• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 105
  • 37
  • 33
  • 15
  • 9
  • 6
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 262
  • 65
  • 49
  • 37
  • 34
  • 33
  • 29
  • 29
  • 27
  • 27
  • 20
  • 19
  • 19
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Évaluation de stratégies pour l'optimisation d'un vaccin à ADN contre le virus de la diarrhée virale bovine (BVDV)

Brunelle, Mélanie January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
252

Évaluation de stratégies pour l'optimisation d'un vaccin à ADN contre le virus de la diarrhée virale bovine (BVDV)

Brunelle, Mélanie January 2008 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
253

Complexes ADN/polycation en solution et aux interfaces en tant que vecteurs de transfection non viraux de pointe

Sergeeva, Yulia 25 June 2013 (has links) (PDF)
Ma thèse a porté sur des complexes de polyélectrolytes en solution et en films LbL pour la transfection de cellules et le contrôle des interactions cellule-surface. Il est possible de doser un agent de transfection et de l'ADN plasmidique dans des films LbL en ajustant le nombre de couches. Les efficacités de transfection avec différentes lignées cellulaires ont été au moins aussi bonnes que celles rapportées dans la littérature, mais sont restées globalement faibles. Différents nanobags ont également été systématiquement testés menant à un protocole de transfection très efficace avec une faible cytotoxicité pour des fibroblastes humains qui sont difficiles à transfecter. Nous avons pu identifier les architectures LbL qui permettent de contrôler l'adhésion cellulaire même en présence de sérum. Cela nous a permis d'introduire une nouvelle technique pour le suivi in situ de la transfection par QCM-D en suivant la mobilité du cytosquelette qui sera poursuivie dans un futur projet.
254

Die Bedeutung von S100A4 und dessen Interaktion mit RAGE bei der Metastasierung des malignen Melanoms

