• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 25
  • 14
  • 9
  • 1
  • 1
  • 1
  • Tagged with
  • 54
  • 54
  • 21
  • 16
  • 13
  • 12
  • 9
  • 9
  • 8
  • 7
  • 7
  • 6
  • 6
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sobre mecanismos mesoscópicos do crescimento de tumores / On the Mesoscopic Mechanisms of Tumor Growth

Costa, Flávio Henrique Sant\'Ana 12 August 2016 (has links)
O estudo do crescimento de tumores tem inspirado o aparecimento de diversos modelos, que visam aproximar às características reais das interações entre as células da população tumoral. Do ponto de vista biológico, destacam-se como modelos as culturas de células in vitro. Elas são úteis por reduzir a complexidade intrínseca da massa tumoral real. Do ponto de vista matemático e físico, destacam-se a procura por comportamentos universais, e o uso de simulação numérica para a solução dos modelos propostos. Essas abordagens são úteis por ressaltar as características importantes do crescimento de tumores, promover um intercâmbio de conhecimento com áreas aparentemente distintas, tais como: crescimento de cristais, reações bioquímicas e epidemiologia, além de gerar soluções que seriam difíceis de obter analiticamente. Neste trabalho, abordamos o crescimento de tumores a nível mesoscópico (escala celular), por meio de: (i) experimentos de cultura de células in vitro, de onde obtivemos dados da evolução temporal do raio das colônias e os tempos de duplicação característicos; (ii) modelagem matemática, em que propomos uma taxa de crescimento em função do tempo com forma sigmoidal, e uma equação fenomenológica para a evolução temporal dos agregados; e (iii) descrição estocástica, em que apresentamos um conjunto de regras para a interação entre os elementos da população tumoral e simulamos a dinâmica temporal usando o método Monte Carlo dinâmico (DMC), obtendo as curvas de crescimento e as distribuições de tempo das colônias. Além disso, desenvolvemos uma generalização para o método DMC, em que é possível incluir eventos simultâneos. Essa generalização foi aplicada ao modelo matemático de Dawson e Hillen para uma população de células sujeita a radioterapia, gerando as distribuições de tempos de extinção, e a probabilidade de controle tumoral (TCP). A abordagem ao crescimento de tumores nos permitiu comparar o experimento, a modelagem matemática, e a descrição estocástica com sucesso, e mostramos que a dinâmica de crescimento de vários tipos de células possui o mesmo formato sigmoidal, sugerindo uma universalidade para as taxas de crescimento de células aderentes. Comparamos os tempos de duplicação obtidos experimentalmente e por meio de DMC, e oferecemos alguns insights matemáticos a respeito dos tempos de duplicação obtidos através de DMC. Concluímos que o desenvolvimento teórico-experimental, ao nível mesoscópico, foi capaz de gerar novas ideias sobre mecanismos de crescimento tumorais de células aderentes, e novas perspectivas para abordagem do problema de crescimento de tumores. / The study of tumor growth has inspired the emergence of several models, aiming to reproduce actual patterns of interactions between cells in the tumor population. From the biological point of view, in vitro cell culture models stand out. They are useful to reduce the intrinsic complexity of the actual tumor mass. From the mathematical and physical point of view, stand out the search for universal behaviors and the use of numerical simulation to solve proposed models. These approaches are useful to point out important characteristics of the problem, promoting a knowledge exchange with seemingly distinct areas such as: crystal growth, biochemical reactions and epidemiology, and generating solutions that could be difficult to obtain analytically. In this thesis we approach the tumor growth problem at the mesoscopic level (cellular scale), by means of: (i) cell culture experiments in vitro, generating data for the radius temporal evolution and characteristic doubling times for several colonies; (ii) mathematical modeling, in which we propose a sigmoidal growth rate and time evolution of aggregates by a phenomenological equation; and (iii) stochastic description, where we present a set of rules to describe the interactions among the elements in the tumor population, and we simulate them using the dynamical Monte Carlo (DMC) method, obtaining the growth curves and the time distributions. In addition, we have developed a generalization of the DMC method, making the simulation of simultaneous events to be possible. Such generalization was applied to mathematical model of Dawson and Hillen for a population of cells subjected to radiotherapy, and it was possible to obtain the distributions of extinction times and Tumor Control Probability (TCP). Our approach allowed us to compare tumor growth in experiment with theory, and good agreement were found in our results. Furthermore, we have shown that sigmoidal growth rate appears in several cell lineages, suggesting universal-like behavior. We have compared the doubling times obtained in the experiments and in the DMC simulations, and we show some mathematical insights about the doubling times. We concluded that our theoretical and experimental approach, at the mesoscopic level, could generate new ideas on tumor growth mechanisms of adherent cells and new perspectives in the study of the tumor growth.
12

