• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Structural Analysis of Heterodimeric and Homooligomeric Protein Complexes by 4-D Fast NMR

Wang, Su January 2014 (has links)
<p>A molecular depiction of the assembly, interaction and regulation of protein complexes is essential to the understanding of biological functions of protein complexes. Structural analysis of protein complexes by Nuclear Magnetic Resonance (NMR) has relied heavily on the detection and assignment of intermolecular Nuclear Overhauser Effects (NOEs) that define the interactions of protons at the molecular interface. Intermolecular NOEs have traditionally been detected from 3-D half-filtered NOE experiments by suppressing intramolecular NOEs prior to NOE transfer. However, due to insufficient suppression of undesirable signals and a lack of dispersion in the H dimension, data analysis is complicated by the interference of residual intramolecular NOEs and assignment ambiguity, both of which can lead to distorted or even erroneously packed protein complex structures. Leveraging the recent development of fast NMR technology based on sparse sampling in our lab, we developed a strategy for reliable identification and assignment of intermolecular NOEs using high resolution 4-D NOE difference spectroscopy. Spectral subtraction of individually labeled components from a uniformly labeled protein complex yields an "omit" spectrum containing only intermolecular NOEs with little signal degeneracy. </p><p>The benefit of such a strategy is first demonstrated in structural analysis of a homooligomeric protein complexes, the foldon trimer. We show that intermolecular NOEs collected from the 4-D omit NOE spectrum can be directly utilized for automated structural analysis of the foldon trimer by CYANA, whereas intermolecular NOEs derived from 3-D half-filtered NOE experiments failed to generate a converged structure under the same condition. </p><p>Such a strategy was further demonstrated on a heterodimeric protein complex in translesion sysnthesis (TLS), a DNA damage tolerance pathway. The TLS machinery consists of several translesion DNA polymerases that are recruited to the stalled replication fork in response to monoubiquitinated proliferating cell nuclear antigen (PCNA) in order to bypass DNA lesions encountered during genomic replication. The recruitment and assembly of translesion machinery is heavily dependent on ubiquitin-binding domains, including ubiquitin-binding motifs (UBMs) and ubiquitin-binding zinc fingers (UBZs) that are found in translesion DNA polymerases. Two conserved ubiquitin-binding motifs (UBM1 and UBM2) are found in the Y-family polymerase (Pol) &iota, both of which contribute to ubiquitin-mediated accumulation of Pol &iota during TLS. Although the Pol&iota UBM2-ubiquitin complex has been previous reported by our lab and others, the Pol &iota UBM1-ubiquitin complex has remained a challenge due to significant signal overlap in conventional 3-D NOE spectroscopy. In order to determine the molecular basis for ubiquitin recognition of Pol &iota, we solved the structures of human Pol &iota UBM1 and its complex with ubiquitin by 4-D fast NMR, revealing a signature helix-turn-helix motif that recognizes ubiquitin through an unconventional surface centered at L8 of ubiquitin. Importantly, the use of 4-D omit NOE spectroscopy unambiguously revealed an augmented ubiquitin binding interface that encompasses the C-terminal tail of UBM1.</p><p>4-D omit NOE spectroscopy was also used to study the Fanconi anemia associated protein 20 (FAAP20)-ubiquitin complex within the Fanconi Anemia (FA) complexes required for efficient repair of DNA interstrand crosslinks (ICLs), a process that is mediated by the ubiquitin-binding zinc finger (UBZ) domain of FAAP20. Unexpectedly, we show that the FAAP20-ubiquitin interaction extends beyond the compact UBZ module and is accompanied by transforming the disordered C-terminal tail of FAAP20 into a rigid &beta-loop, with the invariant C-terminal tryptophan (W180 of human FAAP20) emanating toward I44 of ubiquitin for enhanced binding. Accordingly, alanine substitution of the absolutely conserved C-terminal tryptophan residue of FAAP20 abolishes ubiquitin binding and impairs FA core complex-mediated ICL repair <italic>in vivo<italic>.</p><p>Reliable detection and unambiguous assignment of intermolecular NOEs is essential to NMR-based structure determination of protein complexes. The development of 4-D omit NOE spectroscopy in this thesis overcomes many limitations of conventional 3-D half-filtered experiments to allow for reliable detection and unambiguous assignment of intermolecular NOEs of heterodimeric complexes and homooligomeric complexes. These advantages render such a strategy particularly attractive for structural studies of protein complexes by biomolecular NMR.</p> / Dissertation
2