Wolf, Susann 12 March 2014 (has links) (PDF)
Das S100A4-Protein ist für die Manifestierung eines metastatischen Phänotyps bei vielen Tumorarten von enormer Bedeutung. Die Aufklärung der zugrunde liegenden Mechanismen und der Interaktionspartner von S100A4 stellt daher einen vielsprechenden Forschungsansatz dar, um neue Erkenntnisse über das Verhalten von Tumorzellen während des Metastasierungsprozesses zu erhalten. Darauf aufbauend können neue Ansatzpunkte für die Therapie metastasierender Krebserkrankungen gewonnen werden. In dieser Hinsicht ist das bisher einer Behandlung kaum zugängliche maligne Melanom als besonders aggressiver und frühzeitig metastasierender Tumor ein ideales Modell zur Aufklärung der zellulären und molekularen Prozesse, über die S100A4 seine Metastasen-fördernden Wirkungen ausübt. Das Ziel der vorliegenden Arbeit war die biochemische und radiopharmakologische Charakterisierung der S100A4-RAGE-Interaktion sowie die Untersuchung der Beteiligung von S100A4 an Prozessen der Metastasierungskaskade in vitro und in vivo. Dies erforderte die Herstellung von rekombinantem S100A4-Protein und die Generierung von stabil mit S100A4-transfizierten Melanomzellen, die damit eine heraufregulierte S100A4-Proteinbiosynthese aufweisen. Die Gewinnung von rekombinantem S100A4 in biologisch funktioneller Form unter Verwendung eines prokaryotischen Expressionssystems erfolgte mit einem Reinheitsgrad von ca. 92%. Das rekombinante S100A4-Protein wurde mit dem Aktivester N-Succinimidyl-4-[18F]fluorbenzoat radioaktiv markiert und charakterisiert. Es wurde die Interaktion zwischen S100A4 bzw. 18F-markiertem S100A4 und der löslichen RAGE-Isoform sRAGE mit einer moderaten Bindungsaffinität im µM-Bereich nachgewiesen. Des Weiteren erfolgte erstmals die Analyse der radiopharmakologischen Eigenschaften von 18F-S100A4 mittels Untersuchungen zur zellulären Assoziation sowie zur metabolischen Stabilität, Bioverteilung und zu In-vivo-Interaktionen mittels Kleintier-Positronen-Emissions-Tomographie in der Ratte. Die In-vitro-Experimente wurden an Endothelzellen (HAEC) und an stabil mit RAGE-transfizierten A375-, A375-mock bzw. nicht transfizierten A375-Melanomzellen durchgeführt. Die A375-hRAGE-Zellen zeigten eine deutlich heraufregulierte RAGE-Proteinbiosynthese während die Endothelzellen eine vergleichsweise geringe intrazelluläre RAGE-Proteinkonzentration aufwiesen. Bei den Melanomzellen kann aufgrund der höheren Assoziation von 18F-S100A4 an A375-hRAGE-Zellen auf eine selektive Bindung von 18F S100A4 an RAGE-Rezeptoren auf der Zelloberfläche geschlossen werden. Die Assoziation von 18F S100A4 an Endothelzellen war bei 37°C in Gegenwart von nicht markiertem rekombinantem S100A4 signifikant vermindert, dementsprechend findet eine spezifische Interaktion von 18F-S100A4 mit Zelloberflächenrezeptoren der Endothelzellen statt. Dieses Ergebnis und die insgesamt höhere Bindung von 18F S100A4 an Endothelzellen im Vergleich zur Assoziation an Melanomzellen lassen neben RAGE noch andere Rezeptoren wie z. B. internalisierende Scavenger-Rezeptoren vermuten. Die In-vivo-Stabilitätsuntersuchungen verdeutlichen einen proteolytischen Abbau von 18F S100A4, allerdings