Modelagem e simulação computacional do crescimento de tumores in vitro / Modelling and computational simulation of in vitro tumor growth

Flávio Henrique Sant\'Ana Costa 12 April 2012 (has links)
O crescimento de tumores vem chamando a atenção de físicos e matemáticos há mais de sessenta anos. Entretanto, a conversa com biólogos e a interação teoria-experimento têm aparecido apenas recentemente. Equações fenomenológicas e simulações computacionais continuam sendo uma ferramenta comum entre todos os modelos que conhecemos. Assim, nesse trabalho nós estudamos o problema do crescimento de tumores monocamada através das abordagens experimental, teórica e computacional, fortalecendo assim a interação teoria-experimento. Cultivamos células das linhagens HeLa (carcinoma cervical humano), HCT-15 (adenocarcinoma coloretal humano), NIH-HN-13 (carcinoma de células escamosas humanas) e U-251 (glioblastoma neuronal humano), obtendo a dimensão fractal e o comportamento do raio médio com o número de células, além de analisarmos os dados da literatura para a linhagem HT-29 (adenocarcinoma coloretal humano). A seguir nós modelamos a taxa de crescimento do raio médio através de uma curva sigmoidal. A solução analítica dessa equação nos permitiu ajustar bem os dados obtidos experimentalmente, e os parâmetros obtidos serviram para a simulação Monte Carlo dinâmico. Para essa, transformamos a taxa de crescimento do raio em taxa de crescimento do número de células, cujos resultados novamente concordaram muito bem com os dados experimentais. A dimensão fractal dos agregados esteve entre 1; 12 df 1; 21, e concordou com os dados da literatura. Novos resultados foram produzidos: i) O raio médio como uma função do número de células nos permitiu um ajuste do tipo Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, mais geral que a comumente aceita relação Rc(t) = cNc(t)1=2; e ii) os tempos de espera no procedimento MCD se distribuem log-normalmente (ou Gaussianamente em alguns casos), diferentemente da distribuição Poissoniana frequêntemente assumida. A distribuição log-normal nos permitiu também conjecturar que um parâmetro , da relação ht(nT)i / n? T , possa caracterizar o crescimento monocamada de tumores devido à sua estreita abrangência 0; 69 0; 81. Nossos resultados nos permitiram concluir que diferentes condições de cultivo podem gerar diferentes respostas dos parâmetros, além disso, dois fenômenos podem caracterizar esse crescimento no âmbito mesoscópico: A competição por espaços livres e a cooperação entre as células. / Tumor growth has been calling attention of physicists and mathematicians for more than sixty years. However, cross-talking with biologists and the interplay between theory and experiment have emerged just recently. Phenomenological equations and computational simulations are still the common toolbox among all the models we know. Thus, in this work, we have studied the problem of monolayer tumor growth through the experimental, theoretical and computational approaches, enhancing the interaction between theory and experiment. We cultivate HeLa (human cervical carcinoma), HCT-15 (human colorectal adenocarcinoma), NIH-HN-13 (human squamous cell carcinoma) and U-251 (human neuronal glioblastoma) cells, calculating the fractal dimension and the behavior of the mean radius with cell number, and analyzing the literature data from HT-29 (human colorectal adenocarcinoma) lineage. Then we modeled the growth rate of mean radius through a sigmoidal curve. The analytical solution of this equation allowed us to fit well the experimental data and the obtained parameters were used into dynamical Monte Carlo simulation. To do this, we transform the radius growth rate in number of cells growth rate, which again agreed with the experimental data. The fractal dimensions of the aggregates ranged from 1; 12 df 1; 21, and agree with the literature. New findings were produced: i) the mean radius as a function of the number of cells enabled us to adjust the function Rc(t) = a[Nc(t) ? N~0]1=2 + R~0, differently from widely accepted relation Rc(t) = cNc(t)1=2; and ii) the waiting times in the MCD procedure are log-normally distributed (sometimes Gaussian), unlike the Poisson distribution often used. The lognormal distribution also allowed us to conjecture that a parameter , from the power law relation ht(nT)i / n? T , might caracterize the tumor monolayer growth due to its narrow range 0; 69 0; 81. Our findings led us to conclude that different culture conditions may produce different parameter responses, furthermore, two phenomenona can describe the growth in mesoscopic level: the competition for free space and the cooperation between cells.
13

