Spelling suggestions: "subject:"vitesse dde convergence"" "subject:"vitesse dee convergence""
1 |
Performances statistiques de méthodes à noyauxLoustau, Sébastien 28 November 2008 (has links) (PDF)
Cette thèse se concentre sur le modèle de classification binaire. Etant donné $n$ couples de variables aléatoires indépendantes et identiquement distribuées (i.i.d.) $(X_i,Y_i)$, $i=1,\ldots ,n$ de loi $P$, on cherche à prédire la classe $Y\in\{-1,+1\}$ d'une nouvelle entrée $X$ où $(X,Y)$ est de loi $P$. La règle de Bayes, notée $f^*$, minimise l'erreur de généralisation $R(f)=P(f(X)\not=Y)$. Un algorithme de classification doit s'approcher de la règle de Bayes. Cette thèse suit deux axes : établir des vitesses de convergence vers la règle de Bayes et proposer des procédures adaptatives.<br /><br />Les méthodes de régularisation ont montrées leurs intérêts pour résoudre des problèmes de classification. L'algorithme des Machines à Vecteurs de Support (SVM) est aujourd'hui le représentant le plus populaire. Dans un premier temps, cette thèse étudie les performances statistiques de cet algorithme, et considère le problème d'adaptation à la marge et à la complexité. On étend ces résultats à une nouvelle procédure de minimisation de risque empirique pénalisée sur les espaces de Besov. Enfin la dernière partie se concentre sur une nouvelle procédure de sélection de modèles : la minimisation de l'enveloppe du risque (RHM). Introduite par L.Cavalier et Y.Golubev dans le cadre des problèmes inverses, on cherche à l'appliquer au contexte de la classification.
|
2 |
Contribution à l'étude de la régression non paramétrique et à l'estimation de la moyenne d'un processus à temps continuDegras, David 07 December 2007 (has links) (PDF)
Cette thèse porte sur l'étude de la régression non paramétrique en présence de mesures répétées. D'abord, nous étendons aux estimateurs splines de lissage les vitesses de convergence présentées dans la littérature pour d'autres estimateurs usuels sous différentes hypothèses classiques de dépendance des données. Ensuite, dans le cadre de l'estimation de la moyenne d'un processus aléatoire à temps continu, nous généralisons les résultats existants sur la convergence en moyenne quadratique et nous établissons de nouveaux résultats de normalité asymptotique pour les distributions finies-dimensionnelles. Enfin, dans le cadre d'un échantillon fini et corrélé, nous comparons les performances d'estimateurs construits par moindres carrés ordinaires ou généralisés, nous proposons une méthode efficace de sélection du paramètre de lissage tenant compte de la structure de covariance des données, et à travers des simulations, nous mettons en évidence l'apport du lissage local par rapport au lissage global.
|
3 |
Contributions à la statistique bayésienne non-paramétriqueArbel, Julyan 24 September 2013 (has links) (PDF)
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches bayésiennes non-paramétriques. Dans la première partie, nous nous intéressons aux propriétés fréquentistes (asymptotiques) de lois a posteriori pour des paramètres appartenant à l'ensemble des suites réelles de carré sommable. Dans la deuxième partie, nous nous intéressons à des approches non-paramétriques modélisant des données d'espèces et leur diversité en fonction de certaines variables explicatives, à partir de modèles qui utilisent des mesures de probabilité aléatoires.
|
4 |
Développements récents sur l'estimation fonctionnelle par méthodes d'ondelettesChesneau, Christophe 03 April 2014 (has links) (PDF)
A ce jour, l'essentiel de mes travaux s'articule autour de l'estimation de fonctions inconnues émanant de phénomènes aléatoires. La richesse de ces phénomènes combinée avec l'amélioration constante des méthodes d'estimation nourrissent mon intérêt pour le sujet. J'ai toutefois choisi de me spécialiser dans les méthodes d'ondelettes. La principale raison est qu'elles bénéficient d'une grande faculté d'adaptation à la complexité du problème posé, tout en ayant des performances d'estimation remarquables. Cela est présenté dans la première partie de ce rapport. Les trois autres parties concernent trois de mes résultats les plus significatifs. En outre, ils sont applicables à une multitude de modèles statistiques, ouvrant ainsi un large champ d'applications, et améliorent certains aspects de résultats existants.