belegen das Vorhandensein von 67% intaktem 18F-S100A4-Protein nach einer Stunde, die Stabilität von 18F-S100A4 in vivo. Die Bioverteilungs- bzw. PET-Untersuchungen zeigen eine schnelle, innerhalb weniger Minuten stattfindende hohe Akkumulation in den Nieren und verdeutlichen somit die renale Ausscheidung von 18F S100A4. Die maßgeblichen Anreicherungen in Milz, Leber, Blut, Lunge und Nebennieren lassen Interaktionen mit Oberflächenrezeptoren dieser Gewebe erkennen. Die temporäre Retention von 18F-S100A4 in der Lunge, dem Hauptsyntheseorgan von RAGE, und die verminderte 18F-S100A4-Akkumulation in Gegenwart des spezifischen RAGE-Liganden glykLDL ist ein Hinweis dafür, dass S100A4 in vivo in der Lunge an RAGE bindet. Die Aktivitätsanreicherungen in Milz, Leber und Nebenniere deuten aufgrund der geringeren RAGE-Synthese in diesen Organen auf die Interaktion von 18F-S100A4 mit anderen Zelloberflächenrezeptoren z. B. aus der Familie der Scavenger-Rezeptoren hin. Die Beteiligung von S100A4 an Metastasierungsprozessen des malignen Melanoms wurde an stabil mit S100A4-transfizierten A375-Melanomzellen, die eine Heraufregulierung der humanen bzw. murinen S100A4-Proteinbiosynthese im Vergleich zu A375-mock- (Vektor-Kontrolle) und nicht-transfizierten A375-Zellen zeigen, untersucht. Die A375-hS100A4-Zellen sezernierten zudem eine signifikant höhere S100A4-Proteinkonzentration in das umgebende Zellkulturmedium im Vergleich zu den Kontrollen. In dieser Hinsicht konnte bei den A375-hS100A4-Zellen, vermutlich aufgrund der höheren extrazellulären S100A4-Konzentration, eine gesteigerte Proliferations-, Motilitäts-, Migrations- und Invasionsrate gegenüber den A375-mock- und A375-Zellen nachgewiesen werden. In diesem Zusammenhang stehen ebenso die gesteigerte RAGE-Proteinbiosynthese und die signifikant höhere Aktivität des Transkriptionsfaktors NF-κB bei A375-Zellen nach 24-stündiger Inkubation mit Kulturmedium der A375-hS100A4-Zellen. Demnach wirkt vermutlich das extrazelluläre S100A4-Protein als autokriner bzw. parakriner Regulator von RAGE und NF κB. Die subkutane Injektion der A375- und stabil transfizierten A375-Melanomzellen in Nacktmäuse führte zur Entwicklung subkutaner Tumore an der Injektionsstelle. Bereits zwei Wochen nach der Injektion etablierten die A375-hS100A4-Zellen die signifikant größeren Tumore im Vergleich zu den A375-mS100A4-, A375-mock und A375-Zellen. Nach Injektion der Zellen in die Schwanzvene der Nacktmäuse konnte keine Entwicklung von Metastasen im Tierkörper festgestellt werden. IN DER VORLIEGENDEN ARBEIT WURDE NACHGEWIESEN: • RAGE ist ein Rezeptor für das S100A4-Protein. Allerdings gibt es eindeutige Hinweise für weitere S100A4-Zielproteine an der Zelloberfläche. • Die bedeutende Rolle von extrazellulärem S100A4 bei wichtigen zellulären Metastasierungsprozessen sowie bei der Aktivierung von Signalproteinen wie NF-κB und RAGE beim malignen Melanom. Die weitere Aufklärung der S100A4-spezifischen Signalkaskaden und Rezeptoren bei metastasierenden Tumorerkrankungen sowie die Charakterisierung von S100A4 als klinischen Parameter bei Patienten mit malignem Melanom stellen hoch interessante Aspekte in der Krebsforschung dar.
255

