• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 75
  • 53
  • 15
  • 5
  • 5
  • 4
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 173
  • 57
  • 44
  • 28
  • 26
  • 25
  • 21
  • 19
  • 18
  • 18
  • 16
  • 16
  • 15
  • 15
  • 15
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
161

Structure and Properties Investigations of the La2Co1+z(Ti1-xMgx)1-zO6 Perovskite System / Struktur och Egenskapsundersökningar av La2Co1+z(Ti1-xMgx)1-zO6 Perovskit Systemet

Shafeie, Samrand January 2011 (has links)
Perovskite based materials have great potentials for various energy applications and the search for new materials for uses in SOFCs has largely been concentrated to this class of compounds. In this search, we have studied perovskite phases in the system La2Co1+z(Ti1-xMgx)1-zO6, with 0  x 0.9 and z = 0.0, 0.2, 0.4, 0.6. Crystal structures were characterized by XRD and, for selected compositions, also by NPD and SAED. They exhibit with increasing x, as well as increasing z, a progressive increase in symmetry from monoclinic to orthorhombic to rhombohedral. The main focus in this work has been on the investigation of structure-property relations for compositions with 0.0 x 0.5 and z = 0. The nominal oxidation state of Co increases for these with increasing x, from Co2+ for x = 0 to Co3+ for x = 0.5. Magnetic measurements and XANES studies showed that the average spin state of Co changes linearly with increasing x, up to x = 0.5, in accordance with varying proportions of Co with two fixed oxidation states, i.e. Co2+ and Co3+. The data suggests that the Co3+ ions have an IS spin state or a mixture of LS and HS spin states for all compositions with nominally only Co2+ and Co3+ ions, possibly with the exception of the composition with x = 0.1, 0.2 and z = 0, for which the data indicate that the spin state might be HS. The XANES data indicate furthermore that for the perovskite phases with z = 0 and x > 0.5, which in the absence of O atom vacancies contain formally Co4+, the highest oxidation state of Co is Co3+, implying that the substitution of Ti4+ by Mg2+ for x ³ 0.5 effects an oxidation of O2- ions rather than an oxidation of Co3+ ions. The thermal expansion was found to increase nearly linearly with increasing oxidation state of Co. This agrees well with findings in previous studies and is attributable to an increase in the ionic radius of Co3+ ions with increasing temperature, due to a thermal excitation from a LS to IS or LS/HS spin states. High temperature electronic conductivity measurements indicate that the electronic conductivity increases with an increase of both relative and absolute amount of Co3+. The latter can be attributed to an increase in the number of Co-O-Co connections. Additional high temperature magnetic measurements for selected samples, whose susceptibilities did not follow a Curie law behaviour up to room temperature, showed effective magnetic moments that did approach plateaus even at high temperatures (900 K). Interpretations of these data are, however, hindered by the samples losing oxygen during the applied heating-cooling cycle. The present study has shown that the investigated system is suitable for further studies, of more fundamental character, which could provide further insight of the structure-property relationships that depend on the oxidation state of Co. / Studies of cobalt based perovskites for cathode materials in solid oxide fuel cells.
162

Strukturelle Ordnung und Unordnung in binären und ternären Verbindungen des Galliums mit Ytterbium und Palladium