|
5 |
Contributions à la statistique bayésienne non-paramétrique / Contributions to Bayesian nonparametric statisticArbel, Julyan 24 September 2013 (has links)
La thèse est divisée en deux parties portant sur deux aspects relativement différents des approches bayésiennes non-paramétriques. Dans la première partie, nous nous intéressons aux propriétés fréquentistes (asymptotiques) de lois a posteriori pour des paramètres appartenant à l'ensemble des suites réelles de carré sommable. Dans la deuxième partie, nous nous intéressons à des approches non-paramétriques modélisant des données d'espèces et leur diversité en fonction de certaines variables explicatives, à partir de modèles qui utilisent des mesures de probabilité aléatoires. / This thesis is divided in two parts on rather different aspects of Bayesian statistics. In the first part, we deal with frequentist (asymptotic) properties of posterior distributions for parameters which belong to the space of real square sommable sequences. In the second part, we deal with nonparametric approaches modelling species data and the diversity of these data with respect to covariates. To that purpose, we use models based on random probability measures.
|
6 |
Développement d'un modèle particulaire pour la régression indirecte non paramétrique / Development of a particle-based model for nonparametric inverse regressionNaulet, Zacharie 08 November 2016 (has links)
Cette thèse porte sur les statistiques bayésiennes non paramétriques. La thèse est divisée en une introduction générale et trois parties traitant des aspects relativement différents des approches par mélanges (échantillonage, asymptotique, problème inverse). Dans les modèles de mélanges, le paramètre à inférer depuis les données est une fonction. On définit une distribution a priori sur un espace fonctionnel abstrait au travers d'une intégrale stochastique d'un noyau par rapport à une mesure aléatoire. Habituellement, les modèles de mélanges sont surtout utilisés dans les problèmes d'estimation de densités de probabilité. Une des contributions de ce manuscrit est d'élargir leur usage aux problèmes de régressions.Dans ce contexte, on est essentiellement concernés par les problèmes suivants:- Echantillonage de la distribution a posteriori- Propriétés asymptotiques de la distribution a posteriori- Problèmes inverses, et particulièrement l'estimation de la distribution de Wigner à partir de mesures de Tomographie Quantique Homodyne. / This dissertation deals with Bayesian nonparametric statistics, in particular nonparametric mixture models. The manuscript is divided into a general introduction and three parts on rather different aspects of mixtures approaches (sampling, asymptotic, inverse problem). In mixture models, the parameter to infer from the data is a function. We set a prior distribution on an abstract space of functions through a stochastic integral of a kernel with respect to a random measure. Usually, mixture models were used primilary in probability density function estimation problems. One of the contributions of the present manuscript is to use them in regression problems.In this context, we are essentially concerned with the following problems :- Sampling of the posterior distribution- Asymptotic properties of the posterior distribution- Inverse problems, in particular the estimation of the Wigner distribution from Quantum Homodyne Tomography measurements.
|
7 |
Estimations et tests non paramétriques en tomographie quantique homodyneMéziani, Katia 09 December 2008 (has links) (PDF)
En optique quantique, la reconstruction de l'état quantique (fonction de Wigner ou matrice de densité infini-dimensionnelle) d'un faisceau de lumière correspond en statistique à un problème inverse trés mal posé. Premièrement, nous proposons des estimateurs de la matrice de densité basés sur les fonctions \textit{pattern} et des estimateurs à noyau de la fonction de Wigner. Nous faisons l'hypothèse que la matrice de densité inconnue appartient à une classe non paramétrique définie en accord avec les exemples étudiés par les physiciens. Nous en déduisons pour la fonction de Wigner associée à cette matrice des propriétés de décroissance rapide et de régularité. Deuxièmement, nous estimons une fonctionnelle quadratique de la fonction de Wigner par une U-statistique d'ordre deux sur une classe plus large. Cette fonctionnelle peut être vue comme une indication sur la pureté de l'état quantique considéré. Nous en déduisons un estimateur adaptatif aux paramètres de régularité de la fonction de Wigner. La dernière partie de ce manuscrit est consacrée au problème de test d'adéquation à la matrice de densité. Cette procédure est construite à partir d'un estimateur de type projection sur les fonctions \textit{pattern}. Nous étudions les bornes supérieures de type minimax de toutes ces procédures. Les procédures d'estimation de la matrice de densité et de test d'adéquation à une matrice de densité sont implémentées et leurs performances numériques sont étudiées.
|
Page generated in 0.0795 seconds