1 |
STM Study of Interfaces and Defects in 2D MaterialsZheng, Husong 23 March 2020 (has links)
Two-dimensional (2D) materials show novel electronic, optical and chemical properties and have great potential in devices such as field-effect transistors (FET), photodetectors and gas sensors. This thesis focuses on scanning tunneling microscopy and spectroscopy (STM/STS) investigation of interfaces and defects 2D transition metal dichalcogenides (TMDCs).
The first part of the thesis focuses on the synthesis of 2D TiSe2 with chemical vapor transport (CVT). By properly choosing the growth condition, Sub-10 nm TiSe2 flakes were successfully obtained. A 2 × 2 charge density wave (CDW) was clearly observed on these ultrathin flakes by scanning tunneling microscopy (STM). Accurate CDW phase transition temperature was measured by transport measurements. This work opens up a new approach to synthesize TMDCs.
The second part of the thesis focuses on monolayer vacancy islands growing on TiSe2 surface under electrical stressing. We have observed nonlinear area evolution and growth from triangular to hexagonal driven by STM subjected electrical stressing. Our simulations of monolayer island evolution using phase-field modeling and first-principles calculations are in good agreement with our experimental observations. The results could be potentially important for device reliability in systems containing ultrathin TMDCs and related 2D materials subject to electrical stressing.
The third part of the thesis focuses on point defects in 2D PtSe2. We observed five types of distinct defects from STM topography images and measured the local density of states (LDOS) of those defects from scanning tunneling spectroscopy (STS). We identified the types and characteristics of these defects with the first-principles calculations. Our findings would provide critical insight into tuning of carrier mobility, charge carrier relaxation, and electron-hole recombination rates by defect engineering or varying growth condition in few-layer 1T-PtSe2 and other related 2D materials. / Doctor of Philosophy / Since the discovery of graphene in 2004, two-dimensional (2D) materials have attracted more and more attentions. When the thickness of a layered material thinned to one or few atoms, it shows interesting properties different from its bulk phase. Due to the reduced dimensionality, interfaces and defects in 2D materials will significantly affect the electronic property and chemical activity. However, such nanometer scale features are several orders of magnitude smaller than the wavelength of visible light, which is the limit of resolution for optical microscope. Scanning tunneling microscope (STM) is widely used in study of 2D materials not only because it can provide the topography and local electronic information at atomic scale, but also because of the possibility of directly fabricate atomic scale structure on the surface.
The first part of the thesis focuses on the synthesis of 2D TiSe2 with chemical vapor transport (CVT). TiSe2 belongs to the transition metal dichalcogenides (TMDCs) family, showing a sandwiched layered structure. When the temperature goes down to 200K, a 2 × 2 superlattice called charge density wave (CDW) will show up, which is clearly observed in our STM images.
The second part of the thesis focuses on monolayer vacancy islands growing on TiSe2 surface controlled by electrical stressing. During continuous STM scanning, we have observed nonlinear area growth of the vacancy islands. The shape of those islands transfers from triangular to hexagonal. We successfully simulated such growth using phase-field modeling and first-principles calculations. The results could be potentially important for device reliability in systems containing ultrathin TMDCs and related 2D materials subject to electrical stressing.
The third part of the thesis focuses on defects in 2D PtSe2. We observed five types of distinct defects in our STM topography images. By comparing them with DFT-calculated simulation images, we identified the types and characteristics of these defects. Our findings would provide critical insight into tuning of carrier mobility, charge carrier relaxation, and electron-hole recombination rates by defect engineering in few-layer 1T-PtSe2 and other related 2D materials.
|
2 |
Excitation Energy Transfer in Two-Dimensional Transition Metal Dichalcogenides Based Nanohybrid SystemsChang, Kainan 02 August 2022 (has links)
Die vorliegende Arbeit untersucht den Anregungsenergie-Transfer in Nano-hybrid-Systemen, welche zweidimensionale Übergangsmetall-Dichalkonid-Schichten (TMDCs) enthalten. Heterostrukturen, welche TMDC-Schichten mit sogenannten nulldimensionalen Systemen kombinieren, werden als wesentlich für die nächste Generation von elektronischen und photonischen Bauelementen angesehen.
