• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 24
  • 11
  • 8
  • 4
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 85
  • 72
  • 15
  • 15
  • 14
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Physical and Mechanical Properties of Chicken Feather Materials

Kock, Jeffrey Wayne 12 April 2006 (has links)
Materials derived from chicken feathers could be used advantageously in composite building material applications. Such applications could potentially consume the five billion pounds of feathers produced annually as a by-product of the U.S. poultry industry. To aid the development of successful applications for chicken feather materials (CFM), the physical and mechanical properties of processed CFM have been characterized in this research. Results describing the moisture content, aspect ratio, apparent specific gravity, chemical durability, Youngs modulus, and tensile strength for processed CFM and specifically their fiber and quill components are presented herein. Processed chicken feather fiber and quill samples were found to have similar moisture contents in the range of 16 - 20%. The aspect ratio (i.e., length/diameter) of samples were found to be in the range of 30 - 50, and the fiber material was found to have a larger aspect ratio than the quill material. A comparison with values in the literature suggests that different processing regimes produce CFM with higher aspect ratios. Samples were found to have apparent specific gravities in the range of 0.7 - 1.2, with the fiber material having a higher apparent specific gravity than the quill material. A comparison with values in the literature suggests that apparent specific gravity results vary with fiber length and approach the value for keratin as fiber length decreases and internal voids become increasingly accessible. Chemical durability results showed that CFM rapidly degrade in highly alkaline (pH=12.4) environments and are, thus, likely incompatible with cement-based materials without special treatment. The Youngs modulus of processed chicken feather materials was found to be in the range of 3 - greater than 50 GPa and, thus, comparable to the Youngs moduli of other natural fibers. The tensile strength of oven-dried samples was found to be in the range of 10 - greater than 70 MPa. In agreement with results in the literature, the fiber material was found to have a greater tensile strength than the quill material. Finally, a simplified approach for comparing the effective Youngs moduli and effective tensile strengths of various processed CFM samples was introduced.
52

Methods for characterizing mechanical properties of wood cell walls via nanoindentation

Meng, Yujie 01 August 2010 (has links)
Nanoindentation is a method of contacting a material whose mechanical properties are unknown with another material whose properties are known. Nanoindentation has the advantage of being able to probe a material’s microstructure while being sensitive enough to detect variations in mechanical properties. However, nanoindentation has some limitations as a testing technique due to the specific formation and structure of some biomaterials. The main objective of this research is to identify any factors that influence the nanoindentation measurement of wood cell walls (a typical biomaterial).The function of the embedding media in describing the properties of wood cells is poorly understood. This research demonstrated that Spurr’s resin, when diffused into wood cell wall during the embedding process, enhanced both the Young’s modulus and hardness of the cell walls. A substitute sample preparation method was developed to avoid this resin penetration into cell wall and was determined to be both effective and easy to perform.The nanoindentation procedure involves the application of a monitor and an analysis of the load-displacement behavior and the response in the material. It can be anticipated that various ways of loading, including the maximum force, the loading time, and others, will cause a variety of mechanical properties. Thus, our second aim was to study the effect of load function on nanoindentation measurement in wood. It was discovered that a fast loading rate contributed to greater contact depth and lower hardness. Increasing the holding time decreased measured values for both Young’s modulus and hardness. However, no significant difference of Young’s modulus and hardness among three loading functions with different unloading rates.The final part of the research was to study the effect of moisture content on the micromechanical properties of wood material. Several nanoindentations were performed on the wood cell wall while varying the moisture content of wood. Results indicated that both the Young’s modulus and hardness decreased significantly with an increase of moisture content. A rheology model was developed to describe the nanoindentation behaviors of wood cell walls at different moisture contents. Five parameters were extracted from Burger’s model, and the relationships among those five parameters were quantified.
53

Essays on Mathematical Economics

Ninjbat, Uuganbaatar January 2012 (has links)
<p>Diss. Stockholm :  Stockholm School of Economics, 2012. Introduction together with 6 papers</p>
54

CYCLIC LOAD RESISTANCE AND DYNAMIC PROPERTIES OF SELECTED SOIL FROM SOUTHERN ILLINOIS USING UNDISTURBED AND REMOLDED SAMPLES