Regulation of the Fanconi Anemia Pathway by Deubiquitination

Yang, Kailin January 2012 (has links)
Fanconi anemia (FA) is a rare genetic disease characterized by bone marrow failure and cancer predisposition. Cell lines derived from FA patient exhibit chromosomal instability and sensitivity to DNA interstand crosslinkers (ICLs) like mitomycin (MMC). The key event in Fanconi anemia pathway is the regulated ubiquitination and deubiquitination of FANCD2 and FANCI. Upon DNA damage, FANCD2 and FANCI are monoubiquitinated by FA core complex. They then move into the chromatin and serve as the landing site for downstream players, like FANCP/SLX4 and FAN1. USP1, the deubiquitinating enzyme (DUB), removes ubiquitin from FANCD-Ub/FANCI-Ub, and this step is required for the integrity of FA pathway. This dissertation addresses how USP1 is regulated in the cell. In Chapter 2, we discovered UAF1/WDR48 as a critical binding partner for USP1, by activating its enzymatic activity in vitro and in vivo. We then generated DT40 knockout cell lines of USP1 and UAF1. We showed that USP1/UAF1 complex is functionally required for homologous recombination (HR). Interestingly, PCNA-Ub is also a substrate for USP1. We discovered that hELG1, through its binding to USP1/UAF1 complex, regulates the deubiquitination of PCNA-Ub and translesion DNA synthesis (TLS). Then in Chapter 3, we discovered a tandem repeat of SUMO-like domains (SLD1 and SLD2) in the C terminus of UAF1. SLD2 binds directly to a SUMO-like domain-interacting motif (SIM) on FANCI. Deletion of the SLD2 of UAF1 or mutation of the SIM of FANCI disrupts UAF1/FANCI binding and inhibits FANCD2 deubiquitination. The SLD2 sequence of UAF1 also binds to a SIM on hELG1, and targets the USP1/UAF1 complex to its PCNA-Ub substrate. We proposed the regulated targeting of USP1/UAF1 to its DNA repair substrates, FANCD2-Ub and PCNA-Ub, by SLD-SIM interactions coordinates HR and TLS. Originating from USP1/UAF1 complex, we worked out a general mechanism of DUB regulation by WD40 proteins, which involved in two more DUBs, USP12 and USP46 (discussed in Chapter 4 and Appendix A). Lastly in Chapter 5, through bioinformatic analysis we identified a series of novel proteins containing ubiquitin-binding zinc fingers (UBZ). We then focused on SNM1A and FAAP20/C1orf86, and characterized their function in DNA crosslink repair.
3

Die Funktion der ubiquitinbindenden CUE-Domäne von Cue1 bei der Synthese von Ubiquitinketten

Delbrück, Maximilian von 13 May 2016 (has links)
Ubiquitinierungen sind dynamische, posttranslationale Proteinmarkierungen, die eine Vielzahl zellulärer Reaktionen hervorrufen. Die strukturell unterschiedlichen Signale werden von einer Ubiquitinierungsmaschinerie, bestehend aus E1-, E2- und E3-Enzymen, aufgebaut. Die Synthese von Polyubiquitin wird durch ubiquitinbindende Domänen (UBD) innerhalb der enzymatischen Kaskade stimuliert. Das E2-Enzym Ubc7 katalysiert zusammen mit dessen Kofaktor Cue1 die Polymerisierung von Ubiquitineinheiten und kennzeichnet Substratproteine mit Lysin 48 (K48)-ver¬knüpf¬ten Ubiquitinketten für den Endoplasmatische Retikulum-assoziierten Proteinabbau (ER-associated protein degradation, ERAD). In dieser Arbeit konnte mittels in vitro rekonstitu¬ierter Ubiquitinierungsreaktionen die Funktionsweise der ubiquitinbindenden CUE-Domäne von Cue1 während der Synthese von Polyubiquitin aufgeklärt werden. Verlängerungs¬reaktionen von Ubiquitinketten konnten durch Fluoreszenzmessungen verfolgt und die CUE-Domäne als Substratrezeptor von Ubc7 beschrieben werden. Anscheinend erhöht die Ubiquitin¬bindung durch Cue1 die lokale Konzentration von Ubc7 an den Ketten und positio¬niert das E2-Enzym effizient für die Übertragung der gebundenen Ubiquiti-neinheit. Die Reaktionen werden durch eine Bindungspräferenz der Cue1-CUE-Domäne für K48-ver¬knüpfte Ubiquitinmoleküle zusätzlich beschleunigt. Es ist bekannt, dass UBDs Ubiquitin¬signale entschlüsseln. Die Charakterisierung der CUE-Domäne beschreibt eine Notwendigkeit der Bindung von Ubiquitin bereits während der Entstehung von Polyubiquitin. Neben den E3-Ubiquitinligasen existieren Deubiquitinasen (DUB), die an der Reifung und dem Abbau von Ubiquitinsignalen beteiligt sind. Die proteasomalen DUBs Ubp6 und Rpn11 zeigen basale Aktivitäten in Isolation, die eingebunden in den 26S-Komplex moduliert werden. Fluoreszenz-basierte Untersuchungen von Kettenabbaureaktionen lassen erste Schlüsse über die Spezifitäten und die Abbaumechanismen der Enzyme zu. / Polyubiquitination is an essential process modulating protein function in eukaryotic cells. Only recently ubiquitin binding activity has emerged as an important factor in ubiquitin chain assembly. Cue1 is a crucial component of yeast endoplasmic reticulum associated protein degradation complexes which recruits and activates the E2 ubiquitin conjugating enzyme Ubc7. Our NMR solution structure reveals an unconventional CUE domain of Cue1 that substantially stimulates ubiquitin chain elongation by Ubc7.Results from NMR analysis combined with interaction studies and in vitro ubiquitination reactions imply that binding of CUE to a ubiquitin moiety adjacent to the acceptor ubiquitin is a prerequisite for rapid chain elongation. By this mode of action, the CUE domain counteracts the inability of associated Ubc7, to progressively elongate ubiquitin chains. Elongation of K48-linked ubiquitin chains is additionally accelerated since the CUE domain preferentially binds chains of K48-linkage. Our data support a model, where dynamic binding of ubiquitin chains assist to position Ubc7 for rapid elongation of K48-linked chains. Thus, the CUE domain acts as acceleration factor of elongation. Our study provides detailed mechanistic insight into how a ubiquitin binding domain governs polyubiquitin chain formation.
4