Trotz dieser großen Bedeutung existieren wenige theoretische Untersuchungen. Insbesondere ist der Anregungsenergie-Transfer in diesen Hybridsystemen nicht umfassend erklärt, und die Behandlung von TMDC-Schichten bezieht sich auf sehr kleine oder periodische Systeme. Daher wird in der Arbeit der Versuch unternommen, existierende Theorien zu verbessern, und es werden Transferprozesse in zwei Typen von Heterostrukturen simuliert. Die berechneten Systeme enthalten tausende von Atomen und kommen damit in den Bereich experimentell untersuchter Strukturen. In dem einen Nanohybrid-System ist eine MoS2-Monoschicht mit einem einzelnen Para-Sexiphenyl-Molekül kombiniert, wogegen im zweiten System ein CdSe-Nanokristall an der MoS2-Mono-schicht plaziert ist. Dabei ermöglicht die Coulomb-Wechselwirkung zwischen Monoschicht und Molekül bzw. Nanokristall den Anregungsenergie-Transfer.
In allen untersuchten Heterostrukturen ist die Stärke der Anregungsenergie-Transfer-Kopplung auf den sub-meV-Bereich beschränkt. In diesem Bereich ist der Anregungsenergie-Transfer inkohärent und bestimmt durch Raten, die aus Fermi's Goldener Regel folgen. Auch wird eine Abhängigkeit der Transferrate von der relativen Position des para-Sexiphenyl-Moleküls gefunden. Durch die Analyse der Übergangsladungsdichte des CdSe-Nanokristalls kann aufgezeigt werden, dass die energetisch tiefliegenden Exziton-Niveaus mit ausgeprägtem Dipolcharakter zu einer stärkeren Transferkopplung führen. Die resultierenden Transferzeiten erstrecken sich vom Piko- zum Nanosekunden-Bereich und decken sich mit entsprechend gemessenen Werten. / This thesis explores the excitation energy transfer in two-dimensional transition metal dichalcogenides (TMDCs) based nanohybrid systems. Such heterostructures combining TMDC layers with zero-dimensional materials are considered in next-generation electronics and photonics. However, there exists a shortage of current theoretical work, because the general process of excitation energy transfer in these hybrid systems has rarely been explored and the treatment of TMDCs is limited to a small size.
We therefore improve the existing theories and investigate the transfer phenomena in two types of heterostructures. The considered systems contain thousands of atoms close to the experimental system size. In the first nanohybrid system, a MoS2 monolayer is combined with a single para-sexiphenyl molecule. In the second hybrid, a CdSe semiconductor spherical nanocrystal is placed close to the MoS2 monolayer. The MoS2 monolayer is coupled to the para-sexiphenyl molecule or the CdSe spherical nanocrystal via Coulomb interaction, which makes the excitation energy transfer mechanism possible.
In our heterostructures, all excitation energy transfer coupling strengths lie in the meV-range or below. Within this limitation, the non-coherent excitation transfer is determined by rate expressions derived from Fermi’s Golden Rule. An effective transfer rate dependency on the relative positions of the para-sexiphenyl molecule is found. For the case of the CdSe spherical nanocrystal , by visualizing the shape of transition charge densities of CdSe excitons, we find that the low-lying exciton levels with more obvious dipole character lead to a stronger transfer coupling. The resultant transfer times range from picoseconds to nanoseconds and coincide with experimental data.