Die Bedeutung von S100A4 und dessen Interaktion mit RAGE bei der Metastasierung des malignen Melanoms

Wolf, Susann 03 March 2014 (has links)
Das S100A4-Protein ist für die Manifestierung eines metastatischen Phänotyps bei vielen Tumorarten von enormer Bedeutung. Die Aufklärung der zugrunde liegenden Mechanismen und der Interaktionspartner von S100A4 stellt daher einen vielsprechenden Forschungsansatz dar, um neue Erkenntnisse über das Verhalten von Tumorzellen während des Metastasierungsprozesses zu erhalten. Darauf aufbauend können neue Ansatzpunkte für die Therapie metastasierender Krebserkrankungen gewonnen werden. In dieser Hinsicht ist das bisher einer Behandlung kaum zugängliche maligne Melanom als besonders aggressiver und frühzeitig metastasierender Tumor ein ideales Modell zur Aufklärung der zellulären und molekularen Prozesse, über die S100A4 seine Metastasen-fördernden Wirkungen ausübt. Das Ziel der vorliegenden Arbeit war die biochemische und radiopharmakologische Charakterisierung der S100A4-RAGE-Interaktion sowie die Untersuchung der Beteiligung von S100A4 an Prozessen der Metastasierungskaskade in vitro und in vivo. Dies erforderte die Herstellung von rekombinantem S100A4-Protein und die Generierung von stabil mit S100A4-transfizierten Melanomzellen, die damit eine heraufregulierte S100A4-Proteinbiosynthese aufweisen. Die Gewinnung von rekombinantem S100A4 in biologisch funktioneller Form unter Verwendung eines prokaryotischen Expressionssystems erfolgte mit einem Reinheitsgrad von ca. 92%. Das rekombinante S100A4-Protein wurde mit dem Aktivester N-Succinimidyl-4-[18F]fluorbenzoat radioaktiv markiert und charakterisiert. Es wurde die Interaktion zwischen S100A4 bzw. 18F-markiertem S100A4 und der löslichen RAGE-Isoform sRAGE mit einer moderaten Bindungsaffinität im µM-Bereich nachgewiesen. Des Weiteren erfolgte erstmals die Analyse der radiopharmakologischen Eigenschaften von 18F-S100A4 mittels Untersuchungen zur zellulären Assoziation sowie zur metabolischen Stabilität, Bioverteilung und zu In-vivo-Interaktionen mittels Kleintier-Positronen-Emissions-Tomographie in der Ratte. Die In-vitro-Experimente wurden an Endothelzellen (HAEC) und an stabil mit RAGE-transfizierten A375-, A375-mock bzw. nicht transfizierten A375-Melanomzellen durchgeführt. Die A375-hRAGE-Zellen zeigten eine deutlich heraufregulierte RAGE-Proteinbiosynthese während die Endothelzellen eine vergleichsweise geringe intrazelluläre RAGE-Proteinkonzentration aufwiesen. Bei den Melanomzellen kann aufgrund der höheren Assoziation von 18F-S100A4 an A375-hRAGE-Zellen auf eine selektive Bindung von 18F S100A4 an RAGE-Rezeptoren auf der Zelloberfläche geschlossen werden. Die Assoziation von 18F S100A4 an Endothelzellen war bei 37°C in Gegenwart von nicht markiertem rekombinantem S100A4 signifikant vermindert, dementsprechend findet eine spezifische Interaktion von 18F-S100A4 mit Zelloberflächenrezeptoren der Endothelzellen statt. Dieses Ergebnis und die insgesamt höhere Bindung von 18F S100A4 an Endothelzellen im Vergleich zur Assoziation an Melanomzellen lassen neben RAGE noch andere Rezeptoren wie z. B. internalisierende Scavenger-Rezeptoren vermuten. Die In-vivo-Stabilitätsuntersuchungen verdeutlichen einen