Ubiquitin-binding domains in polyubiquitin chain synthesis

Pluska, Lukas 21 August 2020 (has links)
Ubiquitinierung ist eine essentielle posttranslationale Proteinmodifikation (PTM), die vielfältige Prozesse in eukaryotischen Zellen steuert. Ubiquitin wird zu unterschiedlichen polymeren Ketten zusammengesetzt, wobei E2-Ubiquitin-konjugierende Enzyme häufig eine entscheidende Rolle spielen. Im Rahmen meiner Promotion habe ich die molekularen Grundlagen der Ub Kettensynthese durch die E2-Enzyme Ubc1 und Ubc7 untersucht. Dies geschah mithilfe von in vitro Ubiquitinierungs-Reaktionen, biochemischen und strukturellen Untersuchungen sowie zellbiologischen Experimenten. Ich konnte zeigen, dass zugehörige Ubiquitin-Binde-Domänen (UBDs) die Funktion der E2-Enzyme maßgeblich regulieren. Als einziges unter elf E2-Enzymen in S. cerevisiae enthält Ubc1 eine Ub-bindende UBA Domäne, deren Funktion bisher unklar blieb. Ubc1 modifiziert ausschließlich Lysin 48 (K48) in Ub und wurde mit Proteinqualitätskontrolle sowie der Regulation des Zellzyklus in Verbindung gebracht. Meine Ergebnisse zeigen, dass Ubc1 mithilfe seiner UBA-Domäne vorzugsweise mit K63-verknüpftem Polyubiquitin interagiert, wodurch K48/K63 verzweigte Ub-Ketten entstehen. Basierend auf vorhandenen Strukturinformationen und meinen eigenen röntgenkristallographischen Untersuchungen zeige ich eine Modellstruktur für die Reaktion auf. Meine Ergebnisse stellen eine wesentliche Untersuchungsgrundlage für verzweigten Ub-Ketten dar, über deren Vorkommen und Funktion bisher wenig bekannt ist. Ubc7 assembliert mithilfe seines Kofaktors Cue1 K48-verknüpfte Ub-Ketten im Rahmen des Endoplasmatisches-Retikulum-assoziierten Proteinabbaus (ERAD). In einem kollaborativen Projekt haben wir die Ub-bindende CUE-Domäne in Cue1, die hierfür eine Schlüsselrolle spielt, untersucht. Sie ermöglicht die Ausrichtung des E2-Enzyms an der distalen Spitze der Ub-Kette für eine schnelle Kettenverlängerung, besitzt einzigartige auf den Prozess angepasste Bindungseigenschaften und ihre Beeinträchtigung stört den Abbau des ERAD-Substrates Ubc6. / Ubiquitination is an essential posttranslational protein modification (PTM) that regulates widespread intracellular processes in eukaryotic cells. Ubiquitin (Ub) can be assembled into polymeric chains through its seven internal lysine residues and the N-terminus enabling the formation of a complex "Ubiquitin Code". Factors that guide the molecular machinery which produces this code remain poorly understood. In this study, I demonstrate that ubiquitin binding domains (UBDs) associated with the E2 enzymes Ubc1 and Ubc7 substantially contribute to the assembly of particular Ub chains. Uniquely among the eleven E2 enzymes of S. cerevisiae Ubc1 contains a ubiquitin binding UBA domain. Ubc1 exclusively modifies lysine 48 (K48) in Ub and has been implicated in protein quality control and cell cycle progression. However, the function of its UBA domain remained elusive. I identified Ubc1 to preferentially target specific Ub molecules in K63-linked polyubiquitin via its UBA domain. This activity results in the assembly of K48/K63 branched Ub chains. Based on existing structural information and my own X-ray crystallographic experiments, I propose a structure for the transition state of branched chain assembly by Ubc1. My findings provide a basis for the study of this unusual Ub chain type. Ubc7 has previously been shown to be activated by its co-factor Cue1 to assemble Ub chains linked through lysine 48 (K48) in the context of endoplasmic reticulum associated protein degradation (ERAD). In collaboration with Dr. Maximilian von Delbrück and Dr. Andreas Kniss, we identified the ubiquitin binding CUE domain in Cue1 to play a key role in aligning Ubc7 with the distal tip of a K48-linked Ub chain for rapid chain elongation. Furthermore, we showed how binding of Ub by the CUE domain is well adapted towards the chain elongation process and how its disruption impairs degradation of the ERAD substrate Ubc6.
5