|
3 |
Two Dimensional Layered Materials and Heterostructures, a Surface Science Investigation and CharacterizationMa, Yujing 26 September 2017 (has links)
The isolation of single layers of van der Waals materials has shown that their properties can be significantly different compared to their bulk counterparts. These observations, illustrates the importance of interface interactions for determining the materials properties even in weakly interacting materials and raise the question if materials properties of single layer van der Waals materials can be controlled by appropriate hetero-interfaces. To study interface effects in monolayer systems, surface science techniques, such as photoemission spectroscopy and scanning probe microscopy/spectroscopy, are ideally suited. However, before these characterization methods can be employed, approaches for the synthesis of hetero-van der Waals systems must be developed, preferably in-situ with the characterization methods, i.e. in ultra-high vacuum. Therefore, in this thesis, we explored novel approaches for creating van der Waals heterostructures and characterized fundamental structural and electronic properties of such systems. Specifically, we developed an approach to decouple graphene from a Ir(111) growth substrate by intercalation growth of a 2D-FeO layer, and we investigate van der Waals epitaxy of MoSe2 on graphite and other transition metal dichalcogenide substrates.
For the Ir(111)/2D-FeO/graphene heterostructure system, we first demonstrated the growth of 2D-FeO on Ir(111). The FeO monolayer on Ir(111) exhibits a long range moiré structure indicating the locally varying change of the coordination of the Fe atoms with respect to the substrate Ir atoms. This variation also gives rise to modulations in the Fe2+-O2- separation, and thus in the monolayer dipole. We demonstrated that this structure can be intercalated underneath of graphene grown on Ir(111) by chemical vapor deposition. The modulation of the dipole in the 2D-FeO moiré structure consequently gives rise to a modulated charge doping in the graphene. This effect has been studied by C-1s core level broadening. In general, this study demonstrates that modulated substrates can be used to periodically modify 2D materials.
Growth of transition metal dichalcogenides (TMDCs) by molecular beam epitaxy (MBE) is a very versatile approach for growing TMDC heterostructures. However, there may be unforeseen challenges in the synthesis of some of these materials. Here we show that in MBE growth of MoSe2, the formation of twin grain boundaries is very abundant. While this is detrimental in our efforts for characterizing interface properties of TMDC heterostructures, however the twin grain boundaries have exciting properties. Since the twin grain boundaries are aligned in an epitaxial film we were able to characterize their properties by angle resolved photoemission spectroscopy (ARPES), which may be the first time a material’s line defects could be studied by this method. We demonstrate that the line defects are metallic and exhibit a parabolic dispersing band. Because of the 1D nature of the metallic lines, embedded in a semiconducting matrix, the electronic structure follows a Tomonaga Luttinger formalism and our studies showed strong evidence of the predicted so-called spin charge separation in such 1D electron systems. Moreover, a metal-to-insulator Peierls transition has been observed in this system by scanning tunneling microscopy as well as in transport measurements. Finally, we have shown that the defect network that forms at the surface also lends itself for decoration with metal clusters. Although unexpected, the formation of grain boundary networks in MoSe2 marks the discovery of a new material with exciting quantum properties.
|
4 |
Micro- and nano-optical spectroscopy investigation of 2D transition metal dichalcogenides (TMDCs)Pan, Yang 01 December 2023 (has links)
Diese Dissertation konzentriert sich auf die Untersuchung der Schwingungs- und exzitonischen Eigenschaften von zweidimensionalen Übergangsmetall-Dichalkogeniden (TMDCs) unter Verwendung von mikro- und nanooptischer Spektroskopie.
