41 |
Fossilfri vätgasproduktion på OKG : Mot en fossilfri framtidEngdahl, Cajsa January 2024 (has links)
Det sker snabba klimatförändringar som utgör en global kris och IPCC:s rapport från 2023 visar att utsläpp från växthusgaserna fortsätter att öka. För att skapa en hållbar framtid behöver fossila bränslen fasas ut då de står för nästan 90 % av världens koldioxidutsläpp. För att lyckas uppnå Parisavtalets klimatmål med att begränsa den globala uppvärmningen till 1,5 °C behöver de globala utsläppen minska med 55 %, jämfört med år 1990, senast år 2030. Genom att använda fossilfri vätgas som energibärare går det att minska utsläpp av växthusgaser inom exempelvis transportsektorn som bidrar till stora utsläpp årligen. Syftet med studien är att undersöka vilka förhållande, marknads- och produktionsmässiga, som det är lönsamt att prioritera produktion av vätgas framför leverans av elenergi till nät. Målet är att få fram en produktionskostnad för vätgas vid vätgasanläggningen samt hitta vid vilket spotpris det är lönsamt att producera vätgas på OKG. Studien visar hur produktionskostnaden av vätgas är beroende av spotpriset på el samt visar olika scenarion för detta.
|
42 |
Vätgas i Region Gävleborg : Nuvarande status och framtida potential i jämförelse med etablerade vätgaskluster i EuropaWiklund Uljons, Isak, Hartmann, Maxime January 2024 (has links)
Globalt koldioxidutsläpp från industrier vid förbränning av fossila bränslen är en av de ledande faktorerna för utsläpp av koldioxid och bidrar till global uppvärmningen. Nya metoder krävs därmed för att säkerställa en hållbar framtid från förnybar energi genom tillämpning och implementering i olika sektorer för att säkerställa ett fossilfritt samhälle. Vätgas är en energibärare som till följd därav anses agera som en lösning i omställning till grön energi. Vätgas kan därmed hjälpa flera olika länder i arbetet mot ett fossilfritt samhälle. Syftet med rapporten ämnar till att identifiera Region Gävleborgs vätgasarbete och utveckling, från produktion, lagring, finansiering och hur användning av vätgasen ser ut i infrastrukturen genom intervjuer med lokala aktörer och företag. Därefter analyseras Storbritannien, Tyskland och Italien vilket sammanfattade ländernas egna vätgasstrategier och utveckling, vilket låg till grund i jämförelse med Region Gävleborg. En tydlig likhet finns genom metoden elektrolys för att framställa grön vätgas vilket skapar avkarbonisering av industrikluster och transport. Olika förnybara källor kan användas i metoden för att framställa grön vätgas genom elektrolys, i Tyskland är vindkraft en möjliggörare samtidigt som Sverige och Storbritannien använder havsbaserade metoder för vindkraft. Italien främjar användandet av solceller vid framställning av grön vätgas. Det insamlade resultatet har därmed påvisat att det finns goda förutsättningar för etablering av vätgasinfrastruktur för länderna samt för Region Gävleborg.
|
43 |
HVO100 tillämpning och framtid : Inom sektorn för tunga fordonCroona, Paulina January 2024 (has links)
No description available.