proteolytischen Abbau von 18F S100A4, allerdings belegen das Vorhandensein von 67% intaktem 18F-S100A4-Protein nach einer Stunde, die Stabilität von 18F-S100A4 in vivo. Die Bioverteilungs- bzw. PET-Untersuchungen zeigen eine schnelle, innerhalb weniger Minuten stattfindende hohe Akkumulation in den Nieren und verdeutlichen somit die renale Ausscheidung von 18F S100A4. Die maßgeblichen Anreicherungen in Milz, Leber, Blut, Lunge und Nebennieren lassen Interaktionen mit Oberflächenrezeptoren dieser Gewebe erkennen. Die temporäre Retention von 18F-S100A4 in der Lunge, dem Hauptsyntheseorgan von RAGE, und die verminderte 18F-S100A4-Akkumulation in Gegenwart des spezifischen RAGE-Liganden glykLDL ist ein Hinweis dafür, dass S100A4 in vivo in der Lunge an RAGE bindet. Die Aktivitätsanreicherungen in Milz, Leber und Nebenniere deuten aufgrund der geringeren RAGE-Synthese in diesen Organen auf die Interaktion von 18F-S100A4 mit anderen Zelloberflächenrezeptoren z. B. aus der Familie der Scavenger-Rezeptoren hin. Die Beteiligung von S100A4 an Metastasierungsprozessen des malignen Melanoms wurde an stabil mit S100A4-transfizierten A375-Melanomzellen, die eine Heraufregulierung der humanen bzw. murinen S100A4-Proteinbiosynthese im Vergleich zu A375-mock- (Vektor-Kontrolle) und nicht-transfizierten A375-Zellen zeigen, untersucht. Die A375-hS100A4-Zellen sezernierten zudem eine signifikant höhere S100A4-Proteinkonzentration in das umgebende Zellkulturmedium im Vergleich zu den Kontrollen. In dieser Hinsicht konnte bei den A375-hS100A4-Zellen, vermutlich aufgrund der höheren extrazellulären S100A4-Konzentration, eine gesteigerte Proliferations-, Motilitäts-, Migrations- und Invasionsrate gegenüber den A375-mock- und A375-Zellen nachgewiesen werden. In diesem Zusammenhang stehen ebenso die gesteigerte RAGE-Proteinbiosynthese und die signifikant höhere Aktivität des Transkriptionsfaktors NF-κB bei A375-Zellen nach 24-stündiger Inkubation mit Kulturmedium der A375-hS100A4-Zellen. Demnach wirkt vermutlich das extrazelluläre S100A4-Protein als autokriner bzw. parakriner Regulator von RAGE und NF κB. Die subkutane Injektion der A375- und stabil transfizierten A375-Melanomzellen in Nacktmäuse führte zur Entwicklung subkutaner Tumore an der Injektionsstelle. Bereits zwei Wochen nach der Injektion etablierten die A375-hS100A4-Zellen die signifikant größeren Tumore im Vergleich zu den A375-mS100A4-, A375-mock und A375-Zellen. Nach Injektion der Zellen in die Schwanzvene der Nacktmäuse konnte keine Entwicklung von Metastasen im Tierkörper festgestellt werden. IN DER VORLIEGENDEN ARBEIT WURDE NACHGEWIESEN: • RAGE ist ein Rezeptor für das S100A4-Protein. Allerdings gibt es eindeutige Hinweise für weitere S100A4-Zielproteine an der Zelloberfläche. • Die bedeutende Rolle von extrazellulärem S100A4 bei wichtigen zellulären Metastasierungsprozessen sowie bei der Aktivierung von Signalproteinen wie NF-κB und RAGE beim malignen Melanom. Die weitere Aufklärung der S100A4-spezifischen Signalkaskaden und Rezeptoren bei metastasierenden Tumorerkrankungen sowie die Charakterisierung von S100A4 als klinischen Parameter bei Patienten mit malignem Melanom stellen hoch interessante Aspekte in der Krebsforschung dar.
256

