• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Eliminación de pesticidas organofosforados mediante fotoelectrocatálisis con fotoánodos de WO3

Roselló Márquez, Gemma 14 October 2021 (has links)
[ES] La presente Tesis Doctoral tiene dos objetivos claramente diferenciados, siendo el primero de ellos la realización de un estudio de optimización de la síntesis de nanoestructuras de óxido de wolframio (WO3) mediante el uso de un diseño de experimentos, mientras que el segundo de ellos es el uso de estas nanoestructuras en la degradación fotoelectrocatalítica de 4 pesticidas organofosforados de diferentes subfamilias (diazinon, fosmet, clorfenvinfos y fenamifos). El uso del óxido de wolframio como fotocatalizador en el proceso fotoelectrocatalítico (FEC) despierta un gran interés, ya que se trata de un semiconductor con gran fotoestabilidad en electrolitos acuosos ácidos, excelente conductividad eléctrica, tiene la capacidad de absorber la parte azul del espectro visible además de la luz ultravioleta, y el borde superior de la banda de valencia es mayor que el potencial de oxidación de H2O/O2. Todo ello hace que el WO3 sea capaz de fotooxidar eficazmente una amplia gama de compuestos orgánicos. Las nanoestructuras estudiadas en la Tesis Doctoral se sintetizaron mediante anodizado electroquímico, ya que se trata de una técnica sencilla que permite un control de sus parámetros de manera fácil y efectiva, permitiendo obtener las nanoestructuras directamente sobre el propio sustrato metálico. Además, la necesidad de controlar y eliminar los contaminantes emergentes en el medio ambiente se ha vuelto cada vez más crucial durante las últimas décadas. Así, en esta Tesis se han degradado 4 pesticidas tóxicos y persistentes en el medioambiente mediante la técnica de fotoelectrocatálisis (FEC) utilizando las nanoestructuras de WO3. En esta técnica, los fenómenos electrolíticos y fotocatalíticos actúan juntos para mineralizar el contaminante orgánico. Además, la FEC está atrayendo la atención de los investigadores por su capacidad para degradar contaminantes orgánicos y transformarlos en compuestos inocuos con condiciones de trabajo no extremas. Por tanto, en el diseño de experimentos realizado en la Tesis Doctoral se modificaron 3 variables con tres niveles cada una, por tanto se escogió un diseño 33. Las variables que se modificaron fueron el electrolito utilizado durante el anodizado, la temperatura y atmosfera en el proceso de post-anodizado (tratamiento térmico), obteniendo de esta manera nanoestructuras con diferentes propiedades tanto estructurales como fotoelectroquímicas. Los resultados obtenidos mostraron que las nanoestructuras que presentan mejores propiedades morfológicas y fotoelectroquímicas, y con una estructura cristalina más adecuada fueron las obtenidas con el ácido metanosulfónico (CH4O3S) como electrolito y calentadas en el proceso de post-anodizado a 600 ¿C y en atmósfera de aire. Con estas nanoestructuras optimizadas, se realizó el proceso de degradación de los 4 pesticidas seleccionados mediante fotoelectrocatálisis. En este proceso, se partió de una concentración inicial de 20 ppm en todos los pesticidas, haciéndose un seguimiento del pesticida mediante UV-Visible y cromatografía líquida de ultra alto rendimiento acoplada a la espectrometría de masas (UHPLC-MS/Q-TOF). Tras 24 horas de ensayo se consiguió degradar el diazinón hasta 2 ppm (consiguiendo un 90% de degradación), el clorfenvinfos se degradó hasta 1 ppm (consiguiendo un 95% de degradación) y el fosmet y fenamifos se degradaron al 100%. Para cada uno de los pesticidas se ha propuesto una ruta de degradación según los compuestos intermedios identificados mediante el UHPLC-MS/Q-TOF, dando como resultado final moléculas más pequeñas y más inocuas para los seres humanos y para el medioambiente. / [CA] La present tesi doctoral té dos objectius clarament diferenciats, sent el primer la realització d'un estudi d'optimització de la síntesi de nanoestructures d'òxid de wolframi (WO3) mitjançant l'ús d'un disseny d'experiments, mentre que el segon és l'ús d'aquestes nanoestructures en la degradació fotoelectrocatalítica de quatre pesticides organofosforats de diferents subfamílies (diazinon, fosmet, clorfenvinfòs i fenamifòs). L'ús de l'òxid de wolframi com a fotocatalitzador