|
44 |
Modeling of an Electrolysis System for Techno-Economic Optimization of Hydrogen ProductionKöstlbacher, Jürgen January 2023 (has links)
In face of climate change, Europe and other global actors are in the process of transitioning to carbon-neutral economies, aiming to phase out of fossil fuels and power industries with renewable energies. Hydrogen is going to play a crucial role in the transition, replacing fossil fuels in hard-to-decarbonize industries and acting as energy carrier and energy storage for renewable electricity. However, the hydrogen production method with the lowest carbon intensity, water electrolysis in combination with renewable electricity, is often not cost competitive to other production methods. Even though policies and initiatives are providing subsidies to scale up low-carbon hydrogen production, companies hesitate to invest due to the complexity of hydrogen production systems and the uncertainties of cost competitiveness. This research aims to develop a tool for optimizing the capacity of a water electrolysis system to produce low-carbon hydrogen and to lay the groundwork for optimizing the operation of electrolysis hydrogen production plants. The objective is to find the optimal plant capacity to achieve the lowest cost of hydrogen production for a defined hydrogen demand and energy supply. The scope is limited to the electrolysis system as optimizing asset which is modeled with technology-specific costs and characteristics, gained from manufacturer interviews and internal company data. This includes the often neglected characteristics of load-dependent efficiency and degradation effects. Further, the tool is enabled to buy and sell electricity on the spot market according to predicted prices in order to minimize the electricity costs. The developed tool is tested, benchmarked and applied to two different industry-based test scenarios in Germany and Portugal. The test scenario in Germany describes a mid-scale hydrogen production case for a transport application with a demand increase over 10 years (80 to 1,800 tons per year) and regional renewable energy supply via power purchase agreements. The lowest costs of hydrogen production for this scenario can be reached with an alkaline electrolysis system of a capacity of 16 MWel considering only renewable energy sources, achieving a LCOH of 4.75 €/kg of green hydrogen. The second test scenario describes a large-scale production case in Portugal for application in the refinery industry. The yearly hydrogen demand increases from 5,000 tons up to 17,100 tons within three years and is assumed to stay constant for the residual years. The electricity for the electrolysis process is secured through large solar PV and offshore wind power purchase agreements. Utilizing the alkaline electrolysis technology with a capacity of 128 MWel, a LCOH of 3.31 €/kg of green hydrogen can be achieved at the output point of the plant. The study concludes that the optimal solution and the achievable hydrogen production costs are highly dependent on the hydrogen demand (quantity and profile), the energy supply (quantity, profile, costs), and the chosen technology (efficiency, degradation, costs) and need to be evaluated under the case-specific prerequisites. The thesis further highlights the significant impact of the electrolysis system efficiency and capital expenditures on the capacity decision and achievable hydrogen production costs. / Mot bakgrund av klimatförändringarna håller Europa och andra globala aktörer på att ställa om till koldioxidneutrala ekonomier, med målet att fasa ut fossila bränslen och driva industrier med förnybara energikällor. Vätgas kommer att spela en avgörande roll i omställningen genom att ersätta fossila bränslen i industrier som är svåra att koldioxidneutralisera och fungera som energibärare och energilagring för förnybar el. Den metod för vätgasproduktion som har lägst koldioxidintensitet, vattenelektrolys i kombination med förnybar el, är dock ofta inte kostnadsmässigt konkurrenskraftig i förhållande till andra produktionsmetoder. Även om politik och initiativ tillhandahåller subventioner för att skala upp koldioxidsnål vätgasproduktion, tvekar företagen på grund av komplexiteten i vätgasproduktionssystemen och osäkerheten kring konkurrenskraften. Denna forskning syftar till att utveckla ett verktyg för att optimera kapaciteten hos ett vattenelektrolyssystem för att producera grön vätgas och att lägga grunden för att optimera driften av elektrolysanläggningar för