The use of Gibson Assembly for DNA cloning / Användning av Gibson Assembly för att klona DNA

Johansson, Samuel January 2022 (has links)
This thesis report revolved around the cloning process of plasmids. Attempts of cloning the red fluorescent protein mCherry, and the green fluorescent protein EGFP from various plasmids, into other plasmids containing different cell-junction/cytoskeleton plasmids were made. These plasmids were first amplified using PCR, and then cloned using Gibson-Assembly, and then transfected into live HEK293T or MDCK-II cells. After the transfection, the cells were examined in a microscope. The results showed no signal or localization for the cloned plasmids in their respective corresponding channel, 561 nm for the red fluorescent protein mCherry or 488 nm for the green fluorescent protein EGFP. The step that went wrong was the PCR step in the cloning process, since the backbone vector was not successfully amplified. The reasons for this was either that the backbone vector was too long, the primers regions were to rich with Guanine and Cytoseine, or the primers being too long. / Den här tesen kretsade kring kloningsprocessen för plasmider. Det gjordes försök att från plasmider klona in det röda fluorescerande proteinet mCherry, samt det gröna fluorescerande proteinet EGFP in i andra plasmider som innehöll olika cell-junction proteiner. Både det fluorescerande fragmenten och plasmid-vektorerna innehållande cell-junction proteinerna amplifierades med PCR. Sedan gjordes Gibson-Assembly som var själva kloningsmetoden. Efter det transfekterades HEK293T, samt MDCK-II celler med lösningen från Gibson-Assembly kloningen. Dessa celler undersöktes sedan i mikroskop. Resultatet visade inga tydliga signaler varken i 561 nm kanalen (mCherry), eller i 488 nm kanalen (EGFP), vilket betyder att kloningen inte fungerade. Steget som gick fel var PCR-steget i själva kloningsprocessen, då plasmid-vektorerna inte amplifierades. Anledningen till detta var antingen att själva plasmid-vektorerna var för långa, primer regionerna hade för mycket Guanin och Cytosin, eller att alla primers själva var för långa.
257

Funktionelle Analyse von komplexen Hepatitis-B-Virus-Varianten, assoziiert mit Leberzirrhose bei Immunsupprimierten

Märschenz, Stefanie 06 October 2006 (has links)
Obwohl der Wildtyp des Hepatitis-B-Virus (HBV) nicht zytopathogen und die Pathogenese der Hepatitis B generell immunvermittelt ist, können in immunsupprimierten Nierentransplantatempfängern mit chronischer Hepatitis B schwere Leberschäden bis hin zu Leberzirrhose und Leberversagen entstehen. Die Entwicklung von Leberzirrhose in den Nierentransplantierten ist assoziiert mit der Akkumulation und Persistenz von komplexen HBV-Varianten mit Mutationen im Core-Promotor / X-Gen, Deletionen im Core (C)-Gen und teilweise zusätzlichen Deletionen im präS-Bereich. Dies lässt eine Rolle der Varianten in der speziellen Pathogenese bei Immunsupprimierten vermuten. In der vorliegenden Arbeit wurden funktionelle Analysen der komplexen Varianten im Vergleich zu Referenz-Wildtypgenomen und Wildtyp-ähnlichen Genomen der Patienten aus der frühen Infektionsphase durchgeführt, um Hinweise auf den potentiellen Beitrag der Varianten zur Pathogenese zu erlangen. Die Analysen erfolgten durch transiente Transfektion der humanen Hepatomazelllinie HuH7 mit repräsentativen HBV-Gesamtgenomen, die aus 2 Patienten während des Krankheitsverlaufs von einer asymptomatischen Infektion hin zur Leberzirrhose isoliert und kloniert worden waren. Trotz einiger Unterschiede im Detail wiesen die komplexen Varianten einen gemeinsamen, drastisch vom Wildtyp abweichenden Phänotyp auf. Dieser war gekennzeichnet durch eine veränderte Transkription mit reduzierten präC- und Oberflächen-mRNAs und verstärkter Expression der prägenomischen RNA, eine starke Reduktion des häufigsten Spleißprodukts der prägenomischen RNA, SP1, eine extrem reduzierte oder fehlende Expression und/oder Sekretion aller Oberflächenproteine und des HBeAg, ein verändertes intrazelluläres Verteilungsmuster des schwach exprimierten Core-Proteins und teilweise der Oberflächenproteine sowie eine erhöhte Replikation und Anreicherung gegenüber Wildtyp-HBV aufgrund einer verstärkten reversen Transkription der prägenomischen RNA. Dieser Phänotyp basierte zum Teil auf den Mutationen in Core-Promotor und C-Gen, wurde jedoch deutlich durch zusätzliche Mutationen in den übrigen Genomabschnitten beeinflusst. Die vielfältigen Veränderungen der Varianten unterstützen ihren vermuteten Beitrag zur Pathogenese. / Although wild-type hepatitis B virus is not cytopathogenic and the pathogenesis of hepatitis B is generally immune mediated, also immuno-suppressed patients, such as renal transplant recipients, with chronic hepatitis B may develop liver cirrhosis and end-stage liver disease. In renal transplant recipients, the development of liver cirrhosis is associated with the accumulation and persistence of complex HBV variants with mutations in core promoter / X gene, deletions in core (C) gene and sometimes additional deletions in the preS region. This suggests a role of these variants in the special pathogenesis in immuno-suppressed patients. In the present work, the complex variants were functionally analyzed in comparison to reference wild-type genomes and wild-type-like HBV genomes from the early asymptomatic phase of infection. For the analyses, representative cloned full-length HBV genomes isolated from 2 patients before and during liver cirrhosis were transiently transfected into the human hepatoma cell line HuH7. In spite of some variations, the complex variants showed a common phenotype, which was drastically altered compared to wild-type. It was characterized by reduced preC and surface mRNAs and increased expression of pregenomic RNA, by a strong reduction of the major spliced pregenomic RNA, SP1, by a partial or complete defect in expression and/or secretion of surface proteins and HBeAg, by an aberrant intracellular localization of the weakly expressed core protein and in some cases of the surface proteins, and by an enhanced replication and enrichment over wild-type HBV due to an enhanced reverse transcription of variant pregenomic RNA. The phenotypic alterations were often based on the mutations in core promoter and C gene but were considerably influenced by the additional mutations in other genomic regions. The multiple functional changes of the variants support their assumed contribution to pathogenesis.
258