Im ersten Teil der Arbeit wird Mikro-Raman-Spektroskopie verwendet, um die Schwingungseigenschaften von 2D-TMDC-Homo- und Heterostrukturen zu untersuchen, mit dem Ziel, die Hochfrequenz-Raman-Signatur für die Wechselwirkung zwischen den Schichten und die Gitterdynamik zu erforschen. Basierend auf einer systematischen Raman-Studie, unterstützt durch Photolumineszenz- (PL) und Topographie-Untersuchungen an nicht gekoppelten und gekoppelten TMDC-Doppellagen, wird die aus der Ebene herausragende $B_{2g}$-Schwingungsmode experimentell als ein charakteristischer Raman-Fingerabdruck zur Einschätzung der Wechselwirkung zwischen den Schichten in 2D-TMDC-Systemen erklärt. Darüber hinaus wird anhand eines Beispiels mit verdrehter Doppellage (tB) von WSe$_2$ als typisches TMDC gezeigt, dass das Raman-Intensitätsverhältnis der beiden Peaks $I_{B_{2g}}/I_{{E_{2g}}/{A_{1g}}}$ mit der Entwicklung der Moiré-Periode korreliert. Mit einer Reihe temperaturabhängiger Raman- und Photolumineszenz-Messungen sowie \textit{ab initio}-Berechnungen wird das Intensitätsverhältnis $I_{B_{2g}}/I_{{E_{2g}}/{A_{1g}}}$ als Signatur der Gitterdynamik in tB-WSe$_2$-Moiré-Übergittern erklärt. Durch die weitere Untersuchung verschiedener Materialkombinationen von verdrehten Hetero-Doppellagen werden die Ergebnisse auf alle Arten von Mo- und W-basierten TMDCs erweitert.
Im zweiten Teil der Dissertation wird die spitzenverstärkte Photolumineszenz-Spektroskopie (TEPL) eingesetzt, um die konventionelle optische Auflösungsgrenze zu überwinden und die konkurrierenden Mechanismen der lokalen Photolumineszenz-Dämpfung und -Verstärkung an 2D-TMDC/hBN/Plasmonik-Grenzflächen zu verstehen. Durch den Vergleich verschiedener Nahfeldemissions-Eigenschaften und TEPL-Spektren in Abhängigkeit von der Spitzen-Proben-Entfernung an einer komplexen Monolagen-MoSe$_2$/hBN/NT/SiO$_2$-Probe werden die lokalisierte Oberflächenplasmonenresonanz (LSPR), die Elektronen-Dotierung und der Tunneltransport sowie hochlokalisierte Belastung als dominierende Faktoren für die lokale PL-Dämpfung und -Verstärkung identifiziert.
|
5 |
Light Matter Interactions in Two-Dimensional Semiconducting Tungsten Diselenide for Next Generation Quantum-Based Optoelectronic DevicesBandyopadhyay, Avra Sankar 12 1900 (has links)
In this work, we explored one material from the broad family of 2D semiconductors, namely WSe2 to serve as an enabler for advanced, low-power, high-performance nanoelectronics and optoelectronic devices. A 2D WSe2 based field-effect-transistor (FET) was designed and fabricated using electron-beam lithography, that revealed an ultra-high mobility of ~ 625 cm2/V-s, with tunable charge transport behavior in the WSe2 channel, making it a promising candidate for high speed Si-based complimentary-metal-oxide-semiconductor (CMOS) technology. Furthermore, optoelectronic properties in 2D WSe2 based photodetectors and 2D WSe2/2D MoS2 based p-n junction diodes were also analyzed, where the photoresponsivity R and external quantum efficiency were exceptional. The monolayer WSe2 based photodetector, fabricated with Al metal contacts, showed a high R ~502 AW-1 under white light illumination. The EQE was also found to vary from 2.74×101 % - 4.02×103 % within the 400 nm -1100 nm spectral range of the tunable laser source. The interfacial metal-2D WSe2 junction characteristics, which promotes the use of such devices for end-use optoelectronics and quantum scale systems, were also studied and the interfacial stated density Dit in Al/2D WSe2 junction was computed to be the lowest reported to date ~ 3.45×1012 cm-2 eV-1.