The nonparametric least-squares method for estimating monotone functions with interval-censored observations

Cheng, Gang 01 May 2012 (has links)
Monotone function, such as growth function and cumulative distribution function, is often a study of interest in statistical literature. In this dissertation, we propose a nonparametric least-squares method for estimating monotone functions induced from stochastic processes in which the starting time of the process is subject to interval censoring. We apply this method to estimate the mean function of tumor growth with the data from either animal experiments or tumor screening programs to investigate tumor progression. In this type of application, the tumor onset time is observed within an interval. The proposed method can also be used to estimate the cumulative distribution function of the elapsed time between two related events in human immunodeficiency virus (HIV)/acquired immunodeficiency syndrome (AIDS) studies, such as HIV transmission time between two partners and AIDS incubation time from HIV infection to AIDS onset. In these applications, both the initial event and the subsequent event are only known to occur within some intervals. Such data are called doubly interval-censored data. The common property of these stochastic processes is that the starting time of the process is subject to interval censoring. A unified two-step nonparametric estimation procedure is proposed for these problems. In the first step of this method, the nonparametric maximum likelihood estimate (NPMLE) of the cumulative distribution function for the starting time of the stochastic process is estimated with the framework of interval-censored data. In the second step, a specially designed least-squares objective function is constructed with the above NPMLE plugged in and the nonparametric least-squares estimate (NPLSE) of the mean function of tumor growth or the cumulative distribution function of the elapsed time is obtained by minimizing the aforementioned objective function. The theory of modern empirical process is applied to prove the consistency of the proposed NPLSE. Simulation studies are extensively carried out to provide numerical evidence for the validity of the NPLSE. The proposed estimation method is applied to two real scientific applications. For the first application, California Partners' Study, we estimate the distribution function of HIV transmission time between two partners. In the second application, the NPLSEs of the mean functions of tumor growth are estimated for tumors with different stages at diagnosis based on the data from a cancer surveillance program, the SEER program. An ad-hoc nonparametric statistic is designed to test the difference between two monotone functions under this context. In this dissertation, we also propose a numerical algorithm, the projected Newton-Raphson algorithm, to compute the non– and semi-parametric estimate for the M-estimation problems subject to linear equality or inequality constraints. By combining the Newton-Raphson algorithm and the dual method for strictly convex quadratic programming, the projected Newton-Raphson algorithm shows the desired convergence rate. Compared to the well-known iterative convex minorant algorithm, the projected Newton-Raphson algorithm achieves much quicker convergence when computing the non- and semi-parametric maximum likelihood estimate of panel count data.
14

The role of Shb in ES cell differentiation, angiogenesis and tumor growth

Funa, Nina January 2008 (has links)
Shb is a ubiquitously expressed adaptor protein with the ability to bind several tyrosine kinase receptors and intracellular signaling proteins. Previous studies have implied a wide spectrum of Shb-mediated cellular responses, which motivated me to further investigate the role of Shb in differentiation and angiogenesis. Embryonic stem (ES) cells differentiate into endoderm and mesoderm from a bipotent mesendodermal cell population. Interregulatory signals between these germlayers are required for further specification. ES cells overexpressing Shb with an inactive SH2 domain (R522K-Shb) altered the expression of endodermal genes as a consequence of upregulated FGF expression. This response was enhanced by addition of activin A, suggesting a synergistic mechanism operative between FGF and activin A signaling in endoderm specification. To investigate a role for Shb in mesodermal specification, Shb knockout ES cells were established. These cells showed a reduced ability to form blood vessels after VEGF stimulation and delayed downregulation of genes associated with mesendoderm, indicating a reduced capacity for these cells to enter later stages. To assess a role for Shb in tumor cell apoptosis, Shb expression was silenced in angiosarcoma endothelial cells. FAK-phosphorylation was reduced in Shb knockdown cells and this made them more susceptible to apoptotic stimuli both in vitro and in vivo. Shb knockout microvasculature in mouse kidney, liver, and heart showed irregular endothelial linings with cytoplasmic projections toward the lumen, a feature that was also related to increased vascular permeability. VEGF treatment failed to stimulate vascular permeability in Shb knockout mice. In order to elucidate whether these features relate to reduced angiogenesis, tumor growth was examined. Tumors grown in knockout mice showed reduced growth capacity and lower vessel density. In conclusion, Shb is a multifunctional adaptor protein that may be involved in several cellular responses both during embryonic development and adult life.
15