en el procés fotoelectrocatalític (FEC) desperta un gran interès, ja que es tracta d'un semiconductor amb gran fotoestabilitat en electròlits aquosos àcids; amb una excel·lent conductivitat elèctrica; té la capacitat d'absorbir la part blava de l'espectre visible, a més de la llum ultraviolada, i la vora superior de la banda de valència és major que el potencial d'oxidació d'H2O/O2. Tot això fa que el WO3 siga capaç de fotooxidar eficaçment una àmplia gamma de compostos orgànics. Les nanoestructures estudiades en la tesi doctoral es van sintetitzar mitjançant anodització electroquímica, ja que es tracta d'una tècnica senzilla que permet un control dels seus paràmetres de manera fàcil i efectiva, i permet obtenir les nanoestructures directament sobre el mateix substrat metàl·lic. A més, la necessitat de controlar i eliminar els contaminants emergents en el medi ambient s'ha tornat cada vegada més crucial durant les últimes dècades. Així, en aquesta tesi s'han degradat quatre pesticides tòxics i persistents en el medi ambient mitjançant la tècnica de la fotoelectrocatàlisi (FEC) utilitzant les nanoestructures de WO3. En aquesta tècnica, els fenòmens electrolítics i fotocatalítics actuen junts per a mineralitzar el contaminant orgànic. La FEC està atraient l'atenció del personal investigador per la seua capacitat per a degradar contaminants orgànics i transformar-los en compostos innocus amb condicions de treball no extremes. Per tant, en el disseny d'experiments realitzat en la tesi doctoral es van modificar tres variables amb tres nivells cadascuna, per tant, es va triar un disseny 33. Les variables que es van modificar van ser: l'electròlit utilitzat durant l'anodització, la temperatura i l'atmosfera en el procés de postanodització (tractament tèrmic), i es van obtenir d'aquesta manera nanoestructures amb diferents propietats, tant estructurals com fotoelectroquímiques. Els resultats obtinguts van mostrar que les nanoestructures que presenten millors propietats morfològiques i fotoelectroquímiques, i amb una estructura cristal·lina més adequada, van ser les obtingudes amb l'àcid metanosulfònic (CH4O3S) com a electròlit, i calfades en el procés de postanodització a 600 ¿C i en atmosfera d'aire. Amb aquestes nanoestructures optimitzades, es va realitzar el procés de degradació dels quatre pesticides seleccionats mitjançant fotoelectrocatàlisi. En aquest procés, es va partir d'una concentració inicial de 20 ppm en tots els pesticides, i es va fer un seguiment del pesticida mitjançant UV visible i cromatografia líquida d'ultraalt rendiment acoblada a l'espectrometria de masses (UHPLC-MS/Q-TOF). Després de 24 hores d'assaig, es va aconseguir degradar el diazinon fins a 2 ppm (es va assolir un 90% de degradació), el clorfenvinfòs es va degradar fins a 1 ppm (es va assolir un 95% de degradació) i el fosmet i el fenamifòs es van degradar al 100%. Per a cadascun dels pesticides s'ha proposat una ruta de degradació segons els compostos intermedis identificats mitjançant l'UHPLC-MS/Q-TOF, que dona com a resultat final molècules més xicotetes i més innòcues per als éssers humans i per al medi ambient. / [EN] This Doctoral Thesis has two clearly differentiated objectives. The first objective is to carry out an optimization study of the synthesis of tungsten oxide nanostructures (WO3) using a design of experiments. The second objective is to use of these nanostructures in the photoelectrocatalytic degradation of 4 organophosphate pesticides of different subfamilies (diazinon, phosmet, chlorfenvinphos and fenamiphos). The use of tungsten oxide as a photocatalyst in the photoelectrocatalytic (PEC) process arouses great interest, since it is a semiconductor with great photostability in acidic aqueous electrolytes, excellent electrical conductivity, it has the ability to absorb the blue part of the visible spectrum in addition to ultraviolet light, and the upper edge of the valence band is greater than the oxidation potential of H2O / O2. All this makes WO3 capable of efficiently photo-oxidizing a wide range of organic compounds. The nanostructures studied in the Doctoral Thesis were synthesized using electrochemical anodization, since it is a simple technique that permits the control their parameters easily and effectively, allowing the nanostructures