We also examined the large exciton binding energy present in WSe2 through temperature-dependent Raman and photoluminescence spectroscopy, where localized exciton states perpetuated at 78 K that are gaining increasing attention for single photon emitters for quantum information processing. The exciton and phonon dynamics in 2D WSe2 were further analyzed to unveil other multi-body states besides localized excitons, such as trions whose population densities also evolved with temperature. The phonon lifetime, which is another interesting aspect of phonon dynamics, is calculated in 2D layered WSe2 using Raman spectroscopy for the first time and the influence of external stimuli such as temperature and laser power on the phonon behavior was also studied. Furthermore, we investigated the thermal properties in 2D WSe2 in a suspended architecture platform, and the thermal conductivity in suspended WSe2 was found to be ~ 1940 W/mK which was enhanced by ~ 4X when compared with substrate supported regions.
We also studied the use of halide-assisted low-pressure chemical vapor deposition (CVD) with NaCl to help to reduce the growth temperature to ∼750 °C, which is lower than the typical temperatures needed with conventional CVD for realizing 1L WSe2. The synthesis of monolayer WSe2 with high crystalline and optical quality using a halide assisted CVD method was successfully demonstrated where the role of substrate was deemed to play an important role to control the optical quality of the as-grown 2D WSe2. For example, the crystalline, optical and optoelectronics quality in CVD-grown monolayer WSe2 found to improve when sapphire was used as the substrate. Our work provides fundamental insights into the electronic, optoelectronic and quantum properties of WSe2 to pave the way for high-performance electronic, optoelectronic, and quantum-optoelectronic devices using scalable synthesis routes.
|
6 |
2D MATERIALS FOR GAS-SENSING APPLICATIONSYen-yu Chen (11036556) 01 September 2021 (has links)
<div>
<div>
<div>
<p>
</p><div>
<div>
<div>
<div>
<div>
<div>
<p>
</p><div>
<div>
<div>
<p>Two-dimensional (2D) transition-metal dichalcogenides (TMDCs) and transition metal
carbides/nitrides (MXenes), have been recently receiving attention for gas sensing applications
due to their high specific area and rich surface functionalities. However, using pristine 2D
materials for gas-sensing applications presents some drawbacks, including high operation
temperatures, low gas response, and poor selectivity, limiting their practical sensing
applications. Moreover, one of the long-standing challenges of MXenes is their poor stability
against hydration and oxidation in a humid environment, which negatively influences their long-
term storage and applications. Many studies have reported that the sensitivity and selectivity of
2D materials can be improved by surface functionalization and hybridization with other
materials.</p><p>In this work, the effects of surface functionalization and/or hybridization of these two
materials classes (TMDCs and MXenes) on their gas sensing performance have been
investigated. In one of the lines of research, 2D MoS2 nanoflakes were functionalized with Au
nanoparticles as a sensing material, providing a performance enhancement towards sensing
of volatile organic compounds (VOCs) at room temperature. Next, a nanocomposite film
composed of exfoliated MoS2, single-walled carbon nanotubes, and
Cu(I)−tris(mercaptoimidazolyl)borate complexes was the sensing material used for the design
of a chemiresistive sensor for the selective detection of ethylene (C2H4). Moreover, the
hybridization of MXene (Ti3C2Tx) and TMDC (WSe2) as gas-sensing materials was also
proposed. The Ti3C2Tx/WSe2 hybrid sensor reveals high sensitivity, good selectivity, low noise
level, and ultrafast response/recovery times for the detection of various VOCs. Lastly, we
demonstrated a surface functionalization strategy for Ti3C2Tx with fluoroalkylsilane (FOTS)
molecules, providing a superhydrophobic surface, mechanical/environmental stability, and