Giedigkeit, Rainer 27 November 2007 (has links)
Um einen besseren Zugang zum Verständnis struktureller Eigenschaften von den ternären Verbindungen des Systems Yb–Pd–Ga zu bekommen, wurden zunächst die Ordnungs- und Unordnungsbeziehungen sowie die chemische Bindung in den Kristallstrukturen binärer Pd–Ga- bzw. Yb–Ga-Verbindungen analysiert. Im Rahmen der phasenanalytischen Untersuchungen des binären Systems Yb–Ga konnte eine neue Verbindung charakterisiert werden (Ytterbiumpentagallid). Für den galliumreichen Teil des ternären Phasendiagramms Yb–Pd–Ga wurde ein isothermer Schnitt bei 600 °C erstellt (> 50 At.-% Ga). Die Homogenitätsbereiche der untersuchten Verbindungen wurden metallographisch bzw. röntgenographisch bestimmt. Die Kristallstrukturen wurden aus Röntgen-Einkristalldaten bestimmt. In den Kristallstrukturen wurden drei unterschiedliche Arten von Unordnung beobachtet (Substitutionsunordnung, Symmetrie-Brechung, Positionsunordnung). Für eine Reihe von Verbindungen des Systems Yb–Pd–Ga wurde der elektronische Zustand von Yb bestimmt. Dies gelang mit Hilfe von Messungen der magnetischen Suszeptibilität bzw. mit der Röntgen-Absorptionsnahkantenspektroskopie.
163

Self organized formation of Ge nanocrystals in multilayers

Zschintzsch-Dias, Manuel 05 June 2012 (has links) (PDF)
The aim of this work is to create a process which allows the tailored growth of Ge nanocrystals for use in photovoltic applications. The multilayer systems used here provide a reliable method to control the Ge nanocrystal size after phase separation. In this thesis, the deposition of GeOx/SiO2 and Ge:SiOx~ 2/SiO2 multilayers via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation within the GeOx and Ge:SiOx~ 2 sublayers during subsequent annealing is investigated. Mostly the focus of this work is on the determination of the proper deposition conditions for tuning the composition of the systems investigated. For the GeOx/SiO2 multilayers this involves changing the GeOx composition between elemental Ge (x = 0) and GeO2 (x = 2), whereas for the Ge:SiOx~ 2/SiO2 multilayers this involves changing the stoichiometry of the Ge:SiOx~ 2 sublayers in the vicinity of stochiometric silica (x = 2). The deposition conditions are controlled by the variation of the deposition rate, the deposition temperature and the oxygen partial pressure. A convenient process window has been found which allows the sequential deposition of GeOx/SiO2 or Ge:SiOx ~2/SiO2 without changing the oxygen partial pressure during deposition. For stoichiometry determination Rutherford back-scattering spectrometry has been applied extensively. The phase separation in the spatially confined GeOx and Ge:SiOx ~2 sublayers was investigated by X-ray absorption spectroscopy at the Ge K-edge. The Ge sub-oxides content of the as-deposited multilayers diminishes with increasing annealing temperature, showing complete phase separation at approximately 450° C for both systems (using inert N2 at ambient pressure). With the use of chemical reducing H2 in the annealing atmosphere, the temperature regime where the GeOx phase separation occurs is lowered by approximately 100 °C. At temperatures above 400° C the sublayer composition, and thus the density of the Ge nanocrystals, can be altered by making use of the reduction of GeO2 by H2. The Ge nanocrystal formation after subsequent annealing was investigated with X-ray scattering, Raman spectroscopy and electron microscopy. By these methods the existence of 2 - 5 nm Ge nanocrystals at annealing temperatures of 550 (GeOx) - 700° C (Ge:SiOx ~2) has been confirmed which is within the multilayer stability range. The technique used allows the production of extended multilayer stacks (50 periods ~ 300 nm) with very smooth interfaces (roughness ~ 0.5 nm). Thus it was possible to produce Ge nanocrystal layers with ultra-thin SiO2 separation layers (thickness ~ 1 nm) which offers interesting possibilities for charge transport via direct tunneling.
164