Toward a predictive model of tumor growth

Hawkins-Daarud, Andrea Jeanine 16 June 2011 (has links)
In this work, an attempt is made to lay out a framework in which models of tumor growth can be built, calibrated, validated, and differentiated in their level of goodness in such a manner that all the uncertainties associated with each step of the modeling process can be accounted for in the final model prediction. The study can be divided into four basic parts. The first involves the development of a general family of mathematical models of interacting species representing the various constituents of living tissue, which generalizes those previously available in the literature. In this theory, surface effects are introduced by incorporating in the Helmholtz free ` gradients of the volume fractions of the interacting species, thus providing a generalization of the Cahn-Hilliard theory of phase change in binary media and leading to fourth-order, coupled systems of nonlinear evolution equations. A subset of these governing equations is selected as the primary class of models of tumor growth considered in this work. The second component of this study focuses on the emerging and fundamentally important issue of predictive modeling, the study of model calibration, validation, and quantification of uncertainty in predictions of target outputs of models. The Bayesian framework suggested by Babuska, Nobile, and Tempone is employed to embed the calibration and validation processes within the framework of statistical inverse theory. Extensions of the theory are developed which are regarded as necessary for certain scenarios in these methods to models of tumor growth. The third part of the study focuses on the numerical approximation of the diffuse-interface models of tumor growth and on the numerical implementations of the statistical inverse methods at the core of the validation process. A class of mixed finite element models is developed for the considered mass-conservation models of tumor growth. A family of time marching schemes is developed and applied to representative problems of tumor evolution. Finally, in the fourth component of this investigation, a collection of synthetic examples, mostly in two-dimensions, is considered to provide a proof-of-concept of the theory and methods developed in this work. / text
16

Sobre mecanismos mesoscópicos do crescimento de tumores / On the Mesoscopic Mechanisms of Tumor Growth