to be obtained directly on the metal substrate itself. Furthermore, the need to control and eliminate emerging pollutants in the environment has become increasingly crucial over the past decades. Thus, in this Thesis, 4 toxic and persistent pesticides in the environment have been degraded by the photoelectrocatalysis (PEC) technique using the WO3 nanostructures. In this technique, the electrolytic and photocatalytic phenomena act together to mineralize the organic contaminant. PEC is attracting the attention of researchers for its ability to degrade organic pollutants and transform them into harmless compounds under non-extreme working conditions. Therefore, in the design of experiments carried out in the Doctoral Thesis, 3 variables were modified with three levels each one, therefore a 33 design was chosen. The variables that were modified were the electrolyte used during the anodization, the temperature and the atmosphere in the post-anodization process (annealing treatment), thus obtaining nanostructures with different structural and photoelectrochemical properties. The results obtained showed that the nanostructures with the best morphological and photoelectrochemical properties, and with adequate crystalline structure werethose obtained with methanesulfonic acid (CH4O3S) as electrolyte and annealed in the post-anodization process at 600 ¿C and in an air atmosphere. With these optimized nanostructures, the degradation process of the 4 selected pesticides was carried out by photoelectrocatalysis. This process started from an initial concentration of 20 ppm in all pesticides, using UV-Visible and Ultra-High Performance Liquid Chromatography coupled to Mass Spectrophotometry (UHPLCMS / Q-TOF) to monitoring the process. After 24 hours of experiment, the diazinon was degraded to 2 ppm (achieving 90% degradation), chlorfenvinphos was degraded to 1 ppm (achieving 95% degradation) and phosmet and fenamiphos were 100% degraded. For each of the pesticides, a degradation route has been proposed according to the intermediate compounds identified by UHPLC-MS/Q-TOF, resulting in smaller and more innocuous molecules for humans and the environment. / Agradezco a la Generalitat Valenciana y al Fondo Social Europeo por la ayuda predoctoral recibida para la realización de la presente Tesis Doctoral (ACIF 159- 2018) así como para la realización de una estancia predoctoral en la Universidad de Lisboa. También quiero agradecer al Ministerio de Economía, Industria y Competitividad, por la concesión de los proyectos CTQ2016-79203-R (2016) y PID2019-105844RB-I00 (2019) en los cuales he podido participar durante la Tesis Doctoral. / Roselló Márquez, G. (2021). Eliminación de pesticidas organofosforados mediante fotoelectrocatálisis con fotoánodos de WO3 [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/174712
2

Clústeres Calcogenuro de Metales del Grupo 6 con Relevancia en Catálisis Asimétrica y Bifásica

Guillamón Torres, Eva María 05 June 2009 (has links)
El trabajo de investigación que se expone en esta Tesis Doctoral presenta la síntesis de una nueva familia de compuestos trinucleares de fórmula general [M3Q4X3(difosfina)3]+ (M = Mo, W; Q = S, Se; X = Cl, Br, H) y son el punto de partida para la preparación de nuevos derivados heterodimetálicos M3M'Q4 (M' = Cu, Pd y Ni). Atendiendo a la naturaleza del ligando difosfina incorporado a la unidad, estos compuestos poseen diferentes propiedades. Concretamente, se han incorporado difosfinas solubles en agua y difosfinas ópticamente activas con el fin de estudiar y evaluar las cualidades de los nuevos derivados en catálisis bifásica (de bajo impacto medioambiental) y en catálisis asimétrica, respectivamente. También se presenta la asociación de los aniones quirales TRISPHAT, BINPHAT y TMT(Ph) con los sistemas racémicos [Mo3S4Cl3(difosfina)3]+ y [Mo3M'S4Cl3(dmpe)3]+ (con difosfina = dmpe, dppe) para su resolución. Finalmente, se detallan todos los estudios teóricos llevados a cabo sobre diferentes sistemas. Concretamente, la epimerización del catión [Mo3S4Cl3(dppe)3]+, la protonación del clúster hidruro [Mo3S4H3((R,R)-Me-BPE)3]+, el equilibrio ácido-base del clúster [Mo3S4Cl3(dhmpe)3]+ y la evaluación de la actividad catalítica de los derivados ópticamente puros Mo3CuQ4 en reacciones de ciclopropanación.