Pokharel, Janak 01 December 2014 (has links)
The liquefaction resistance of undisturbed soil samples collected from a selected location in Carbondale, Southern Illinois was evaluated by conducting cyclic triaxial tests. Index property tests were carried out on the sample for identification and classification of the soil. Cyclic triaxial tests were conducted on undisturbed sample after saturation, undisturbed sample at natural water content and remolded samples prepared by compaction in the lab. The results were used to evaluate the effect of saturation and remolding on liquefaction resistance of the local soil. Effect of effective confining pressure on dynamic properties of soil (Young's Modulus and Damping ratio) was also studied. Forty five stress controlled cyclic triaxial tests were performed. Three different values of initial effective confining pressure (5 psi, 10 psi and 15 psi) were used and cyclic stress ratio was varied from 0.1 to 0.5 in order to apply different cyclic shear stresses. The results show that the cyclic load resistance of soil decreases as a result of remolding. Saturated undisturbed samples show increase in resistance to liquefaction with increase in initial confining pressure. Remolded samples were prepared by compaction in the lab keeping unit weight and water content equal to that of undisturbed samples. Remolded samples show increase in liquefaction resistance with increase in confining pressure. Undisturbed samples at natural water content show increase in resistance to develop axial strain with increase in confining pressure. Both the rate of excess pressure development and axial strain development increase significantly as a result of remolding. While investigating the effect of saturation of undisturbed samples on liquefaction resistance of soil, interesting observations were made. The excess pressure buildup rate was faster in case of saturated undisturbed samples compared to that in samples with natural water content. On the other hand, rate of strain development was significantly high in case of sample with natural water content compared to that in saturated sample. Also, results obtained from cyclic triaxial tests on saturated undisturbed samples were compared with results obtained from similar tests on Ottawa Sand (Lama 2014) sample. The comparison shows that the saturated undisturbed soil samples of the selected local soil have very high resistance to liquefaction both in terms of initial liquefaction and development of 2.5% and 5% axial strain. Modulus of Elasticity and damping ratio were studied as important dynamic properties of soil. Young's Modulus was observed to decrease significantly at higher strain levels for all three types of samples. Young's modulus increased with increase in effective confining pressure, the effect of confining pressure being large at low strain level and almost insignificant at higher strain level. Damping ratio was highest in undisturbed sample at natural water content and smallest in remolded sample and damping ratio for saturated undisturbed sample falls in between. The damping ratio did not show any definite correlation with strain and confining pressure at lower strain level. But, for strain higher than 1% double amplitude axial strain, damping ratio significantly decreases with increase in strain. Damping ratio increases with increase in confining pressure as observed at high strain for all samples.
55

Měření hydrofility a hydrofobity materiálů / Material hydrophility and hydrophobicity measurements

SEDLÁK, Jiří January 2013 (has links)
The aim of this thesis is to find out using a method based on the size of the contact angle as changes over time surface free energy density polyethylene. Measured samples of discharges were adjusted by varying plasma and increased its surface tension. The theoretical part deals with the surface tension, contact angle and the Young's equation, which describes the relationship between wetting angle and energy at the interface states of matter. This work also mentions the ways in which the measurement is made. In the practical part of the thesis there is described not only the process of measuring, but also the own experiments and their results.
56

Micromechanics of microfibrillated cellulose reinforced poly(lactic acid) composites using Raman spectroscopy