Self organized formation of Ge nanocrystals in multilayers

Zschintzsch-Dias, Manuel 27 April 2012 (has links)
The aim of this work is to create a process which allows the tailored growth of Ge nanocrystals for use in photovoltic applications. The multilayer systems used here provide a reliable method to control the Ge nanocrystal size after phase separation. In this thesis, the deposition of GeOx/SiO2 and Ge:SiOx~ 2/SiO2 multilayers via reactive dc magnetron sputtering and the self-ordered Ge nanocrystal formation within the GeOx and Ge:SiOx~ 2 sublayers during subsequent annealing is investigated. Mostly the focus of this work is on the determination of the proper deposition conditions for tuning the composition of the systems investigated. For the GeOx/SiO2 multilayers this involves changing the GeOx composition between elemental Ge (x = 0) and GeO2 (x = 2), whereas for the Ge:SiOx~ 2/SiO2 multilayers this involves changing the stoichiometry of the Ge:SiOx~ 2 sublayers in the vicinity of stochiometric silica (x = 2). The deposition conditions are controlled by the variation of the deposition rate, the deposition temperature and the oxygen partial pressure. A convenient process window has been found which allows the sequential deposition of GeOx/SiO2 or Ge:SiOx ~2/SiO2 without changing the oxygen partial pressure during deposition. For stoichiometry determination Rutherford back-scattering spectrometry has been applied extensively. The phase separation in the spatially confined GeOx and Ge:SiOx ~2 sublayers was investigated by X-ray absorption spectroscopy at the Ge K-edge. The Ge sub-oxides content of the as-deposited multilayers diminishes with increasing annealing temperature, showing complete phase separation at approximately 450° C for both systems (using inert N2 at ambient pressure). With the use of chemical reducing H2 in the annealing atmosphere, the temperature regime where the GeOx phase separation occurs is lowered by approximately 100 °C. At temperatures above 400° C the sublayer composition, and thus the density of the Ge nanocrystals, can be altered by making use of the reduction of GeO2 by H2. The Ge nanocrystal formation after subsequent annealing was investigated with X-ray scattering, Raman spectroscopy and electron microscopy. By these methods the existence of 2 - 5 nm Ge nanocrystals at annealing temperatures of 550 (GeOx) - 700° C (Ge:SiOx ~2) has been confirmed which is within the multilayer stability range. The technique used allows the production of extended multilayer stacks (50 periods ~ 300 nm) with very smooth interfaces (roughness ~ 0.5 nm). Thus it was possible to produce Ge nanocrystal layers with ultra-thin SiO2 separation layers (thickness ~ 1 nm) which offers interesting possibilities for charge transport via direct tunneling.:Contents 1 Introduction and motivation 1 2 Basic aspects 6 2.1 Microstructure of sub-stoichiometric oxides (SiOx, GeOx) 6 2.2 Phase transformations 9 2.3 Quantum confinement effect in nanocrystals 12 2.4 Applications of nanostructures in 3rd generation photovoltaics 17 3 Experimental setup 21 3.1 The magnetron deposition chamber 21 3.2 (Reactive) dc sputtering 22 3.3 Annealing processing 26 3.4 X-ray facilities 26 4 Analytical methods 30 4.1 Rutherford backscattering spectrometry (RBS) 30 4.2 Raman scattering 33 4.3 (Grazing incidence) X-ray diffraction (GIXRD) 35 4.4 X-ray reflectivity (XRR) 39 4.5 X-ray absorption near edge structure (XANES) 41 4.6 Transmission electron microscopy (TEM) 42 5 Properties of reactive dc magnetron sputtered Si-Ge-O (multi)layers 44 5.1 Deposition rate and film stoichiometry investigations 44 5.2 Stoichiometry dependent properties of GeOx/SiO2 multilayers 47 5.3 Lateral intercluster distance of the Ge nanocrystals in multilayers 51 6 Confined Ge nanocrystal growth in GeOx/SiO2 multilayers 54 6.1 Phase separation in GeOx single layers and GeOx/SiO2 multilayers 54 6.2 Crystallization in GeOx single layers and GeOx/SiO2 multilayers 58 6.3 Multilayer stability and smallest possible Ge nanocrystal size 60 6.4 Stacked Ge NC films with ultra thin SiO2 separation layers 66 7 Confined Ge nanocrystal growth in Ge:SiOx/SiO2 multilayers 71 7.1 Phase separation in Ge:SiOx/SiO2 multilayers 72 7.2 Crystallisation in Ge:SiOx/SiO2 multilayers 76 8 Summary and conclusions 79 List of Figures 83 List of Tables 85 Bibliography 86
165