3

TRANSFORMACIÓN CATALÍTICA SELECTIVA DE METANOL SOBRE CATALIZADORES BASADOS EN ÓXIDOS MIXTOS METÁLICOS

Zamora Blanco, Segundo 06 November 2017 (has links)
Abstract This Doctoral Thesis presents a study on the synthesis and characterization of materials based on tungsten bronze partially substituted with transition metals and / or alkaline metals, with hexagonal bronze structure (HTB), to be used as catalysts in the aerobic transformation of methanol to dimethyl ether and/or formaldehyde. Active and selective binary W-X-O catalysts (X = Ti, V or Mo) for methanol transformation, are obtained by hydrothermal synthesis and subsequent thermal treatment in nitrogen at temperatures between 400 and 600 °C. The nature of the active sites (acids and / or redox, depending on the composition of the catalyst) determines the distribution of products (dimethyl ether and/or formaldehyde, respectively). Subsequently, the synthesis and characterization of ternary W-V-M catalysts (M = Mo, Nb or alkali metal) have been studied in order to improve the selectivity to formaldehyde and dimethyl ether. The three types of ternary catalysts studied improve the formation of formaldehyde, although following different strategies: i) increasing the amount of redox sites (W-V-Mo); Ii) decreasing the strength of the acid sites (W-V-Nb) or iii) decreasing the density of acid sites (W-V-alkaline). A second aspect is related to the nature of the vanadium sites, since the presence of a second promoter limits both the amount of vanadium in the material and the oxidation state of vanadium species, which would explain the better selectivity to partial oxidation products obtained by the ternary catalysts. Finally, a comparative study has been carried out between aerobic and anaerobic conditions using some of the most representative catalysts. A study by infrared spectroscopy of adsorbed methanol (in the presence or absence of oxygen) can explain the reaction mechanism (acid and/or redox) of these materials, as well as the factors that influence the deactivation of the catalyst when working under anaerobic conditions. / Resumen La presente tesis doctoral presenta un estudio sobre la síntesis y caracterización de materiales basados en bronces de wolframio parcialmente sustituidos con metales de transición y/o metales alcalinos, con estructura de bronce hexagonal (HTB), para ser empleados como catalizadores en la transformación aeróbica de metanol a dimetiléter y/o formaldehído. Mediante síntesis hidrotermal y posterior tratamiento térmico en nitrógeno a temperaturas entre 400 y 600 °C se obtienen catalizadores binarios W-X-O (X = Ti, V o Mo), activos y selectivos para la transformación de metanol. La naturaleza de los centros activos (ácidos y/o redox, dependiendo de la composición del catalizador) determina la distribución de productos (dimetiléter y/o formaldehido, respectivamente). Posteriormente, se ha estudiado la síntesis y caracterización de sistemas ternarios W-V-M (M = Mo, Nb o metal alcalino) con el fin de mejorar la relación de selectividades a formaldehido y dimetiléter. Los tres tipos de catalizadores mejoran la formación de formaldehido, aunque siguiendo estrategias diferentes: i) aumentando los centros redox (W-V-Mo); ii) disminuyendo la fortaleza de los centros ácidos (W-V-Nb); o iii) eliminando la densidad de centros ácidos (W-V-alcalino). Un segundo aspecto está relacionado con la naturaleza de los centros de vanadio, dado que la presencia de un segundo promotor limita tanto la cantidad de vanadio en el material como el estado de oxidación de las especies vanadio, lo que explicaría la mejor selectividad a productos de oxidación parcial de los catalizadores ternarios. Finalmente, se ha llevado a cabo un estudio comparativo entre condiciones aeróbicas y anaeróbicas usando algunos de los catalizadores más representativos. Un estudio por espectroscopia infrarroja de metanol adsorbido (en presencia y ausencia de oxígeno) permiten explicar el mecanismo de reacción (ácido y/o redox) de estos materiales, así como los factores que influyen en la desactivación del catalizador cuando se trabaja en condiciones anaeróbicas. / Resum La present tesi doctoral presenta un estudi sobre la síntesi