Investigating the importance of co-expressed rotavirus proteins in the development of a selection-free rotavirus reverse genetics system / Johannes Frederik Wentzel

Wentzel, Johannes Frederik January 2014 (has links)
Reverse genetics is an innovative molecular biology tool that enables the manipulation of viral genomes at the cDNA level in order to generate particular mutants or artificial viruses. The reverse genetics system for the influenza virus is arguably one of the best illustrations of the potential power of this technology. This reverse genetics system is the basis for the ability to regularly adapt influenza vaccines strains. Today, reverse genetic systems have been developed for many animal RNA viruses. Selection-free reverse genetics systems have been developed for the members of the Reoviridae family including, African horsesickness virus, bluetongue virus and orthoreovirus. This ground-breaking technology has led to the generation of valuable evidence regarding the replication and pathogenesis of these viruses. Unfortunately, extrapolating either the plasmid-based or transcript-based reverse genetics systems to rotavirus has not yet been successful. The development of a selection-free rotavirus reverse genetics system will enable the systematic investigation of poorly understood aspects of the rotavirus replication cycle and aid the development of more effective vaccines, amongst other research avenues. This study investigated the importance of co-expressed rotavirus proteins in the development of a selection-free rotavirus reverse genetics system. The consensus sequences of the rotavirus strains Wa (RVA/Human-tc/USA/WaCS/1974/G1P[8]) and SA11 (RVA/Simian-tc/ZAF/SA11/1958/G3P[2]) where used to design rotavirus expression plasmids. The consensus nucleotide sequence of a human rotavirus Wa strain was determined by sequence-independent cDNA synthesis and amplification combined with next-generation 454® pyrosequencing. A total of 4 novel nucleotide changes, which also resulted in amino acid changes, were detected in genome segment 7 (NSP3), genome segment 9 (VP7) and genome segment 10 (NSP4). In silico analysis indicated that none of the detected nucleotide changes, and consequent amino acid variations, had any significant effect on viral structure. Evolutionary analysis indicated that the sequenced rotavirus WaCS was closely related to the ParWa and VirWa variants, which were derived from the original 1974 Wa isolate. Despite serial passaging in animals, as well as cell cultures, the Wa genome seems to be stable. Considering that the current reference sequence for the Wa strain is a composite sequence of various Wa variants, the rotavirus WaCS may be a more appropriate reference sequence. The rotavirus Wa and SA11 strains were selected for plasmid-based expression of rotavirus proteins, under control of a T7 promoter sequence, due to the fact that they propagate well in MA104 cells and the availability of their consensus sequences. The T7 RNA polymerase was provided by a recombinant fowlpox virus. After extensive transfection optimisation on a variety of mammalian cell lines, MA104 cells proved to be the best suited for the expression rotavirus proteins from plasmids. The expression of rotavirus Wa and SA11 VP1, VP6, NSP2 and NSP5 could be confirmed with immunostaining in MA104 and HEK 293H cells. Another approach involved the codon-optimised expression of the rotavirus replication complex scaffold in MA104 cells under the control of a CMV promoter sequence. This system was independent from the recombinant fowlpox virus. All three plasmid expression sets were designed to be used in combination with the transcript-based reverse genetics system in order to improve the odds of developing a successful rotavirus reverse genetics system. Rotavirus transcripts were generated using transcriptively active rotavirus SA11 double layered particles (DLPs). MA104 and HEK293H cells proved to be the best suited for the expression of rotavirus transcripts although expression of rotavirus VP6 could be demonstrated in all cell cultures examined (MA104, HEK 293H, BSR and COS-7) using immunostaining. In addition, the expression of transcript derived rotavirus VP1, NSP2 and NSP5 could be confirmed with immunofluorescence in MA104 and HEK 293H cells. This is the first report of rotavirus transcripts being translated in cultured cells. A peculiar cell death pattern was observed within 24 hours in response to transfection of rotavirus transcripts. This observed cell death, however does not seem to be related to normal viral cytopathic effect as no viable rotavirus could be recovered. In an effort to combine the transcript- and plasmid systems, a dual transfection strategy was followed where plasmids encoding rotavirus proteins were transfected first followed, 12 hours later, by the transfection of rotavirus SA11 transcripts. The codon- optimised plasmid system was designed as it was postulated that expression of the DLP-complex (VP1, VP2, VP3 and VP6), the rotavirus replication complex would form and assist with replication and/or packaging. Transfecting codon- optimized plasmids first noticeably delayed the mass cell death observed when transfecting rotavirus transcripts on their own. None of the examined coexpression systems were able to produce a viable rotavirus. Finally, the innate immune responses elicited by rotavirus transcripts and plasmid-derived rotavirus Wa and SA11 proteins were investigated. Quantitative RT-PCR (qRT-PCR) experiments indicated that rotavirus transcripts induced high levels of the expression of the cytokines IFN- α1, IFN-1β, IFN-λ1 and CXCL10. The expression of certain viral proteins from plasmids (VP3, VP7 and NSP5/6) was more likely to stimulate specific interferon responses, while other viral proteins (VP1, VP2, VP4 and NSP1) seem to be able to actively suppress the expression of certain cytokines. In the light of these suppression results, specific rotavirus proteins were expressed from transfected plasmids to investigate their potential in supressing the interferon responses provoked by rotavirus transcripts. qRT-PCR results indicated that cells transfected with the plasmids encoding NSP1, NSP2 or a combination of NSP2 and NSP5 significantly reduced the expression of specific cytokines induced by rotavirus transcripts. These findings point to other possible viral innate suppression mechanisms in addition to the degradation of interferon regulatory factors by NSP1. The suppression of the strong innate immune response elicited by rotavirus transcripts might well prove to be vital in the quest to better understand the replication cycle of this virus and eventually lead to the development of a selection-free reverse genetics system for rotavirus. / PhD (Biochemistry), North-West University, Potchefstroom Campus, 2014
259