Tanpichai, Supachok January 2012 (has links)
Microfibrillated cellulose (MFC) is an alternative material that has been widely studied to enhance the mechanical properties of a polymer matrix due to a number of perceived advantages over traditional plant fibre forms. Mechanical properties of MFC networks were found to depend on parameters such as the modulus of fibrils, bonding strength, porosity, degree of crystallinity, contact area of fibrils and possibly the modulus of the cellulose crystals of the raw materials (cellulose I or II). Even though the longer processing time used to produce MFC was found to yield networks with fewer fibre aggregates, finer fibrils and higher density, some properties, for instance thermal stability and degree of crystallinity, decreased due to the degradation of fibrils caused by the harsh treatment. The aims of this thesis were to assess the mechanical properties and interfaces of composites produced using of a range of MFC materials, prepared using different treatments and from different sources. Raman spectroscopy has been used to detect the molecular orientation of cellulose chains within an MFC network, and to monitor the deformation micromechanics of MFC networks. The Raman band initially located at ~1095 cm-1 obtained from MFC networks was observed to shift towards a lower wavenumber position upon the application of tensile deformation. The intensity of this band as a function of rotation angle of MFC networks was similar, indicating randomly oriented networks of fibrils. From the Raman band shift rate data, the effective moduli of MFC single fibrils produced from pulp were estimated to be in the range of 29-41 GPa. Poly(lactic acid) (PLA) composites reinforced with MFC networks were prepared using compression moulding. Enhanced mechanical properties of MFC reinforced composites were reported, compared to neat PLA films. The mechanical properties of these composites were found to mainly depend on the interaction of the PLA matrix and the reinforcement phase. The mechanical properties of the composites reinforced with dense networks were shown to be dominated by the network properties (fibril-fibril interactions), while matrix-fibril interactions played a major role where more opened networks were used to reinforce a polymer matrix. The penetration of the matrix into the network was found to depend on the pore sizes, fibre width and porosity within the network. It was found that the matrix easily penetrates into the network with a range of mean fibril dimensions, rather than for networks with only fine fibrils present. The stress-transfer process in MFC reinforced PLA composites was monitored using Raman spectroscopy. Greater Raman band shift rates with respect to tensile deformation for the composites were observed compared to pure MFC networks. This indicates that stress is transferred from the PLA matrix to MFC fibrils, supporting the enhancement of the mechanical properties of the composites.
57

Utvärdering av kalkstens egenskaper med laboratorie- och fältmetoder.

Rashid Ahmad, Haval, Tüdes, Serafettin January 2011 (has links)
A pavement construction designed to cope with the different type of traffic loads; it is exposed to and at the same time it can resist the effect of the climate. A road structure consists of sub- and superstructure which is divided by a boundary known as terrace. During the construction of unbound layers (base course and sub-base course) in the superstructure, it is always ensured that the material meet the requirements for bearing capacity and the degree of compaction. These parameters are controlled by various laboratory tests and control methods. To obtain increased knowledge of the material and improve the quality of the compaction in the field, it is necessary to perform laboratory tests in order to determine material properties. A base course material 0/ 32 mm limestone from Gotland (Hejdeby) was investigated in this study. To determine properties of the material various laboratory tests such as proctor compaction test, Micro-Deval, Los Angeles, and grain distribution curve are conducted. To investigate how grain size distribution affects technical properties of the material, the 0/32 mm material was modified with two different samples; grain size distribution of 2/32 mm excluding superior material content, and 0+/32 mm with enhanced superior material content. The purpose of this study was to examine changes in material behavior during proctor compaction. Two aspects of changes in material behavior were emphasized in this study; the optimal water content and maximum dry density, as well as changes of both. As a reference for the limestone features, a traditional 0/32 mm tonalite material (granite) from Vällstaverket was used relating to proctor investigation. Material's resistance to abrasion and fragmentation was investigated by two methods: Micro-Deval and Los Angeles. The results were compared with other rock materials. Furthermore the bearing capacity of the material was verified by examination of the Young's modulus and degree of compaction, as well as properties of water content and dry density, at three trial areas on Gotland. This is performed with various methods such as static plate loading test, light weight deflectometer, density gauge/SDG200, and water/sand volume meter measurement test. By comparing results from different methods of measurement, it may indicate a relationship between these. Test area 3 consists of two smaller test areas which have different water content. The bearing capacity (Young's modulus) and the degree of compaction were measured after each roller passage. Different relationships were obtained between the amount of roller overpass, with Young's modulus of material; as well as degree of compaction. It was found in this study that limestone from Gotland (Hejdeby) maintain its position as construction material for the unbound layers of the road. The result from static plate load which indicated high E V2 values (Young's modulus) was obtained from the field, and it suggests that a fine bearing capacity can be achieved in the use of limestone.
58