vätgasproduktion. Målet är att hitta den optimala anläggningskapaciteten för att uppnå den lägsta kostnaden för vätgasproduktion för en definierad vätgasefterfrågan och definierad energiförsörjning. Omfattningen är begränsad till elektrolyssystemet som en optimerande tillgång som modelleras med teknikspecifika kostnader och egenskaper, hämtade från tillverkar-intervjuer och från företags interna marknadsdata. Detta inkluderar de ofta försummade egenskaperna hos lastberoende effektivitet och degraderingseffekter. Vidare kan verktyget köpa och sälja el på spotmarknaden enligt förutspådda priser för att minimera elkostnaderna. Det utvecklade verktyget testas, jämförs och tillämpas på två olika industribaserade testscenarier i Tyskland och Portugal. Testscenariot i Tyskland beskriver en medelstor vätgasproduktion för en transporttillämpning där efterfrågan ökar över 10 år (80 till 1 800 ton per år) och regional förnybar energiförsörjning via energiköpsavtal (power purchase agreements). De lägsta kostnaderna för vätgasproduktion för detta scenario kan uppnås med ett alkaliskt elektrolyssystem med en kapacitet på 16 MWel som endast använder förnyelsebara energikällor och uppnår en LCOH på 4,75 €/kg grön vätgas. Det andra testscenariot beskriver en storskalig vätgasproduktion i Portugal för tillämpning inom raffinaderi-industrin. Det årliga vätgasbehovet ökas från 5 000 ton till 17 100 ton inom tre år och antogs förbli konstant under de återstående åren. El för elektrolysprocessen säkras genom stora energiköpsavtal (power purchase agreements) för solceller och havsbaserad vindkraft. Genom att använda alkalisk elektrolysteknik med en kapacitet på 128 MWel kan en LCOH på 3,31 €/kg grön vätgas uppnås vid anläggningens utgångspunkt. Studien visar att den optimala lösningen och de uppnåbara vätgasproduktionskostnaderna är starkt beroende av vätgasbehovet (mängd och profil), energiförsörjningen (mängd, profil, kostnader) och den valda tekniken (effektivitet, nedbrytning, kostnader) och måste utvärderas utifrån de fallspecifika förutsättningarna. Avhandlingen belyser vidare den betydande inverkan som elektrolyssystemets effektivitet och kapitalutgifter har på kapacitetsbeslutet och de uppnåeliga kostnaderna för vätgasproduktion.
|
45 |
Site suitability assessment for green hydrogen production in the Valencian Community (Spain)Romero Boix, Alberto January 2023 (has links)
The Next Generation funds have promoted energy transition projects and specially in Spain many green hydrogen projects are being presented throughout the territory. When developing renewable hydrogen-related projects multiple parameters and inputs must be considered since the characteristics of the sites' surroundings will have a great impact in the profitability of the project. The main objective of this master thesis is to develop a methodology which helps with the process of selecting a suitable site to deploy a green hydrogen production facility. The study is limited to the green hydrogen production through electrolysis in the Valencian Community. It starts with georeferenced data gathering of the identified parameters that may have an impact in the viability of the project such the sun, wind and water resources avaliable as well as the transportation infrastructures and main hydrogen potential consumtions. Special attention is given to the water allocation since hydrogen could be exported and with it, the water resources from the Valencian Community. Afterwards this data is processed in a geographic information system software by performing a multi-criteria weighted overlay analysis. The weight of each criteria is given following the Analytic Hierarchy Process. Once these steps have been completed, a suitability map of the Valencian Community is obtained in which one can see the most suitable locations to deploy green hydrogen production projects based on the selected criteria. In this thesis, the sites with the highest suitability score are selected in each of the three provinces of the Valencian Community and several parameters such as the green hydrogen production potential in tons/year or the levelized cost of hydrogen (LCOH) have been calculated. The results showed many similarities among the three locations in terms of green hydrogen production and LCOH due to its relativley close geographical situation. However, interesting findings such as the crucial need of having nearby a source of avaliable water and the key role of desalination plants have been depicted. / Next Generation-fonderna har främjat