Flávio Henrique Sant\'Ana Costa 12 August 2016 (has links)
O estudo do crescimento de tumores tem inspirado o aparecimento de diversos modelos, que visam aproximar às características reais das interações entre as células da população tumoral. Do ponto de vista biológico, destacam-se como modelos as culturas de células in vitro. Elas são úteis por reduzir a complexidade intrínseca da massa tumoral real. Do ponto de vista matemático e físico, destacam-se a procura por comportamentos universais, e o uso de simulação numérica para a solução dos modelos propostos. Essas abordagens são úteis por ressaltar as características importantes do crescimento de tumores, promover um intercâmbio de conhecimento com áreas aparentemente distintas, tais como: crescimento de cristais, reações bioquímicas e epidemiologia, além de gerar soluções que seriam difíceis de obter analiticamente. Neste trabalho, abordamos o crescimento de tumores a nível mesoscópico (escala celular), por meio de: (i) experimentos de cultura de células in vitro, de onde obtivemos dados da evolução temporal do raio das colônias e os tempos de duplicação característicos; (ii) modelagem matemática, em que propomos uma taxa de crescimento em função do tempo com forma sigmoidal, e uma equação fenomenológica para a evolução temporal dos agregados; e (iii) descrição estocástica, em que apresentamos um conjunto de regras para a interação entre os elementos da população tumoral e simulamos a dinâmica temporal usando o método Monte Carlo dinâmico (DMC), obtendo as curvas de crescimento e as distribuições de tempo das colônias. Além disso, desenvolvemos uma generalização para o método DMC, em que é possível incluir eventos simultâneos. Essa generalização foi aplicada ao modelo matemático de Dawson e Hillen para uma população de células sujeita a radioterapia, gerando as distribuições de tempos de extinção, e a probabilidade de controle tumoral (TCP). A abordagem ao crescimento de tumores nos permitiu comparar o experimento, a modelagem matemática, e a descrição estocástica com sucesso, e mostramos que a dinâmica de crescimento de vários tipos de células possui o mesmo formato sigmoidal, sugerindo uma universalidade para as taxas de crescimento de células aderentes. Comparamos os tempos de duplicação obtidos experimentalmente e por meio de DMC, e oferecemos alguns insights matemáticos a respeito dos tempos de duplicação obtidos através de DMC. Concluímos que o desenvolvimento teórico-experimental, ao nível mesoscópico, foi capaz de gerar novas ideias sobre mecanismos de crescimento tumorais de células aderentes, e novas perspectivas para abordagem do problema de crescimento de tumores. / The study of tumor growth has inspired the emergence of several models, aiming to reproduce actual patterns of interactions between cells in the tumor population. From the biological point of view, in vitro cell culture models stand out. They are useful to reduce the intrinsic complexity of the actual tumor mass. From the mathematical and physical point of view, stand out the search for universal behaviors and the use of numerical simulation to solve proposed models. These approaches are useful to point out important characteristics of the problem, promoting a knowledge exchange with seemingly distinct areas such as: crystal growth, biochemical reactions and epidemiology, and generating solutions that could be difficult to obtain analytically. In this thesis we approach the tumor growth problem at the mesoscopic level (cellular scale), by means of: (i) cell culture experiments in vitro, generating data for the radius temporal evolution and characteristic doubling times for several colonies; (ii) mathematical modeling, in which we propose a sigmoidal growth rate and time evolution of aggregates by a phenomenological equation; and (iii) stochastic description, where we present a set of rules to describe the interactions among the elements in the tumor population, and we simulate them using the dynamical Monte Carlo (DMC) method, obtaining the growth curves and the time distributions. In addition, we have developed a generalization of the DMC method, making the simulation of simultaneous events to be possible. Such generalization was applied to mathematical model of Dawson and Hillen for a population of cells subjected to radiotherapy, and it was possible to obtain the distributions of extinction times and Tumor Control Probability (TCP). Our approach allowed us to compare tumor growth in experiment with theory, and good agreement were found in our results. Furthermore, we have shown that sigmoidal growth rate appears in several cell lineages, suggesting universal-like behavior. We have compared the doubling times obtained in the experiments and in the DMC simulations, and we show some mathematical insights about the doubling times. We concluded that our theoretical and experimental approach, at the mesoscopic level, could generate new ideas on tumor growth mechanisms of adherent cells and new perspectives in the study of the tumor growth.
17

Estudo da atividade citotÃxica e do potencial antitumoral do extrato acetÃnico das sementes de Annona muricata L.(AMSA), em modelos experimentais in vitro e in vivo. / Study of cytotoxic and antitumor potential of acetone extract of the seeds of Annona muricata L. (AMSA), in experimental models in vitro and in vivo