The potential of high resolution palaeoclimate reconstruction from Arctica islandica

Foster, Laura January 2007 (has links)
The potential of Arctica islandica, a long lived marine bivalve with a lifespan of over 300 years, to reconstruct a high resolution (sub-annual) climate record is explored in this thesis. Fluctuations in trace element and isotopic data from live-collected specimens from Irvine Bay, NW Scotland are compared to instrumental (particularly temperature) data. X-ray absorption spectroscopy data demonstrate the coordination state of Sr and Mg within the shell. These are consistent with models in which Sr substitutes ideally for Ca in aragonite, and Mg is bound predominantly to organic molecules. Sr/Ca incorporation may be influenced by changes in the crystal nucleation, propagation and growth rate as well as vital effects. However any effect of seawater temperature on Sr/Ca incorporation was obscured by these other factors. Mg concentration is not a linear function of a single environmental variable or organic content within the shell, indicating that Mg uptake is biologically mediated. Ba variation shows sporadic increases (of >500% above baseline) in both shells, the timing of which is similar between the prismatic layer and umbo region. The maxima are, however, not synchronous between the two shells analysed. The controls on Ba uptake require further research, but low Ba/Ca may reflect Ba/Ca concentrations within the seawater. Aliquots taken from cod otoliths show that micromilling has negligible effect on δ¹⁸O. The range of reconstructed temperature from δ¹⁸O profiles Arctica islandica shows good agreement with the sea surface temperature data from the nearby Millport marine station to within 2.1 °C. However, both the interannual and intra-annual variation appears to be sensitive to changes in temporal resolution resulting from changes in growth rates. Modelling of δ¹⁸O highlights dependence on changes in temporal resolution of the sampling, in addition to temperature and salinity. Results from the radiocarbon pilot study show that Arctica islandica is a suitable archive for changes in radiocarbon associated with anthropogenic ¹⁴C fluxes.
166

Etude structurale, distribution cationique et état d'oxydation dans des nanoparticules magnétiques de ferrite du type coeur-coquille / Structural study, cationic distribution and oxidation state in magnetic score-shell nanoparticules based on ferrites

Martins Da Silva, Fernando Henrique 19 April 2016 (has links)
Nous explorons les propriétés structurales de nanoparticules cœur-coquille, avec un cœur de ferrite MFe2O4 (M = Mn et Co) ou de ferrite mixte Mn-Zn. Ces nanoparticules sont obtenues par co-précipitation hydrothermique et sont dispersées en milieu acide par un traitement de surface empirique au nitrate ferrique, protégeant les nanograins contre une dissociation chimique par une fine couche superficielle de maghémite. La fraction volumique du cœur, de la coquille et l’épaisseur de la couche superficielle sont déterminées par dosage chimique. Nous suivons les changements structurels des nanocristaux de MnFe2O4 et CoFe2O4, pendant la durée du traitement de surface, tandis que ceux des nanoparticules de ferrite mixte Mn-Zn sont étudiés en fonction de leur teneur en zinc. Diffraction de rayons-x et de neutrons sont utilisées pour déterminer les paramètres de structure, en particulier la diffusion de cations dans les interstices de la ferrite spinelle. Pour un haut degré de fiabilité, des raffinements de Rietveld sont réalisés. Les distances inter-atomiques, l’état d’oxydation moyen et le degré d’inversion sont déterminés par spectroscopie d’absorption des rayons-x. Morphologie, cristallinité et taille des nanoparticules de ferrite mixte Mn-Zn sont étudiées par TEM/HRTEM et par diffraction des électrons. Dans les nanoparticules MnFe2O4 et de ferrite mixte Mn-Zn, on constate la présence de cations Mn3+ en environnement octaédrique, responsables de déformations anisotropes (effet Jahn-Teller). Le degré d’inversion obtenu ici diffère de celui du bulk en raison de la réduction à l’échelle nanométrique et de l'augmentation du rapport surface/volume pendant le processus de synthèse. / Structural properties of core-shell ferrite nanoparticles MFe2O4 (M = Mn and Co) and Mn-Zn ferrite nanoparticles are here investigated. The nanoparticles are synthesized by hydrothermal co-precipitation and are dispersed in acid medium thanks to an empirical surface treatment by ferric nitrate, which prevents the chemical dissociation by a thin maghemite layer incorporated at the surface of the nano-grains. Chemical titrations allow us to calculate volume fractions of core and shell, as well as the surface-layer thickness. Structural changes induced by the surface treatment are followed as a function of treatment duration in MnFe2O4 and CoFe2O4 nanocrystals. Whereas structural changes in Mn-Zn ferrite nanoparticles are investigated as a function of zinc content. X-ray and Neutron diffractions are used to determine the structural parameters, in particular cationic distribution in the spinel ferrite sites. Precise structural information with high degree of reliability is obtained by Rietveld refinements. To investigate the local structure of these materials, X-ray Absorption Spectroscopy measurements are performed, allowing determining interatomic distances, mean oxidation state and inversion degree. Morphology, crystallinity and size of mixed-ferrite nanoparticles are investigated by TEM/HRTEM and electron diffraction. In Mn-Zn ferrite nanoparticles, the presence of Mn3+ in octahedral environment is responsible for anisotropic distortions, known as Jahn-Teller effect. The inversion degree obtained in this work diverges from the bulk values due to the reduction to nanoscale and to the increase of the surface/volume ratio, associated to the synthesis process.
167