Étude sur la reconnaissance de l'ubiquitine par les domaines de transactivation acides des activateurs de transcription

Lussier-Price, Mathieu 03 1900 (has links)
Les domaines de transactivation (TAD) acides sont présents dans plusieurs protéines oncogéniques, virales et dans des facteurs de différenciation de cellules souches. Ces domaines acides contrôlent la transcription à travers une myriade d’interactions avec divers partenaires ce qui provoque l’activation de la transcription ou leur propre élimination. Cependant, dans la dernière décennie, de plus en plus de recherches ont démontré que les TAD possédaient un sous-domaine activation/dégradation (DAD) responsable pour une fonction d'activation de la transcription dépendante de la dégradation de la protéine. Un tel phénomène peut être accompli par plusieurs moyens tels que des modifications post-traductionnelles, l’association à des cofacteurs ou la formation d’un réseau d’interaction complexe en chaînes. Or, aucune preuve concrète n’a pu clairement démontrer le fonctionnement de la dépendance paradoxale entre ces deux fonctions sur un activateur de transcription. Le DAD, a été observé dans plusieurs facteurs de transcription incluant la protéine suppresseur de tumeur p53 et le facteur de différenciation érythrocyte EKLF. Un aspect particulier des DAD est que la composition de leur séquence d’acide aminé est fortement similaire à celle des domaines de liaison à l’ubiquitine (UBD) qui jouent un rôle clé dans le contrôle de la transcription à travers leur interaction non-covalente avec l’ubiquitine. Ainsi, dans ce mémoire, nous avons étudié la possibilité que les TAD acides soient capables d’agir comme UBD pour réguler leur fonction paradoxale à travers des interactions non-covalentes avec l’ubiquitine. L’analyse est faite en utilisant la résonnance magnétique nucléaire (RMN) ainsi qu’avec des essais fonctionnels de dégradation. En somme, cette étude amène une plus grande compréhension des protéines impliquées dans le contrôle des TAD et caractérise le tout premier exemple de TAD capable d’interagir avec l’ubiquitine. / Acidic transactivating domains have been shown to be potential targets for a number of different therapies but their dynamic nature and their ability to bind many interacting partners has made it difficult to fully understand their functioning mechanisms. What we do know about these domains is that they readily control transcription through a myriad of interactions capable of either activating specific aspects of their function or simply, signal for their own demise. Within the acidic TADs lies an unusual degradation/activation domain (DAD) capable of activating transcription at the cost of its degradation. In other words, DAD transcriptional activation is dependent on the degradation of the protein. Such a phenomenon could be explained by a wide variety of hypotheses like the play of post-translational modifications, co-factors, or maybe just a really sophisticated time scaled network of interactions. However, no concrete explanation of how this dual dependent functioning domain works has yet to surface. The DAD has been observed within acidic TADs of several transcription factors including the tumor suppressor p53 and the red blood cell differentiation factor EKLF. Interestingly though, the amino acid sequence composition of DADs share a strong similarity with several types of sequences from domains that bind ubiquitin (UBDs). These domains have been shown in the past to, in addition to their role in degradation, play a key role in regulating transcription through non-covalent interaction with ubiquitin. Hence, in this project, we investigated weather acidic TADs had the ability to function as UBDs and form non-covalent interactions with ubiquitin and also to determine the functional significance of this interaction in regards to the dual function of acidic TADs.

Page generated in 0.0742 seconds