i caracterització de materials basats en bronzes de wolframi parcialment substituït amb metalls de transició i/o metalls alcalins, amb estructura de bronze hexagonal (HTB), per a ser utilitzats com a catalitzadors en la transformació aeròbica de metanol a dimetilèter i/o formaldehid. Se han sintetitzat catalitzadors binaris W-X-O (X = Ti, V o Mo), actius i selectius en la transformació de metanol, mitjançant síntesi hidrotermal i posterior tractament tèrmic en nitrogen a temperatures entre 400 i 600 °C. La naturalesa dels centres actius (àcids i/o redox, depenent de la composició del catalitzador) determina la distribució de productes (dimetilèter i/o formaldehid, respectivament). Posteriorment, s'ha estudiat la síntesi i caracterització de sistemes ternaris W-V-M (M = Mo, Nb o metall alcalí) per tal de millorar la relació de selectivitats a formaldehid i dimetilèter. Els tres tipus de catalitzadors ternaris milloren la formació de formaldehid, encara que seguint estratègies diferents: i) augmentant la quantitat de centres redox (W-V-Mo); ii) disminuint la fortalesa dels centres àcids (W-V-Nb); o iii) disminuint la densitat de centres àcids (W-V-alcalí). Un segon aspecte està relacionat amb la naturalesa dels centres de vanadi, atès que la presència d'un segon promotor limita tant la quantitat de vanadi en el material com l'estat d'oxidació de les espècies vanadi, la qual cosa explicaria la millor selectivitat a productes de oxidació parcial dels catalitzadors ternaris. Finalment, s'ha dut a terme un estudi comparatiu entre condicions aeròbiques i anaeròbiques usant alguns dels catalitzadors més representatius. Un estudi per espectroscòpia infraroja de metanol adsorbit (en presència i absència d'oxigen) permeten explicar el mecanisme de reacció (àcid i / o redox) d'aquests materials, així com els factors que influeixen en la desactivació del catalitzador quan es treballa en condicions anaeròbiques. / Zamora Blanco, S. (2017). TRANSFORMACIÓN CATALÍTICA SELECTIVA DE METANOL SOBRE CATALIZADORES BASADOS EN ÓXIDOS MIXTOS METÁLICOS [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90552
4

Investigación de las características de adherencia sobre matrices de embutición de acero f-1110, y análisis mediante ensayos de emisión acústica, de recubrimientos de níquel-óxidos y carburos cerámicos aplicados por proyección térmica, y de las carac

Maita, Pedro Antonio 07 May 2008 (has links)
En los últimos cinco años la tecnología de los recubrimientos superficiales se ha incrementado. Al respecto se tienen avances en las propiedades superificiales de los amteriales influyendo en el campo de la competitividad, producción de calidades y surgimiento de técnicas de recubrimientos, dependiendo de la adaptabilidad, aplicación y costo. En la actualidad el campo de las matrices de embutición apunta al problema generado en el servicio, modificaciones de medidas, desgastes, impactos, deformaciones y proceso de fractura, causado por las altas tensiones cortantes en zonas de deslizamiento de la chapa con la matriz. No obstante se puede recuperar la matriz por desgaste prematuro en bordes y posibles fisuras. A nivel mundial, el problema ha sido estudiado, pero dada su complejidad en la búsqueda de lograr la calidad y la efeciencia en las condiciones de servicio de la matriz, se aplican sobre su superficie las siguientes tecnologías: procesos térmicos, tratamientos superficiales, desposiciones superficiales y técnicas en recuperación por desgaste y fisuras. En esta investigación se aplicó la proyección térmica por llama con uso de polvo como ténica en reparación, en virud de la importancia de alternativas de recuperación de matrices de embutición para complementar las tecnologías existentes, garantizánose la función destino de la matriz, antes de ser consumida durante las operaciones de trabajo en frío y caliente. La proyección térmica por llama es una alternativa de bajo costo, aventajada en aplicación de capas cerámicas para recuperación de zonas desgastadas en matrices. Un requerimiento principal es la adherencia del recubrimiento en el sustrato y no es fácil alcanzar valores apropiados dadas la naturaleza cerámica del recubrimiento y los cortos tiempos de aplicación. Para cuantificar la adherencia se ensayaron las probetas recubiertas con aleaciones cerámicas sometidas a esfuerzos de cizalladura, para lograr en la intercara el deslizamiento cortante del recubrim / Maita, PA. (2007). Investigación de las características de adherencia sobre matrices de embutición de acero f-1110, y análisis mediante ensayos de emisión acústica, de recubrimientos de níquel-óxidos y carburos cerámicos aplicados por proyección térmica, y de las carac [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1924