Maria Erivanda FranÃa Rios 21 May 2013 (has links)
nÃo hà / Annona muricata, conhecida popularmente como gravioleira, à uma planta usada amplamente na medicina popular na forma de chÃs e infusÃes para o tratamento de diversas doenÃas, como o cÃncer. O objetivo deste trabalho foi avaliar a citotoxicidade e a atividade antitumoral do extrato acetÃnico das sementes de Annona muricata. O presente estudo foi realizado frente a um painel de 4 linhagens de cÃlulas tumorais, as cÃlulas HL-60, HCT-116, SF-295 e OVCAR-8 obtiveram os valores de IC50 0,1944Âg/mL, 0,1488Âg/mL, 0,0601Âg/mL e 0,0987 Âg/mL respectivamente. Na anÃlise frente a eritrÃcitos de camundongos obtivemos a IC50 de 9,23Âg/mL. O estudo de toxicidade aguda foi realizado in vivo e a DL50 foi de 310,2 mg/kg. O estudo da atividade hemolÃtica foi feita utilizando suspensÃo de eritrÃcitos de camundongos nÃo causando lise. O estudo da avaliaÃÃo antitumoral nas doses (7,5; 15 e 30mg/kg/dia por via oral) em camundongos transplantados com Sarcoma 180 revelou atividade em todas as doses, causando uma reduÃÃo de 48,41% do crescimento tumoral na maior dose. As anÃlises do fÃgado e rins revelaram que houve algumas alteraÃÃes no fÃgado, como esteatose e necrose focal sugerindo toxicidade hepÃtica nos camundongos tratados com o extrato acetÃnico das sementes da Annona muricata. Essas alteraÃÃes sÃo, entretanto, consideradas de possÃvel reversÃo do tecido com a descontinuidade do tratamento ou adequaÃÃo da dose. As anÃlises bioquÃmicas, revelaram um aumento nos nÃveis sÃricos da creatinina nas doses de 15 e 30 mg/kg/dia. Nos testes hematolÃgicos nÃo houve alteraÃÃes nos grupos tratados com o extrato acetÃnico das sementes da Annona muricata. Os resultados mostraram poucas alteraÃÃes dos animais nos parÃmetros fÃsicos, bioquÃmicos e hematolÃgicos, mostrando que o extrato à bem tolerado e pouco tÃxico. / Annona muricata, popularly known as soursop, is a plant widely used in folk medicine as teas and infusions for the treatment of various diseases such as cancer. The aim of this study was to cytotoxicity evaluate the antitumor activity of the acetone extract of the seeds of Annona muricata. This study was conducted with a panel of four tumor cell lines, HL-60 cells, HCT-116, SF-295 and OVCAR-8 IC50 values obtained 0.1944 Âg/ ml, 0.1488 Âg/mL, 0.0601 Âg/mL and 0.0987 Âg/mL, respectively. In the analysis across from erythrocytes of mice obtained the IC50 of 9.23 Âg/mL. The acute toxicity study was conducted in vivo and DL50 was 310.2 mg/kg. The study of hemolytic activity was performed using cell suspension from mice without causing lysis. The evaluation study antitumor doses (7.5, 15 and 30mg/kg/day orally) in mice transplanted with Sarcoma 180 showed activity at all doses, causing a reduction of 48.41% of tumor growth at the highest dose . Analyses of liver and kidney revealed that there were some changes in the liver, such as steatosis and focal necrosis suggesting liver toxicity in mice treated with acetone extract of the seeds of Annona muricata. These changes are, however, considered the possible reversal of the tissue with treatment discontinuation or dose adjustment. Biochemical analysis revealed an increase in serum creatinine at doses of 15 and 30 mg/kg/day. In haematological tests there were no changes in the groups treated with acetone extract of the seeds of Annona muricata. The results showed little change in physical parameters of the animal, biochemical and hematological showing that the extract is well tolerated and less toxic
18

Etude des propriétés anti-tumorales in vitro de stilbènes issus de suspension cellulaire de vigne (Vitis labrusca) / In vitro antitumor proporties of stibelnes from grape (Vitis labrusca) cell suspension

Nivelle, Laetitia 17 March 2017 (has links)
Le resvératrol, stilbène produit naturellement dans les grappes de raisin, possède un pouvoir anti-tumoral caractérisé par ses effets pléïotropiques. La molécule s’est ainsi montrée capable d’inhiber la cancérogenèse en agissant à de multiples niveaux. Son incidence sur la croissance tumorale in vitro est généralement associée à une perturbation dans le cycle cellulaire et à une induction d’apoptose. De nombreuses molécules dérivées du resvératrol se sont montrées également efficaces pour moduler la croissance tumorale. Nous avons entrepris au cours de ces travaux de thèse d’étudier les activités biologiques de stilbènes issus d’une production de culture cellulaire de vigne. Les résultats de cette étude mettent en évidence une réduction de la croissance tumorale, dans un modèle d’étude in vitro de mélanome humain, pour le resvératrol et quatre oligomères de resvératrol bioproduits. L’étude plus approfondie de trois oligomères de resvératrol a permis de révéler des différences notables par rapport entre les effets du resvératrol et ses dérivés. En effet, bien que l’inhibition de la viabilité cellulaire des lignées cancéreuses s’accompagne d’une perturbation du cycle cellulaire pour le resvératrol et ses dérivés, elle se traduit différemment selon les composés. L’action du resvératrol sur le cycle cellulaire conduit à une nette augmentation des cellules en phase S, tandis que les oligomères de resvératrol n’induisent pas d’accumulation cellulaire franche dans une phase du cycle. De plus les oligomères de resvératrol présentent des capacités anti-invasives et anti-migratoires qui ne sont pas retrouvées chez le resvératrol. Enfin l’étude sur des fibroblastes normaux d’adultes (FNA) souligne que les dérivés du resvératrol diminuent la viabilité de cellules normales et cancéreuses à des concentrations similaires contrairement au resvératrol dont l’action est nettement inférieure sur les cellules saines. Cependant le pouvoir cytotoxique du resvératrol et de ses dérivés reste beaucoup plus faible chez les cellules normales. / Resveratrol, a natural stilbene found in the grapevine, exhibits pleiotropic antitumor activities. This molecule has been shown to inhibit the cancerogenesis processes at different levels. Its impact in tumor growth, in vitro, is generally associate with a disruption in cell cycle and an apoptosis induction. Various resveratrol derivatives appear also efficient to modulate tumor growth. We have studied, during this work, biological activities of stilbenes produced by grapevine cell cutures. Our results show a decrease in melanoma human growth, in vitro, for bioproduced resveratrol oligomers as well as resveratrol itself. Our experiments underline distinct effects between resveratrol and its derivatives. Indeed, all compounds disrupt cell cycle, but resveratrol induces S-phase arrest while resveratrol oligomers failed to induce a clearly phase arrest. Moreover, only resveratrol oligomers only have the ability to counteract invasive and migratory properties of melanoma cells. Finally, experiments performed in normal human fibroblasts study show that resveratrol oligomers present a similar potential to reduce viability of cancer as well as normal cells contrary to resveratrol which is less efficient in normal cells. However the cytotoxicity of resveratrol and its derivatives is significantly reduced on normal cells.
19