Amplification optique dans des verres borophosphate de niobium et tellurite dopés aux ions de terres rares présentant un indice optique non linéaire élevé.

Petit, Laëticia 03 October 2002 (has links) (PDF)
Ce travail s'insère, non seulement, dans la compréhension de la relation entre la résonance des terres rares et l'indice non linéaire, mais aussi, dans la recherche de nouveaux matériaux dopés terres rares pour la commutation optique. L'introduction d'oxyde d'erbium dans des verres tellurites et borophosphates de niobium, présentant intrinsèquement une non linéarité optique de 3ème ordre élevée, a été étudiée. Il a été montré qu'il est possible de contrôler le gain et la non linéarité de matériaux dopés grâce à la corrélation établie entre l'analyse structurale et l'étude des propriétés spectroscopiques, de gain et de non linéarité qui dépendent des probabilités de transition 4f –4f. L'ensemble des résultats permet de mieux comprendre et prédire la variation de l'indice non linéaire d'un matériau amplificateur.
168

CARACTERISATION DES OXYDES DE MANGANESE ET USAGE DES PIGMENTS NOIRS AU PALEOLITHIQUE SUPERIEUR

Chalmin, Emilie 14 November 2003 (has links) (PDF)
La plupart des peintures pariétales du Paléolithique supérieur sont rouges (hématite naturelle pure ou en mélange avec des argiles) ou noirs (charbon ou oxyde de manganèse). Ces pigments ont été préparés par broyage, mélange et peut-être chauffage. Les analyses physico-chimiques permettent de déterminer la nature du matériau, son mode de préparation et éventuellement sa provenance.<br />Les diverses phases d'oxyde de manganèse se distinguent par leur composition chimique, leur structure et l'état de valence de l'ion Mn (II, III, IV). La transformation structurale des oxydes lors d'un traitement thermique a été suivie par MET. Ce travail nous a conduit à déterminer des stigmates caractéristiques d'un chauffage, comme des pores dans la bixbyite (Mn2O3).<br />L'analyse d'échantillons archéologiques provenant de France et d'Espagne a permis d'évaluer le niveau technique des Préhistoriques. La matière picturale est constituée de pigment brut ou mélangé. Cependant aucun pigment noir chauffé n'a été identifié dans les prélèvements analysés.
169

New Developments in Nitridometalates and Cyanamides: Chemical, Structural and Physical Properties