5

Nanotecnología con WO3 y aplicaciones: Degradación fotoelectroquímica de disruptores endocrinos y ánodos avanzados para baterías de ion de litio

Cifre Herrando, Mireia 27 September 2025 (has links)
[ES] La presente Tesis Doctoral se centra en la síntesis, caracterización y optimización de nanoestructuras de óxido de wolframio (WO3) y nanoestructuras híbridas de WO3-MoO3 mediante anodizado electroquímico. Estas nanoestructuras se emplean como fotocatalizadores para la degradación de contaminantes y como ánodos para baterías de ion de litio. El WO3 destaca por sus propiedades semiconductoras, ópticas y eléctricas excepcionales. En aplicaciones medioambiental, las nanoestructuras de WO3 son de gran interés para la fotoelectrocatalisis, un proceso prometedor para la degradación de contaminantes en el agua. El WO3 destaca como fotoánodo debido a su fotoestabilidad, alta conductividad eléctrica y capacidad de absorción de la luz visible. En el campo energético, el WO3 muestra un gran potencial como ánodo en baterías de ion de litio ya que su estructura cristalina permite la inserción y extracción eficiente de iones de litio, mejorando la capacidad de almacenamiento y la durabilidad de las baterías gracias a su estabilidad electroquímica. Para mejorar las nanoestructuras de WO3, se ha estudiado su combinación con óxido de molibdeno (MoO3). El molibdeno, con propiedades químicas y estructurales similares al wolframio, facilita la deposición efectiva en las nanoestructuras de WO3, ajusta el ancho de banda prohibida, mejora la conductividad, la difusión iónica y reduce la recombinación de portadores de carga. Esta combinación de óxidos resulta en una mayor eficiencia electroquímica, haciendo de las nanoestructuras híbridas WO3-MoO3 una solución prometedora para aplicaciones energéticas. En primer lugar, se sintetizaron las nanoestructuras de WO3, estudiando la influencia de la temperatura de calentamiento tras la síntesis y la adición de disolventes en el electrolito de síntesis. La temperatura óptima fue de 600 °C, obteniendo nanoestructuras cristalinas con excelentes propiedades fotoelectroquímicas. Además, se demuestra que la incorporación de disolventes en el electrolito de síntesis influye significativamente en las propiedades de las nanoestructuras, obteniendo que la adición de un 50 % de isopropanol en el electrolito mejora notablemente sus propiedades electroquímicas. En segundo lugar, se sintetizaron nanoestructuras híbridas de WO3- MoO3·añadiendo diferentes concentraciones de molibdato al electrolito de síntesis. La concentración de 0,1 M de molibdato produjo nanoestructuras con propiedades electroquímicas superiores, destacándolas como prometedoras para su uso como ánodo en baterías. Las nanoestructuras fueron exhaustivamente caracterizadas morfológica, estructural, química, electroquímica y fotoelectroquímicamente. Por último, las nanoestructuras con mejores propiedades fotoelectroquímicas y electroquímicas se emplearon como ánodo en aplicaciones medioambientales y energéticas, respectivamente. En el ámbito medioambiental, se evaluó la eficiencia de las nanoestructuras en la degradación de disruptores endocrinos pertenecientes a diferentes familias químicas, así como sus mezclas y su toxicidad. Las nanoestructuras de WO3 demostraron ser efectivas, logrando una degradación del 100 % de pesticidas, parabenos y fenoles en menos de 4 horas. Sin embargo, la técnica no fue eficiente para eliminar ftalatos, generando productos finales más tóxicos. En el ámbito energético, se estudió el rendimiento de las nanoestructuras como ánodos en baterías de ion de litio, considerando también el impacto del electrolito. La nanoestructura híbrida WO3-MoO3 