Infection par le Cytomégalovirus murin : réponse des lymphocytes T gamma delta et impact sur le développement tumoral / Murine cytomegalovirus infection : gamma delta T cell response and impact on tumor growth

Khairallah, Camille 14 April 2015 (has links)
L’infection à cytomégalovirus (CMV) cause des pathologies graves en absence d’immunité. Les lymphocytes T (LT) γδ participent à la réponse anti-CMV puisqu’ils s’amplifient dans le sang de patients transplantés rénaux concomitamment à une diminution de la charge virale. D’autre part, l’amplification T γδ est associée à un risque moindre de cancers cutanés chez ces patients. Nous avons choisi d’utiliser le modèle murin de l’infection à CMV afin d’étudier la capacité des LTγδ à protéger les souris contre l’infection et le cancer.Nous avons montré qu’en absence de LTαβ dans des souris TCRα-/- (αβ-γδ+), différentes sous populations de LTγδ s’amplifient dans les organes cibles du CMV. Le contrôle de la charge virale observé in situ suite à leur amplification protège les souris TCRα-/- des dommages hépatiques/pulmonaires et de la mort, alors que les souris CD3ε-/- (αβ-γδ-) succombent à l’infection. Enfin, l’effet protecteur des LTγδ est également observé en absence de NK, de LTαβ et de LB, montrant l’importance que peuvent avoir ces cellules dans un contexte d’immunodéficience touchant les autres acteurs immunitaires.Nous avons montré la capacité du CMV à inhiber la croissance de tumeurs coliques (MC38) et de mélanomes (B16F10) implantés en sous-cutané dans des souris immunodéficientes, révélant un rôle anti-tumoral du CMV indépendant de l’immunité et des LTγδ. La permissivité au CMV de ces lignées tumorales suggère un effet direct du virus, par apoptose (B16F10) ou par un mécanisme encore indéterminé (MC38). Enfin, une inhibition comparable est observée pour une lignée carcinomateuse humaine, présupposant un effet indirect du virus sur le microenvironnement tumoral. / Cytomegalovirus causes serious pathologies in immune-compromised hosts. γδ T cells increase in the peripheral blood of renal transplant recipients concomitantly to a decrease of CMV viral antigenemia, indicating that they participate to the immune response against CMV. Moreover, γδ T cell amplification is associated with a reduced risk of skin cancer in these patients. We chose to use the mouse model of CMV infection to study the capacity of γδ T cells to protect mice against CMVinfection and cancer.We showed that in the absence of αβ T cells in TCRα-/- mice (αβ-γδ+), different γδ T cell subsets are increased in CMV target organs. A concomitant decrease of viral load was observed in TCRα-/- mice which survived CMV infection, in contrast to CD3ε-/- mice which died and displayed damage to the lungs and liver. γδ T cell antiviral protective effect was also observed in the absence of NK, αβ T and B cells, showing the crucial role that these cells could play in immunodeficient contexts where other immune players are compromised.We showed the ability of CMV to inhibit the growth of subcutaneous colonic tumors (MC38) and melanomas (B16F10) in immunodeficient mice, thus revealing an anti-tumor role of CMV independently of immunity and γδ T cells. CMV was able to infect these tumor cell lines in accordance with a direct anti-tumor effect of the virus, through apoptosis (B16F10) or by means of a still unresolved mechanism. Finally, CMV also inhibits the growth of human colonic tumors, leading to the hypothesis that a viral-mediated indirect anti-tumor effect could also operate.
20