Bendyna, Joanna 30 October 2009 (has links)
In the course of these investigations altogether 18 different compounds have been synthesized and their chemical, structural and physical properties were characterized (XRD, XANES, IR, Raman spectrum, magnetic susceptibility, electrical resistivity, low temperature and TG/DTA). Up to now only nitridonickelates and nitridocuprates were known to exhibit exclusively low oxidation states of the transition metals between 0 and +2. In this work it has been presented that also nitridocobaltates belong to this group. We have proved that “Ca3CoIIIN3” do not exist and the real chemical formula can be regarded as Ca5[CoIN2]2. In the thesis another seven new nitridocobaltates(I) have been described, these add to four already known structures. Among novel phases only Ba9Ca[Co2N3]3 may indicate higher valency state for cobalt with the [Co2N3]5- complexes. The XANES data supporting CoII state by comparison with other compounds possess this oxidation state. The crystal structure of Ba9Ca[Co2N3]3 is related to the perovskite type structure. The remarkable structural features of Sr2[CoN2]0.72[CN2]0.28 ≈ Sr6[CoN2]2[CN2] nitridocobaltates [CoIN2]5- ions partially substituted by carbodiimides [N=C=N]2- ions. Up to now in the crystal structure no indications for a homogeneity range could be observed. Both crystal structures of (Sr6N)[CoN2][CN2]2 and Sr6[CoN2]2[CN2] encompass nitridocobaltate [CoN2]5- and carbodiimide [N=C=N]2- ions. In the structures distorted rocksalt motif based on Sr-N partial structure can be distinguished. Up to now in the system AE-Fe-N-(C) only four crystal structures were reported and in the thesis three new were refined Sr8[FeIIIN3]2[FeIIN2], Sr3[FeN3] and (Sr6N)[FeN2][CN2]2 and their physical properties were characterized. The system AE-Mn-N-(C) via this work was extended by Sr8[MnN3]3 and Sr4[MnN3][CN2]. Up to date the only nitridometalate containing different transition elements is Ba[Ni1-xCuxN]. In this work one more mixed nitridometalate has been described Sr8[MnIIIN3]2[FeIIN2]. The crystal structure of Sr4[MnN3][CN2] revealed some weak diffuse scattering lines. The general formula of Sr4[MnN3][CN2] can be written as Sr4[Mn0.96N2.90][C0.96N2] to emphasize possible homogeneity range. Any explanation of the phenomena and establishment of possible homogeneity range are still a challenge. The structures of Sr8[MIIIN3]2[FeIIN2] (M = Mn, Fe) are related to Sr8[MnIVN3]2[MnIIIN3]. All these compounds are first mixed-valency compounds for respective systems and exhibit close relation to crystal structures of Sr3[MN3] (M = Mn, Fe). From the XANES data alike behaviour of all structures containing Mn was observed. Due to some possible degree of Mn/Fe mixing in the crystal structure of Sr8[MIIIN3]2[FeIIN2] the chemical formula might be written as Sr8[MnN3]2-x[FeN3]x[FeN2]. This needs to be investigate in details. Up to now in the literature the only crystallographic data of nitridometalates contain [NCN]2- ions include two compounds. In this work four novel nitridometalate carbodiimides and cyanamides Sr4[MnN3][CN2], (Sr6N)[MN2][CN2]2 (M = Co, Fe) and Sr6[CoN2]2[CN2] have been synthesized. Predominant magnetic properties in the investigated nitridometalates are connected to some antiferromagnetic M-M interactions supported by AFM ordering. The electrical resistivity often shows at some semi-conducting character of these compounds. XANES spectroscopy provided many useful data about valency states of the transition elements, coordination environment around absorbing atoms and electronic structure. The influence of different parameters on the transition metals K-edges was studied in details. IR and Raman give general data about [NCN]2- ions.
170

Structure, Stability, Vibrational, Thermodynamic, And Catalytic Properties Of Metal Nanostructures: Size, Shape, Support, And Adsorbate Effects