energiomställningsprojekt och särskilt i Spanien presenteras många gröna vätgasprojekt över hela territoriet. Vid utveckling av förnybara vätgasrelaterade projekt måste flera parametrar och ingångar beaktas eftersom egenskaperna hos platsernas omgivning kommer att ha stor inverkan på projektets lönsamhet. Huvudsyftet med denna masteruppsats är att utveckla en metod som hjälper till med processen att välja en lämplig plats för att driftsätta en produktionsanläggning för grön vätgas. Studien är begränsad till grön vätgasproduktion genom elektrolys i Valencia-regionen. Den börjar med georefererad datainsamling av de identifierade parametrarna som kan ha en inverkan på projektets genomförbarhet, såsom tillgängliga sol-, vind- och vattenresurser samt transportinfrastruktur och huvudsakliga potentiella vätgasförbrukningar. Särskilt uppmärksamhet ägnas åt vattentilldelningen eftersom vätgas kan exporteras och därmed vattenresurserna från Valencia-regionen. Därefter bearbetas dessa data i ett geografiskt informationssystem genom att utföra en viktad överlagringsanalys med flera kriterier. Vikten av varje kriterium ges enligt den analytiska hierarkiprocessen. När dessa steg har slutförts erhålls en lämplighetskarta över regionen Valencia där man kan se de lämpligaste platserna för att genomföra projekt för produktion av grön vätgas baserat på de valda kriterierna. I denna avhandling väljs de platser med högst lämplighetspoäng i var och en av de tre provinserna i Valencia-regionen och flera parametrar som den gröna vätgasproduktionspotentialen i ton/år eller den nivellerade kostnaden för vätgas (LCOH) har beräknats. Resultaten visade många likheter mellan de tre platserna när det gäller produktion av grön vätgas och LCOH på grund av deras relativt nära geografiska läge. Det har dock gjorts intressanta upptäckter, t.ex. det avgörande behovet av att ha en tillgänglig vattenkälla i närheten och avlastningsanläggningarnas nyckelroll.
|
46 |
Optimization of Infrastructure Investment for Decarbonization of Public Buses Through Electricity and Hydrogen : The Case Study of Umeå / Optimering av infrastrukturinvesteringar för avkarbonisering av offentliga bussar genom el och vätgas : Fallstudien av UmeåRocha Jacob, Maria Inês January 2022 (has links)
Battery electric vehicles and fuel cell vehicles, i.e. hydrogen vehicles, are promising alternatives to internal combustion engine vehicles to reduce GHG emissions from the transport sector. EV charging and hydrogen refuelling infrastructure is crucial to the deployment of alternative fuels in transport. Although several studies have analyzed electric public buses infrastructure, fuel cell buses have not been the target of such extensive analyses. Additionally, there is a gap in the literature regarding the comparison of infrastructure for these two types of vehicles and their cost and refuelling schedule differences. The study aims to conduct a techno-economic analysis of electricity versus hydrogen refuelling infrastructure to decarbonize public buses, using renewable sources to produce renewable electricity and green hydrogen. The outcome is a proposed system design regarding the size of the refuelling station, storage system capacity, renewable energy capacity, on-site hydrogen production system size, and the optimized refuelling schedule. The system is modelled to minimize the overall system cost while maintaining the current bus service level. The impact of electricity market prices, demand charges and varying bus energy demand in the optimal system configuration and schedule is also addressed. Scenarios are developed to study different levels of new installed renewable capacity integration and how these affect the cost, bus refuelling schedules and infrastructure design. The mixed-integer linear programming problem was modelled using Python. The model is applied to the case study of one bus line in Umeå. One terminal station was chosen to place the refuelling stations. The results show that the most economical option is electrifying the line with electricity supply only from the grid. For scenarios with additional renewable energy capacity installed, the option with 50% integration of new installed capacity is the most economically viable. In both these cases, there is no installation of BESS at the charging station. Electric buses infrastructure is cheaper than hydrogen infrastructure in all scenarios, but these values converge as renewable energy integration increases. For hydrogen infrastructure, the scenario with 50% renewable