Investigating the importance of co-expressed rotavirus proteins in the development of a selection-free rotavirus reverse genetics system / Johannes Frederik Wentzel

Wentzel, Johannes Frederik January 2014 (has links)
Reverse genetics is an innovative molecular biology tool that enables the manipulation of viral genomes at the cDNA level in order to generate particular mutants or artificial viruses. The reverse genetics system for the influenza virus is arguably one of the best illustrations of the potential power of this technology. This reverse genetics system is the basis for the ability to regularly adapt influenza vaccines strains. Today, reverse genetic systems have been developed for many animal RNA viruses. Selection-free reverse genetics systems have been developed for the members of the Reoviridae family including, African horsesickness virus, bluetongue virus and orthoreovirus. This ground-breaking technology has led to the generation of valuable evidence regarding the replication and pathogenesis of these viruses. Unfortunately, extrapolating either the plasmid-based or transcript-based reverse genetics systems to rotavirus has not yet been successful. The development of a selection-free rotavirus reverse genetics system will enable the systematic investigation of poorly understood aspects of the rotavirus replication cycle and aid the development of more effective vaccines, amongst other research avenues. This study investigated the importance of co-expressed rotavirus proteins in the development of a selection-free rotavirus reverse genetics system. The consensus sequences of the rotavirus strains Wa (RVA/Human-tc/USA/WaCS/1974/G1P[8]) and SA11 (RVA/Simian-tc/ZAF/SA11/1958/G3P[2]) where used to design rotavirus expression plasmids. The consensus nucleotide sequence of a human rotavirus Wa strain was determined by sequence-independent cDNA synthesis and amplification combined with next-generation 454® pyrosequencing. A total of 4 novel nucleotide changes, which also resulted in amino acid changes, were detected in genome segment 7 (NSP3), genome segment 9 (VP7) and genome segment 10 (NSP4). In silico analysis indicated that none of the detected nucleotide changes, and consequent amino acid variations, had any significant effect on viral structure. Evolutionary analysis indicated that the sequenced rotavirus WaCS was closely related to the ParWa and VirWa variants, which were derived from the original 1974 Wa isolate. Despite serial passaging in animals, as well as cell cultures, the Wa genome seems to be stable. Considering that the current reference sequence for the Wa strain is a composite sequence of various Wa variants, the rotavirus WaCS may be a more appropriate reference sequence. The rotavirus Wa and SA11 strains were selected for plasmid-based expression of rotavirus proteins, under control of a T7 promoter sequence, due to the fact that they propagate well in MA104 cells and the availability of their consensus sequences. The T7 RNA polymerase was provided by a recombinant fowlpox virus. After extensive transfection optimisation on a variety of mammalian cell lines, MA104 cells proved to be the best suited for the expression rotavirus proteins from plasmids. The expression of rotavirus Wa and SA11 VP1, VP6, NSP2 and NSP5 could be confirmed with immunostaining in MA104 and HEK 293H cells. Another approach involved the codon-optimised expression of the rotavirus replication complex scaffold in MA104 cells under the control of a CMV promoter sequence. This system was independent from the recombinant fowlpox virus. All three plasmid expression sets were designed to be used in combination with the transcript-based reverse genetics system in order to improve the odds of developing a successful rotavirus reverse genetics system. Rotavirus transcripts were generated using transcriptively active rotavirus SA11 double layered particles (DLPs). MA104 and HEK293H cells proved to be the best suited for the expression of rotavirus transcripts although expression of rotavirus VP6 could be demonstrated in all cell cultures examined (MA104, HEK 293H, BSR and COS-7) using immunostaining. In addition, the expression of transcript derived rotavirus VP1, NSP2 and NSP5 could be confirmed with immunofluorescence in MA104 and HEK 293H cells. This is the first report of rotavirus transcripts being translated in cultured cells. A peculiar cell death pattern was observed within 24 hours in response to transfection of rotavirus transcripts. This observed cell death, however does not seem to be related to normal viral cytopathic effect as no viable rotavirus could be recovered. In an effort to combine the transcript- and plasmid systems, a dual transfection strategy was followed where plasmids encoding rotavirus proteins were transfected first followed, 12 hours later, by the transfection of rotavirus SA11 transcripts. The codon- optimised plasmid system was designed as it was postulated that expression of the DLP-complex (VP1, VP2, VP3 and VP6), the rotavirus replication complex would form and assist with replication and/or packaging. Transfecting codon- optimized plasmids first noticeably delayed the mass cell death observed when transfecting rotavirus transcripts on their own. None of the examined coexpression systems were able to produce a viable rotavirus. Finally, the innate immune responses elicited by rotavirus transcripts and plasmid-derived rotavirus Wa and SA11 proteins were investigated. Quantitative RT-PCR (qRT-PCR) experiments indicated that rotavirus transcripts induced high levels of the expression of the cytokines IFN- α1, IFN-1β, IFN-λ1 and CXCL10. The expression of certain viral proteins from plasmids (VP3, VP7 and NSP5/6) was more likely to stimulate specific interferon responses, while other viral proteins (VP1, VP2, VP4 and NSP1) seem to be able to actively suppress the expression of certain cytokines. In the light of these suppression results, specific rotavirus proteins were expressed from transfected plasmids to investigate their potential in supressing the interferon responses provoked by rotavirus transcripts. qRT-PCR results indicated that cells transfected with the plasmids encoding NSP1, NSP2 or a combination of NSP2 and NSP5 significantly reduced the expression of specific cytokines induced by rotavirus transcripts. These findings point to other possible viral innate suppression mechanisms in addition to the degradation of interferon regulatory factors by NSP1. The suppression of the strong innate immune response elicited by rotavirus transcripts might well prove to be vital in the quest to better understand the replication cycle of this virus and eventually lead to the development of a selection-free reverse genetics system for rotavirus. / PhD (Biochemistry), North-West University, Potchefstroom Campus, 2014
260

サイトカイン依存症白血病細胞株の分化誘導の解析と顆粒球系分化特異的転写因子の同定

村手, 隆, 堀田, 知光, 木下, 朝博, 永井, 宏和 03 1900 (has links)
科学研究費補助金 研究種目:基盤研究(C)(2) 課題番号:07671192 研究代表者:村手 隆 研究期間:1995-1997年度

Page generated in 0.1074 seconds