Mechanical Deformation and Adhesion of Cells in Model Capillaries

Choi, Young Eun January 2011 (has links)
No description available.
59

The Effects of Early-Age Stress on the Elastic and Viscoelastic Behavior of Cement Paste

Galitz, Christopher Lee 28 October 2015 (has links)
The viscoelastic behavior of concrete, nearly completely attributable to changes in properties in the cement paste, is an ongoing area of research with the objective of avoiding unpredictable response and potentially failure of concrete structures. This research explores the elastic and viscoelastic response in cement paste beams using relaxation testing, with and without strain reversals in the load history. It was seen that strain reversal imparts significant changes in mechanical response, retarding load relaxation. Companion beams were tested for chemical composition at varying depths in the beam section and the results were compared to those of control specimens not subject to stress. Results indicate significant variations in composition implying that stress accelerates the hydration process. The reasons behind the acceleration are discussed and incorporated into a preliminary solidification-dissolution model for beam relaxation. The model, though in need of improvement through further research, shows promise in potentially predicting relaxation in cement paste and by extension, in concrete structures. / Ph. D.
60

Estudos de solos tropicais para uso em pavimentação a partir de ensaios triaxiais estáticos / Study of tropical soils for use in pavement through static compression test

Dias, Idalíria de Moraes 08 August 2007 (has links)
O presente trabalho discute comparativamente o comportamento mecânico de solos lateríticos e não lateríticos para uso em pavimentação. Para tanto foram ensaiados 3 pares de solos, sendo cada par constituído por solos de curvas granulométricas semelhantes, mesma classificação HRB e comportamentos distintos quanto à laterização. Foram realizados ensaios triaxiais convencionais do tipo CD saturado e não saturado sem controle de sucção e ensaios de compressão simples. A partir dos resultados dos ensaios foram modeladas as deformações elásticas em função das tensões de confinamento e determinadas as envoltórias de ruptura de Mohr-Coulomb. Concluiu-se que a maior resistência dos solos lateríticos está representada na componente coesão da envoltória de Mohr-Coulomb e que esta é mobilizada praticamente ao máximo desde o início em um ensaio triaxial. A diferença de resistência entre os ensaios saturados e não saturados também se mostrou na coesão, com a soma nesta da componente coesão aparente, fruto da sucção. O ângulo de atrito mostrou-se constante para as duas gêneses, tanto para a condição saturada como para a condição não saturada. Os solos lateríticos apresentam rigidez maior que os não lateríticos, tanto na condição saturada como na condição não saturada. Para os níveis de tensão de confinamento utilizados, a rigidez dos solos, de ambas as gêneses, na condição saturada, diminui com o aumento da tensão confinante. Também se observou que a ação da sucção existente nos ensaios não saturados proporciona, para ambas as gêneses, uma mudança da sensibilidade da rigidez ao aumento da tensão confinante. / The present paper discusses the mechanical behavior of lateritic and no-lateritic soils for use in pavement. To attain that goal, 3 pair soils were rehearsed, being each pair constituted by soils of similar granulometric curves, same HRB classification and different genesis. The experimental program was constituted of static triaxial compression test of the type saturated CD and of the type unsaturated without suction control and unconfined compression strength test. With the results of the tests, the elastic strains were modeled in function of the confinement stresses and the rupture paths of Mohr-Coulomb were determined. The analysis that the shear strength of the lateritic soils is greater than no-lateritic soil because of the cohesion. Since the begin it, the cohesion is mobilized practically to the maximum for both soils. The difference of shear strength between the saturated and unsaturated tests it is also cohesion, with the sum in that component of the cohesion apparent produced for suction. The angle of internal friction is constant for the two genesis as much for the saturated test as for the unsaturated test. The lateritic soils present greater stiffness than the no-lateritic soils, as much for saturated test as for unsaturated test. For the levels of confinement stresses used, in the saturated condition the stiffness of the soils decreases with the increase of the confinement stresses of both genesis. In addition, it was observed that the suction existent in the unsaturated testing produce a change of the sensibility of the soils stiffness to the increase of the confinement stress for both genesis.

Page generated in 0.06 seconds