energy integration is the least costly. Although electric bus infrastructure is more economical than hydrogen infrastructure, hydrogen buses present advantages in terms of significantly higher range and thus higher flexibility for refuelling. Therefore, in the decision-making process to replace a fossil fuel bus line with an alternative fuel bus line, one must consider the multi-dimensional level of the different options. / Batterielektriska fordon och bränslecellsfordon, dvs. vätgasfordon, är lovande alternativ till fordon med förbränningsmotorer för att minska växthusgasutsläppen från transportsektorn. Infrastruktur för laddning av elfordon och tankning av vätgas är avgörande för att alternativa bränslen ska kunna användas inom transportsektorn. Även om flera studier har analyserat infrastrukturen för offentliga elbussar har bränslecellsbussar inte varit föremål för sådana omfattande analyser. Dessutom finns det en lucka i litteraturen när det gäller jämförelsen av infrastruktur för dessa två typer av fordon och deras skillnader i fråga om kostnader och tankningsschema. Syftet med studien är att genomföra en teknisk-ekonomisk analys av infrastruktur för tankning av el respektive vätgas för att avkarbonisera offentliga bussar, med hjälp av förnybara källor för att producera förnybar el och grön vätgas. Resultatet är ett förslag till systemutformning med avseende på tankstationens storlek, lagringssystemets kapacitet, kapaciteten för förnybar energi, storleken på systemet för vätgasproduktion på plats och det optimerade tankningsschemat. Systemet modelleras för att minimera den totala systemkostnaden samtidigt som den nuvarande service nivån förbussarna bibehålls. Effekten av elmarknadspriser, efterfrågeavgifter och varierande energiefterfrågan från bussarna på den optimala systemkonfigurationen och schemat behandlas också. Scenarier utvecklas för att studera olika nivåer av nyinstallerad förnybar kapacitet och hur dessa påverkar kostnaden, bussarnas tankningsscheman och infrastrukturens utformning. Det linjära programmeringsproblemet med blandade heltal modellerades med hjälp av Python. Modellen tillämpas på fallstudien av en busslinje i Umeå. En ändstation valdes ut för att placera tankstationerna. Resultaten visar att det mest ekonomiska alternativet är att elektrifiera linjen med elförsörjning endast från nätet. För scenarier med ytterligare installerad kapacitet för förnybar energi är alternativet med 50 % integrering av ny installerad kapacitet det mest ekonomiskt lönsamma. I båda dessa fall finns det ingen installation av BESS vid laddningsstationen. Infrastrukturen för elbussar är billigare än infrastrukturen för vätgas i alla scenarier, men dessa värden närmar sig varandra när integrationen av förnybar energi ökar. När det gäller vätgasinfrastruktur är scenariot med 50 % integrering av förnybar energi det minst kostsamma. Även om infrastrukturen för elbussar är billigare än infrastrukturen för vätgasbussar har vätgasbussar fördelar i form av betydligt större räckvidd och därmed större flexibilitet när det gäller tankning. I beslutsprocessen för att ersätta en busslinje med fossila bränslen med en busslinje med alternativa bränslen måste man därför ta hänsyn till de olika alternativens flerdimensionella nivå.
|
47 |
Bränsleceller i taktisk enhet / Fuel cells in military unitsOhlson, Jan January 2010 (has links)
Inom Försvarsmakten används motordrivna generatorer för att förse många förbandsenheter med elektricitet. Dagens bullriga och vibrerande elverk är idag möjliga att ersätta med tystare bränsleceller. På köpet erhålls en bättre ergonomi för alla som arbetar i hytter som strömförsörjs av elverk. I rapporten redovisas funktionen för olika typer av bränsleceller, vilka bränslen de använder sig av och hur dessa kan transporteras. Dessutom redovisas hur två elverk används och vilka förbättringar som kan åstadkommas vid byte till bränsleceller. Slutligen analyseras den militära nyttan med ett byte. / In the Armed Forces many units are provided with electricity from generators. It is now possible to replace noisy and vibrating generators used today with more quiet fuel cells. As a bonus, we obtain better ergonomics for those working in units powered by generators. This report describes the function of different types of fuel cells, what fuels they use and how they can be transported. Furthermore it shows how two generators are used and what improvements can be achieved when switching to fuel cells. Finally the military benefit of retrofitting is analyzed.