mostró el mejor rendimiento cuando se utilizó un electrolito que combinaba bisoxalato borato de litio (LiBOB) con aditivos y solventes adicionales. Este trabajo ofrece una contribución significativa al desarrollo de soluciones sostenibles para problemas medioambientales y energéticos, subrayando el potencial de las nanoestructuras de WO3 y WO3-MoO3. / [CA] La present Tesi Doctoral se centra en la síntesi, caracterització i optimització de nanoestructures d'òxid de wolframi (WO3) i nanoestructures híbrides de WO3-MoO3 mitjançant anodització electroquímica. Aquestes nanoestructures s'utilitzen com a fotocatalitzadors per a la degradació de contaminants i com a ànodes per a bateries d'ió de liti. El WO3 destaca per les seues propietats semiconductores, òptiques i elèctriques excepcionals. En aplicacions mediambientals, les nanoestructures de WO3 són de gran interès per a la fotoelectrocatalisi, un procés prometedor per a la degradació de contaminants en l'aigua. El WO3 destaca com a fotoànode per la seua fotoestabilitat, alta conductivitat elèctrica i capacitat d'absorció de la llum visible. En el camp energètic, el WO3 mostra un gran potencial com a ànode en bateries d'ió de liti ja que la seua estructura cristal·lina permet la inserció i extracció eficient d'ions de liti, millorant la capacitat d'emmagatzematge i la durabilitat de les bateries gràcies a la seua estabilitat electroquímica. Per a millorar les nanoestructures de WO3, s'ha estudiat la seua combinació amb òxid de molibdè (MoO3). El molibdè, amb propietats químiques i estructurals similars al wolframi, facilita la deposició efectiva en les nanoestructures de WO3, ajusta l'amplada de banda prohibida, millora la conductivitat, la difusió iònica i redueix la recombinació de portadors de càrrega. Això resulta en una major eficiència electroquímica, fent de les nanoestructures híbrides WO3-MoO3 una solució prometedora per a aplicacions energètiques. En primer lloc, es van sintetitzar les nanoestructures de WO3, estudiant la influència de la temperatura de calentament després de la síntesi i l'addició de dissolvents en l'electròlit de síntesi. La temperatura òptima va ser de 600 °C, obtenint nanoestructures cristal·lines amb excel·lents propietats fotoelectroquímiques. A més, es demostra que la incorporació de dissolvents en l'electròlit de síntesi influeix significativament en les propietats de les nanoestructures, obtenint que l'addició d'un 50 % d'isopropanol en l'electròlit millora notablement les seues propietats electroquímiques. En segon lloc, es van sintetitzar nanoestructures híbrides de WO3-MoO3 afegint diferents concentracions de molibdat a l'electròlit de síntesi. La concentració de 0,1 M de molibdat va produir nanoestructures amb propietats electroquímiques superiors, destacant-les com a prometedores per al seu ús com a ànode en bateries. Les nanoestructures van ser exhaustivament caracteritzades morfològicament, estructuralment, químicament, electroquímicament i fotoelectroquímicament. Finalment, les nanoestructures amb millors propietats fotoelectroquímiques i electroquímiques s'utilizaren com a ànode en aplicacions mediambientals i energètiques, respectivament. En l'àmbit mediambiental, s'avaluà l'eficiència de les nanoestructures en la degradació de disruptors endocrins pertanyents a diferents famílies químiques, així com una mescla d'ells i la seua toxicitat. Les nanoestructures de WO3 demostraren ser efectives, aconseguint una degradació del 100 % de pesticides, parabens i fenols en menys de 4 hores. No obstant això, la tècnica no va ser eficient per a eliminar ftalats, generant productes finals més tòxics. En l'àmbit energètic, s'estudià el rendiment de les nanoestructures com a ànodes en bateries d'ió de liti, considerant també l'impacte de l'electròlit. La nanoestructura híbrida WO3-MoO3 mostrà el millor rendiment quan s'utilitzà un electròlit que combinava bis(oxalat)borat de liti (LiBOB) amb additius i dissolvents addicionals. Aquest treball ofereix una contribució significativa al desenvolupament de solucions sostenibles per a problemes mediambientals i energètics, subratllant el potencial de les nanoestructures de WO3 i WO3-MoO3. / [EN] This Doctoral Thesis focuses on the