excellent sensing performance. The strategies presented here can be an effective solution for
not only improving materials' stability, but also enhancing sensor performance, shedding light
on the development of next-generation field-deployable sensors.</p>
</div>
</div>
</div><div><div><div><div><div><div>
</div>
</div>
</div>
</div>
</div>
</div></div></div></div>
</div>
</div>
</div></div></div></div><div><div><div>
</div>
</div>
</div>
|
7 |
Electronic Structure of Transition Metal Dichalcogenides and Molecular SemiconductorsMa, Jie 01 December 2022 (has links)
Zweidimensionale (2D) Übergangsmetalldichalcogenide (TMDCs) gehören zu den attraktivsten neuen Materialien für optoelektronische Bauelemente der nächsten Generation. Um die überlegene Funktionalität der mit TMDCs verbundenen Bauelemente zu realisieren, ist ein umfassendes Verständnis ihrer elektronischen Struktur, einschließlich, aber nicht beschränkt auf die Auswirkungen von Defekten auf die elektronischen Eigenschaften und die Ausrichtung der Energieniveaus (ELA) an den TMDCs-Grenzflächen, unerlässlich, aber derzeit nicht ausreichend. Um einen tieferen Einblick in die elektronischen Eigenschaften von TMDCs und den damit verbundenen Grenzflächen in Kombination mit molekularen Halbleitern (MSCs) zu erhalten, untersuchen wir i) die fundamentale Bandstruktur von Monolagen (ML) TMDCs und die durch Schwefelfehlstellen (SVs) induzierte Renormierung der Bandstruktur, um eine solide Grundlage für ein besseres Verständnis der elektronischen Eigenschaften von polykristallinen dünnen Filmen zu schaffen, und ii) die optoelektronischen Eigenschaften ausgewählter MSC/ML-TMDCs-Grenzflächen. Darüber hinaus wird iii) der Einfluss des Substrats auf die elektronischen Eigenschaften einer MSC/ML-TMDC-Grenzfläche untersucht, um das Bauelementedesign zu steuern. Die Charakterisierung erfolgt hauptsächlich durch winkelaufgelöste Photoelektronenspektroskopie (ARPES), ergänzt durch Photolumineszenz (PL), Raman-Spektroskopie, UV-Vis-Absorption, Rastertransmissionselektronenmikroskopie (TEM) und Rasterkraftmikroskopie (AFM).
Unsere Ergebnisse tragen zu einem besseren Verständnis der Auswirkungen von Defekten auf ML-TMDC und verwandte Grenzflächen mit MSCs bei, wobei auch die Auswirkungen der Substrate berücksichtigt werden, und sollten dazu beitragen, unser Verständnis des elektronischen Verhaltens in TMDC-verwandten Geräten zu verbessern. / Two-dimensional (2D) transition metal dichalcogenides (TMDCs) are amongst the most attractive emerging materials for next-generation optoelectronic devices. To realize the superior functionality of the TMDCs related devices, a comprehensive understanding of their electronic structure, including but not limited to the impact of defects on the electronic properties and energy level alignment (ELA) at TMDCs interfaces, is essential but presently not sufficient. In an attempt to get a deep insight into the electronic properties of TMDCs and the related interfaces combined with molecular semiconductors (MSCs), we investigate i) the fundamental band structure of monolayer (ML) TMDCs and band structure renormalization induced by sulfur vacancies (SVs), in order to provide a solid foundation for a better understanding the electronic properties of polycrystalline thin films and ii) the optoelectronic properties of selected MSC/ML-TMDC interface. In addition, iii) the impact of the substrate on the electronic properties of the MSC/ML-TMDC interface is investigated for guiding device design. The characterization is mainly performed by using angle-resolved photoelectron spectroscopy (ARPES), with complementary techniques including photoluminescence (PL), Raman spectroscopies, UV-vis absorption, scanning transmission electron microscopy (TEM), and atomic force microscopy (AFM) measurements.
Our findings contribute to achieving a better understanding of the impact of defects on ML-TMDC and related interfaces with MSCs considering the substrates’ effect and should help refine our understanding of the electronic behavior in TMDC-related devices.
|
Page generated in 0.0395 seconds