|
48 |
SJÄLVFÖRSÖRJANDE BYGGNADER : En studie om lönsamheten av energiförsörjning med solceller i kombination med vätgasbränsleceller / SELF SUSTAINED BUILDINGS : A study about profitability of energy supply by EV-panels combined with hydrogen fuel cellsKarlsson, Patrik, Eriksson, Kim January 2018 (has links)
Syfte: Dagens samhälle blir mer och mer energimedvetet och regeringen sätter upp riktlinjer för bland annat byggsektorn i form av nya regler från Boverket. Ett av den svenska regeringens mål för klimat- och energipolitiken är att till år 2020 minska klimatutsläppen med 40 % och energianvändningen ska vara 20 % effektivare än i dagsläget. Ett led i detta är att bygga byggnader som är mer energieffektiva eller till och med tillverkar sin egen energi. Byggbranschen i Sverige står i dagsläget för cirka 40 % av koldioxidutsläppen, majoriteten av utsläppen sker vid producering av energi som tillförs byggnaderna under brukningsskedet. Målet för arbetet är att granska lönsamheten hos off-grid-förskolor i en mindre kommun i Mellansverige ur ett ekonomiskt perspektiv. Metod: Arbetet är en fallstudie som undersöker projektering av förskolor som planerar byggas i en mindre kommun i Mellansverige. Förskolan ska vara självförsörjande på energi genom att ha solceller på taket tillsammans med vätgasbränsleceller. Med det systemet ska hela byggnadens energibehov kunna tillgodoses. Intervjuer genomförs med de aktörer som ska bygga förskolan, både från beställarsidan och utförarsidan. Dokumentanalys av bygghandlingar används för att göra en LCC-analys som jämför den planerade energikällan mot bergvärme och passivhus. Resultat: Det är inte ekonomiskt lönsamt att använda vätgasbränslecell med solceller som energikälla. LCC-analysen indikerar att det inte är lönsamt att investera i vätgasbränsleceller som energikälla eftersom initialkostnaden är så hög att den inte går att ta igen ekonomiskt under byggnadens livstid jämfört med de andra två alternativ som undersökts. Formfaktorn är bra men det finns utrymme för förbättringar främst i minskad fönsterarea och en mer kvadratisk byggnad som leder till minskad väggarea och därmed lägre byggpris. Både LCC-analysen och intervjuerna indikerar att vätgasbränsleceller är en dyr teknik i dagsläget. Det behövs fler satsningar från politiskt håll för att få igång debatt om bränsleceller och skapa förutsättningar för att företag och privatpersoner ska kunna satsa på tekniken. Det kan dock vara lönsamt för en kommun på andra sätt, till exempel genom att ny industri och fler jobb lockas till kommunen. Konsekvenser: Slutsatsen är att det i dagsläget inte verkar vara lönsamt med vätgasbränslecell som energikälla. Ämnet behöver studeras i större perspektiv där den nya industrin som genereras av kommunens satsning på vätgasbränsleceller tas i beaktning. Begränsningar: Studien utgår från det planerade projektet i Mariestads kommun och har inte jämförts med några andra liknande projekt. Studien tittar på initial- och driftkostnader och tar inte med miljöaspekten i värderingen om lönsamhet. / Purpose: Today’s society is becoming more and more energy conscious and the government sets guidelines for, inter alia, the construction sector in the form of new regulations by the Boverket. One of the Swedish government´s goals for climate and energy policy is to reduce climate emissions by 40% and 20% more efficient energy use than now. A part of this is to build buildings that are more energy efficient or even produce their own energy. The construction industry is Sweden currently accounts for about 40% of the carbon dioxide emissons, the majority of emissions occur in the production of energy supplied to buildings during the use phase. The aim of the work is to review the profitability of off-grid preschools in a small municipality in central Sweden from an economic perspective. Method: This study is a case study that investigates the planned project of kindergartens in a smaller municipality in mid-Sweden. The kindergarten is supposed to be off-grid, self-sustained, in energy using photo voltaic cells on the roof together with hydrogen fuel cells. With this system the entire energy need of the building will be provided. Interviews are performed with participants of the project, both client and contractor. A document analysis is used to make an LCC analysis that compares the intended energy source with a geothermal one and zero energy building. Findings: It is not economically profitable to use hydrogen fuel cell in conjunction with photo voltaic cells as an energy source. The LCC analysis indicates that it is not profitable to invest in hydrogen fuel cells as an energy source since the initial cost is