synthesis, characterization, and optimization of tungsten oxide (WO3) nanostructures and hybrid WO3-MoO3 nanostructures through electrochemical anodization. These nanostructures are used as photocatalysts for contaminant degradation and as anodes for lithium-ion batteries. WO3 stands out for its exceptional semiconductor, optical, and electrical properties. In environmental applications, WO3 nanostructures are of great interest for photoelectrocatalysis, a promising process for contaminant degradation in water. WO3 is highly effective as a photoanode due to its photostability, high electrical conductivity, and visible light absorption capacity. In the energy field, WO3 shows great potential as an anode in lithium-ion batteries because its crystalline structure allows efficient insertion and extraction of lithium ions, improving storage capacity and battery durability thanks to its electrochemical stability. To improve WO3 nanostructures, their combination with molybdenum oxide (MoO3) has been studied. Molybdenum, with chemical and structural properties similar to tungsten, facilitates effective deposition in WO3 nanostructures, adjusts the bandgap, improves conductivity, ionic diffusion, and reduces charge carrier recombination. This results in greater electrochemical efficiency, making hybrid WO3-MoO3 nanostructures a promising solution for energy applications. Firstly, WO3 nanostructures were synthesized, studying the influence of the annealing temperature and the addition of solvents to the synthesis electrolyte. The optimal temperature was 600 °C, obtaining crystalline nanostructures with excellent photoelectrochemical properties. Additionally, it was demonstrated that the incorporation of solvents in the synthesis electrolyte significantly influences the properties of the nanostructures, showing that the addition of 50 % isopropanol in the electrolyte notably improves their electrochemical properties. Secondly, hybrid WO3-MoO3 nanostructures were synthesized by adding different concentrations of molybdate to the synthesis electrolyte. The concentration of 0.1 M molybdate produced nanostructures with superior electrochemical properties, making them promising for use as anodes in batteries. The nanostructures were exhaustively characterized morphologically, structurally, chemically, electrochemically, and photoelectrochemically. Finally, the nanostructures with the best photoelectrochemical and electrochemical properties were used as anodes in environmental and energy applications, respectively. In the environmental field, the efficiency of the nanostructures in the degradation of endocrine disruptors from different chemical families, as well as their mixtures and toxicity, was evaluated. WO3 nanostructures proved to be effective, achieving 100 % degradation of pesticides, parabens, and phenols in less than 4 hours. However, the technique was not efficient in eliminating phthalates, generating more toxic final products. In the energy field, the performance of the nanostructures as anodes in lithium-ion batteries was studied, also considering the impact of the electrolyte. The hybrid WO3-MoO3 nanostructure showed the best performance when an electrolyte combining Lithium bis(oxalate)borate (LiBOB) with additional additives and solvents was used. This work offers a significant contribution to the development of sustainable solutions for environmental and energy problems, highlighting the potential of WO3 and WO3-MoO3 nanostructures. / Agradezco al Ministerio de Universidades por la ayuda predoctoral recibida para la realización de la presente Tesis Doctoral (FPU19/02466). También al Ministerio de Economía, Industria y Competitividad, por la concesión de los proyectos CTQ2016-79203-R (2016) y PID2019-105844RB-I00 (2019) en los cuales he podido participar durante la Tesis Doctoral. Además, agradezco la financiación a la Red Española de Investigación E3TECH-PLUS (RED2022- 134552-T, MICINN/AEI). / Cifre Herrando, M. (2024). Nanotecnología con WO3 y aplicaciones: Degradación fotoelectroquímica de disruptores endocrinos y ánodos avanzados para baterías de ion de litio [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/211319

Page generated in 0.0304 seconds