Physical Aspects of Local Solid Tumor Growth

Kubitschke, Hans 05 June 2020 (has links)
Krebszellen haben gemeinsame Eigenschaften, wie unbegrenztes Wachstumspotential und die Vermeidung von Apoptose. Krebs kann als systemische Erkrankung angesehen werden und es reicht daher nicht aus, molekulare Details von Krebs zu verstehen, sondern auch emergente physikalische Eigenschaften von Krebs auf mehreren Größenskalen von Genen über Zellen bis hin zu Geweben. Diese Arbeit konzentriert sich auf physikalische Eigenschaften die an der Krebsprogression, der Migration von Krebszellen und dem Krebswachstum beteiligt sind. Die Migration von Krebszellen führt zur Fähigkeit zur Metastasierung, der häufigsten Ursache für krebsbedingten Tod. Der Schlüssel zu diesem Prozess ist die Verformbarkeit von Krebszellen beim Durchqueren der dichten Mikroumgebung aus extrazellulärer Matrix und anderen Zellen. Der genaue Beitrag des Aktin- und Mikrotubuli-Netzwerks zur zellulären elastischen Verformung und Entspannung ist wichtig und wurde untersucht. Ein wichtiges Ergebnis ist, dass bei kleinen Verformungen (<5%) die Aktin-Filamente die viskoelastische Zellverformung unter mechanischer Belastung dominieren und Mikrotubuli die Zellrelaxation bestimmen, während bei größeren Verformungen (>5%) Aktin-Filamente und Mikrotubuli gleichermaßen zur Zellverformung und -relaxation beitragen. So sind die Mikrotubuli für die Migration in Mikroumgebungen von größerer Bedeutung, als es die aktuelle Literatur vermuten lässt. Ein initial gebildeter bösartiger Tumor tritt typischerweise in eine Wachstumsphase ein, in der das umgebende Gewebe verdrängt und eingedrungen wird. Für ein optimales klinisches Behandlungsergebnis sollte der Primärtumor so gut wie möglich entfernt werden, was die genaue Erkennung der Tumorfront und die Identifizierung der Gewebe mit dem Risiko einer Krebsinfiltration beinhaltet. In dieser Arbeit werden natürliche Hindernisse und Grenzen für das Krebswachstum, wie z.B. Fasziengewebsgrenzen oder Gewebekompartimentgrenzen, basierend auf klinischen Daten von Gebärmutterhalskrebs analysiert, die aus der pathologischen Untersuchung von chirurgisch resezierten Tumoren von 518 Patienten gewonnen wurden. Die Wachstumsgrenzen wurden als embryonale Gewebeentwicklungsgrenzen identifiziert und betonen, dass Krebs Entwicklungsmerkmale aufweist, die häufig in der Embryogenese vorkommen. Das gefundene Tumorwachstumsmuster und die -form widersprechen dem das das vorherrschende Dogma der isotropen Tumorwachstum, welches der chirurgischen Tumorresektion und Strahlentherapie zugrunde liegt. Die Tumorform-Distribution weist starke Abweichungen von sphärischer Symmetrie auf, was darauf hindeutet, dass Tumore durch entwicklungsbiologische Kompartimente und deren Kompartimentsgrenzen begrenzt und geformt werden. Computersimulationen liefern auch den Nachweis, dass die klinisch gefundene Tumorinfiltrationswahrscheinlichkeit von Geweben nicht auf der metrischen Entfernung des gefährdeten Gewebes zum Gewebe der Tumorherkunft basiert, sondern auf der ontogenetischen Verwandtschaft der Gewebe.

Page generated in 0.0724 seconds