so high that it can´t be recouped within the life span of the building compared to the two other options investigated. The form factor is good but there is room for improvements especially in cut window area and a square shaped building that leads to smaller wall area and therefore less expensive building. Both the LCC analysis and the interviews indicate that hydrogen fuel cells as of today is an expensive technique. More political engagement is required to start debate about fuel cells and to create conditions for companies and individuals to be able to invest in the technique. It can however be profitable for a municipality in other ways, i.e. new industries and more jobs in the municipality. Implications: The conclusion is that it is not economically profitable to use hydrogen fuel cells as an energy source. The subject needs to be studied in a greater context considering the new industries generated by the municipality’s investment in hydrogen fuel cells. Limitations: The study generates from the planned project in Mariestads municipality and has not compared with other similar projects. The study investigates initial costs and maintenance costs and does not consider the environmental aspect in profitability.
|
49 |
Ekonomiska förutsättningar för vätgasproduktion som stöd till vindkraftNilsson, Henrik, Larsson, Christoffer January 2020 (has links)
Världen står inför utmaningen att minska sin klimatpåverkan som till en del beror på utsläpp av växthusgaser såsom koldioxid. Detta samtidigt som behovet av energi spås öka markant. Förnybara källor, företrädesvis vind- och solkraft, spås öka sin andel av den globala energiförsörjningen. Förnybar elkraftgenerering är dock inte oproblematisk då produktionen är svår att förutspå. När solen lyser eller vinden blåser sammanfaller dessutom inte alltid med när behovet av elektricitet finns vilket skapar stabilitetsproblem i elnätet. Att lagra energi för att sedan kunna återföra är ett sätt att både lösa stabilitetsproblem i elnätet och säkerställa att energi finns när den behövs. I den här studien undersöks möjligheten att, med el från vindkraft, genom elektrolys framställa vätgas som sedan lagras för att senare återföras som el via bränslecell eller säljas som råvara. Avsikten är att motverka negativa ekonomiska konsekvenser vid försäljning av intermittent vindkraft. I studien används modeller som gör simuleringar utifrån historiska data för 2019 från en vindpark. Detta för att undersöka om regleravgifter vid prognosavvikelser går att undvika eller delvis motverka samt om det går att flytta elproduktion i tid med en vätgasanläggning för att förbättra det ekonomiska utfallet för en vindkraftsproducent. Resultaten visar att detta i dagsläget inte är lönsamt utifrån de antaganden som gjorts. Detta främst för att alltför få drifttimmar uppnås i båda fallen. Studien visar att det dock kan vara lönsamt om syftet är att producera vätgas istället för att vara ett stöd för en vindkraftsproducent. / The world faces the challenge of reducing the emissions of greenhouse gases in order to mitigate climate change. At the same time, global energy demand is predicted to increase significantly. Renewable power generation like wind and solar power are believed to dominate the increase of needed power generation. These renewables power sources do not come without problems. Power fluctuations, due to their variable production causes grid stability problems and does not necessarily correspond to the demand for energy. Energy storage is a possible solution for both grid stability as well as for non-corresponding production/demand situations. This study investigates the feasability of hydrogen production by water electrolysis with electricity from a wind park. The produced hydrogen could either be sold or stored and used in a fuel cell to generate electricity at a later point in time. The aim is to mitigate negative economic consequenses from selling intermittent wind power. In the study simulations are made with historic data from 2019 from a wind park. Two models were created to investigate if imbalance costs due to forecast errors could be avoided or partially avioded and to investigate the possibility to move production of electricity in time and avoid unfavourable spot market prices. This in order to enhance the finacial results. The results from the study shows that at the present moment this is not a profitable approach with the assumptions made. The foremost reason for this is that too few system operating hours is obtained in each case. However, the results also shows that if the objective shifts from supporting wind power to producing hydrogen, the outcome could be profitable.