Behafarid, Farzad 01 January 2012 (has links)
Recent advances in nanoscience and technology have provided the scientific community with new exciting opportunities to rationally design and fabricate materials at the nanometer scale with drastically different properties as compared to their bulk counterparts. A variety of challenges related to nanoparticle (NP) synthesis and materials characterization have been tackled , allowing us to make more homogenous, well defined, size- and shape-selected NPs, and to probe deeper and more comprehensively into their distinct properties. In this dissertation, a variety of phenomena relevant to nanosized materials are investigated, including the thermal stability of NPs and coarsening phenomena in different environments, the experimental determination of NP shapes, gaining insight into NP-support interactions, epitaxial relationships, and unusual thermodynamic and electronic properties of NPs, including the effect of adsorbates on the electron density of states of small clusters, and the chemical, and structural evolution of NPs under reaction conditions. In chapter 2, a general description of different characterization tools that are used in this dissertation is provided. In chapter 3, the details of two different methods used for NP synthesis, namely inverse micelle encapsulation and physical vapor deposition (PVD) are described. Chapter 4 describes the thermal stability and coarsening behavior of Pt NPs supported on TiO2(110) and γ-Al2O3 as a function of the synthesis method, support pretreatment, and annealing environment. For the Pt/TiO2(110) system, micellesynthesized NPs showed remarkable stability against coarsening for annealing temperatures up to 1060°C in vacuum, in contrast to PVD-grown NPs. When comparing v different annealing environments (H2, O2, H2O), Pt NPs on γ-Al2O3 annealed in O2 were found to be the least affected by coarsening, followed by those heated in H2O vapor. The largest NP growth was observed for the sample annealed in H2. The role of the PtOx species formed under oxidizing conditions will be discussed. In chapter 5, the shape of Pt and Au NPs and their epitaxial relationship with the TiO2(110) support was extracted from scanning tunneling microscopy (STM) measurements. Three main categories of NP shapes were identified, and through shape modeling, the contribution of facets with different orientations was obtained as a function of the number of atoms in each NP. It was also shown that the micellesynthesized Pt and Au NPs have an epitaxial relationship with the support, which is evident from the fact that they always have one symmetry axis parallel to TiO2(110) atomic rows in [001] directions. Chapter 6 describes how the presence of NPs on TiO2(110) surface affects its reconstruction upon high temperature annealing in vacuum. In contrast to NP-free TiO2(110) substrates, long and narrow TiO2 stripes are observed for Pt NP-decorated surfaces. This phenomenon is explained based on the stabilization of TiO2, induced by Pt NPs, which hinders the desorption of oxygen atoms in TiO2 to vacuum. In chapter 7, a systematic investigation of the thermodynamic properties of γ- Al2O3-supported Pt NPs and their evolution with decreasing NP size is presented. A combination of in situ extended x-ray absorption fine structure spectroscopy (EXAFS), ex situ transmission electron microscopy (TEM) measurements, and NP shape modeling is used to obtain the NPs shape, thermal expansion coefficient, and Debye vi temperature. The unusual thermodynamic behavior of these NPs such as their negative thermal expansion and enhanced Debye temperature are discussed in detail. Chapter 8 presents an investigation of the electronic properties of size-controlled γ-Al2O3-supported Pt NPs and their evolution with decreasing NP size and adsorbate (H2) coverage. The hydrogen coverage of Pt NPs at different temperatures was estimated based on XANES data and was found to be influenced by the NP size, and shape. In addition, correlations between the shift in the center of the unoccupied d-band density of states (theory) and energy shifts of the XANES spectra (experiment) upon hydrogen chemisorption as well as upon modification of the NP structure were established. Chapter 9 is dedicated to an operando study, describing the evolution of the structure and oxidation state of ZrO2-supported Pd nanocatalysts during the in-situ selective reduction of NO in H2 via EXAFS and XANES measurements.

Page generated in 0.0408 seconds