, zeolite NaY, γ–Al2O3 and two samples of TiO2, were studied as catalysts. The effect of the reaction temperature and the composition of the atmosphere were also studied. All experiments were conducted on a fixed bed micro–reactor operating under atmospheric pressure coupled with an on–line Gas Chromatograph–Mass Spectrometer (GC – MS).
The titania with the relatively high specific surface area was proved to be the most efficient catalyst among those studied. The following activity series has been obtained: «high surface area titania > small surface area titania > zeolite NaY > γ–Al2O3 > MCM–41 > SiO2». Negligible activity is exhibited by MCM–41 and SiO2. The percentage yield for p–cymene increases with temperature whereas is practically independent from the carrier gas. Very high percentage yield for p–cymene was obtained at 300οC over the high specific surface area titania (~90%). Complete transformation of a–limonene was obtained over the above catalyst at the same temperature. The very high activity obtained over this catalyst was attributed to good compromise between high acidity and easy transformation of the ratio Ti(IV)/Ti(III) during reaction. The kinetic results allow the clarification of the reaction scheme.
|
160 |
Design of nanocatalysts supported on magnetic nanocomposites containing silica, ceria and titania / Desenvolvimento de nanocatalisadores suportados em nanocompósitos magnéticos contendo sílica, céria e titâniaVono, Lucas Lucchiari Ribeiro 18 March 2016 (has links)
Magnetic separation has received a lot of attention as a robust, highly efficient and rapid catalyst separation technology. Many studies have focused on developing methodologies for the immobilization of catalytic active species, but the development of magnetic supports has been mainly limited to silica, polymer or carbon-coated magnetic nanoparticles (NPs). The design of magnetic nanocomposites and the incorporation of other oxides are highly welcome to broaden the application of this separation technology in the field of catalysis. In this context, studies of the thermal stability of silica-coated magnetite (Fe3O4@SiO2) were performed to evaluate the possibility of calcining it without losing the magnetic properties of the support. The calcination would permit the deposition of different oxides on the silica surface, such as ceria and titania. The calcined Fe3O4@SiO2 material preserved the core-shell morphology and magnetic properties, but increased its surface area six times. New magnetic supports were developed by using post-coating process for the deposition of ceria and titania onto silica-coated magnetite. Magnetically recoverable Rh, Pd and Ru nanocatalysts were prepared. The catalysts were employed in hydrogenation of cyclohexene, benzene or phenol and the study of the influence of each support on the catalytic activity was a main objective of this thesis. The catalysts were prepared by two different approaches: the impregnation and the sol-immobilization of pre-formed metal NPs. The colloidal metal NPs were prepared by reduction of metal salts and also by decomposition of organometallic complexes. Rhodium catalysts prepared by impregnation of rhodium(III) chloride and reduction with H2 showed some reproducibility issues that were surpassed by using NaBH4 or hydrazine as reducing agents. The preparation of catalysts by the immobilization of colloidal NPs is an interesting alternative to obtain reproducible and very active catalysts. Nanoparticles of Pd, Rh and Ru were prepared by an organometallic approach and immobilized on calcined Fe3O4@SiO2, Fe3O4@SiO2CeO2 and Fe3O4@SiO2TiO2. The elimination of the stabilizing agent leads to more active catalysts upon recycling. Rhodium catalysts supported on ceria support was the most active catalyst in the hydrogenation of cyclohexene (TOF 125,000 h-1). Palladium catalysts were the most selective catalyst for the hydrogenation of phenol to cyclohexanone, no matter the support used. The formation of cyclohexanol is enhanced with titania and the hydrodeoxygenation to produce cyclohexane occurred mainly with silica. / A separação magnética tem recebido muita atenção como uma tecnologia robusta, altamente eficiente e rápida para recuperar catalisadores sólidos após uso em reações em fase líquida. Muitos estudos têm focado nas metodologias para a imobilização de espécies cataliticamente ativas, mas o desenvolvimento de suportes magnéticos tem se limitado a nanopartículas magnéticas revestidas com sílica, polímeros ou carbono. O desenvolvimento de nanocompósitos magnéticos com a incorporação de outros óxidos é muito desejável para ampliar a aplicação dessa tecnologia de separação em catálise. Nesse contexto, estudos da estabilidade térmica de magnetita revestida com sílica (Fe3O4@SiO2) foram realizados para avaliar a possibilidade de calcina-la sem perder as propriedades magnéticas do suporte. Uma etapa de calcinação é necessária para a deposição de diferentes óxidos na superfície da sílica, tais como céria e titânia. O Fe3O4@SiO2 calcinado preservou a morfologia \"core-shell\" e as propriedades magnéticas, porém apresentou um aumentou de seis vezes na área superficial. Novos suportes magnéticos foram desenvolvidos pela deposição de céria e titânia sobre magnetita previamente revestida com sílica. Nanocatalisadores magneticamente recuperáveis de Rh, Pd e Ru foram preparados. Os catalisadores foram utilizados na hidrogenação de ciclo-hexano, benzeno ou fenol e o principal objetivo dessa tese foi o estudo da influência de cada suporte na atividade catalítica. Os catalisadores foram preparados de duas formas diferentes: impregnação-redução e imobilização de nanopartículas (NPs) metálicas pré-formadas. As NPs coloidais foram preparadas pela redução de sais metálicos e, também, pela decomposição de complexos organometálicos. Catalisadores de ródio preparados pela impregnação de cloreto de ródio(III) e redução com H2 mostraram alguns problemas de reprodutibilidade, que foram superados utilizando NaBH4 ou hidrazina como agentes redutores. A preparação de catalisadores pela imobilização de NPs coloidais é uma alternativa interessante para obter catalisadores reprodutíveis e muito ativos. Nanopartículas de Pd, Rh e Ru foram preparadas a partir de organometálicos e imobilizadas em Fe3O4@SiO2 calcinada, Fe3O4@SiO2CeO2 e Fe3O4@SiO2TiO2. A eliminação do agente estabilizante torna os catalisadores mais ativos durante os reusos. O catalisador de Rh sobre o suporte de céria foi o catalisador mais ativo na hidrogenação de ciclohexeno (TOF 125000 h-1). O catalisador de Pd foi o catalisador mais seletivo para a hidrogenação de fenol em ciclo-hexanona, independente do suporte usado. A formação de ciclo-hexanol é favorecida pelo suporte de titânia e a hidrodesoxigenação para produzir ciclo-hexano ocorreu principalmente no suporte de sílica.
|
Page generated in 0.0357 seconds