|
50 |
Konceptstudie e-metanol i Norra Sverige / Concept study e-methanol in Northern SwedenSahlén, Ronja January 2022 (has links)
Användandet av fossila bränslen som energikälla leder till stora utsläpp av växthusgaser och klimatförändringar, vilket börjar bli ett hot som växer sig större för varje år. Genom att använda e-bränslen kan man ersätta fossila bränslen, minska utsläppen av växthusgaser och lyckas uppnå klimatmålen. Examensarbetet specialiserade sig på produktion av e-metanol som är en slutprodukt av e-bränslen. Syftet var att undersöka förutsättningarna för ett ekonomiskt, tekniskt och säkerhetsmässigt hållbart Power-to-X koncept i form av en e-metanolanläggning i Norra Sverige. Detta gjordes genom att ta fram mass- och energibalans för metanolproduktion, dimensionera och genomföra en ekonomisk analys för en e-metanolanläggning. För dimensionering undersöktes metanolbehovet och vad nuvarande konventionella metanolanläggningar producerar. En teknisk kartläggning av e-metanolproduktion och olika elektrolys-tekniker utfördes, för att uppskatta en genomförbar storlek av e-metanolanläggning i Norra Sverige. För examensarbetet utfördes inte en teknisk kartläggning för koldioxidavskiljning, CO2-råvaran valdes att köpas in som en driftskostnad. Ett förenklat flödesschema togs fram med vald PEM-elektrolysteknik och direkt CO2-hydrering baserad på liknande studier inom metanolproduktion. För ekonomiska analysen utvärderades anläggningens totala kapitalinvesteringskostnad och driftskostnad för metanolproduktion och elektrolysör separat. Kostnaden för utrustningen inom metanolproduktionen togs från studier med ett liknande flödesschema. Utrustningen som beaktades var kompressorer, värmeväxlare, reaktor, separator och destillation. Efterfrågan på förnybar metanol i Sverige och resten av världen är stor och förväntas fortsätta att öka, för att användas i flera tusentals vardagsprodukter, inklusive plast, färg, kosmetiska och bränslen. För e-metanolanläggningen krävs det stora mängder el och vatten till elektrolysören och koldioxid för metanolproduktionen. En e-metanolanläggning med 500 kton/år i kapacitet, anses vara fullt genomförbar att realisera i Norra Sverige. Tekniken finns för att kunna skapa den mängd CO2 och H2 som anläggningen kräver. Största svårigheten är att få råvarorna, CO2 och H2, till en rimlig kostnad och kapital för att bygga anläggningen. Vidare är det osäkert ifall det finns tillräckligt med förnybar CO2 från netto CO2-neutrala källor i Norra Sverige. Den totala kapitalkostnaden för denna storlek uppskattades till 1,61 miljarder SEK fördelat på tre konstruktionsår, vilket till största del bestod av kostnaden för elektrolysören med 72 %. Den totala driftskostnaden uppskattades till 1,74 miljarder SEK per år, vilket till största del bestod av kostnaden för elektriciteten med 72 %, där majoriteten gick till elektrolysören. Priset på CO2 har en stor inverkan beroende på val av källa och teknik för koldioxidavskiljning. Dessa kostnader är en uppskattning och kan vara högre för ett verkligt fall, när skatter, plats etc. tas i hänsyn och när elprisets variation är medräknat. E-metanol kan bli konkurrenskraftig med fossil metanol om kostnaden för elektrolysören och elpriset, skulle minska avsevärt och ifall det finns tillräckligt med förnybar CO2 tillgängligt.
|
Page generated in 0.0202 seconds