• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 10
  • 8
  • 1
  • Tagged with
  • 19
  • 10
  • 9
  • 7
  • 5
  • 5
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Über die Pythagoraszahl von Funktionenkörpern

Schmaus, Robert. January 2001 (has links)
Konstanz, Univ., Diplomarb., 2001.
12

Universality and Hypertranscendence of Zeta-Functions / Universalität und Hypertranszendenz von Zetafunktionen

Sourmelidis, Athanasios January 2020 (has links) (PDF)
The starting point of the thesis is the {\it universality} property of the Riemann Zeta-function $\zeta(s)$ which was proved by Voronin in 1975: {\it Given a positive number $\varepsilon>0$ and an analytic non-vanishing function $f$ defined on a compact subset $\mathcal{K}$ of the strip $\left\{s\in\mathbb{C}:1/2 < \Re s< 1\right\}$ with connected complement, there exists a real number $\tau$ such that \begin{align}\label{continuous} \max\limits_{s\in \mathcal{K}}|\zeta(s+i\tau)-f(s)|<\varepsilon. \end{align} } In 1980, Reich proved a discrete analogue of Voronin’s theorem, also known as {\it discrete universality theorem} for $\zeta(s)$: {\it If $\mathcal{K}$, $f$ and $\varepsilon$ are as before, then \begin{align}\label{discretee} \liminf\limits_{N\to\infty}\dfrac{1}{N}\sharp\left\{1\leq n\leq N:\max\limits_{s\in \mathcal{K}}|\zeta(s+i\Delta n)-f(s)|<\varepsilon\right\}>0, \end{align} where $\Delta$ is an arbitrary but fixed positive number. } We aim at developing a theory which can be applied to prove the majority of all so far existing discrete universality theorems in the case of Dirichlet $L$-functions $L(s,\chi)$ and Hurwitz zeta-functions $\zeta(s;\alpha)$, where $\chi$ is a Dirichlet character and $\alpha\in(0,1]$, respectively. Both of the aforementioned classes of functions are generalizations of $\zeta(s)$, since $\zeta(s)=L(s,\chi_0)=\zeta(s;1)$, where $\chi_0$ is the principal Dirichlet character mod 1. Amongst others, we prove statement (2) where instead of $\zeta(s)$ we have $L(s,\chi)$ for some Dirichlet character $\chi$ or $\zeta(s;\alpha)$ for some transcendental or rational number $\alpha\in(0,1]$, and instead of $(\Delta n)_{n\in\mathbb{N}}$ we can have: \begin{enumerate} \item \textit{Beatty sequences,} \item \textit{sequences of ordinates of $c$-points of zeta-functions from the Selberg class,} \item \textit{sequences which are generated by polynomials.} \end{enumerate} In all the preceding cases, the notion of {\it uniformly distributed sequences} plays an important role and we draw attention to it wherever we can. Moreover, for the case of polynomials, we employ more advanced techniques from Analytic Number Theory such as bounds of exponential sums and zero-density estimates for Dirichlet $L$-functions. This will allow us to prove the existence of discrete second moments of $L(s,\chi)$ and $\zeta(s;\alpha)$ on the left of the vertical line $1+i\mathbb{R}$, with respect to polynomials. In the case of the Hurwitz Zeta-function $\zeta(s;\alpha)$, where $\alpha$ is transcendental or rational but not equal to $1/2$ or 1, the target function $f$ in (1) or (2), where $\zeta(\cdot)$ is replaced by $\zeta(\cdot;\alpha)$, is also allowed to have zeros. Until recently there was no result regarding the universality of $\zeta(s;\alpha)$ in the literature whenever $\alpha$ is an algebraic irrational. In the second half of the thesis, we prove that a weak version of statement \eqref{continuous} for $\zeta(s;\alpha)$ holds for all but finitely many algebraic irrational $\alpha$ in $[A,1]$, where $A\in(0,1]$ is an arbitrary but fixed real number. Lastly, we prove that the ordinary Dirichlet series $\zeta(s;f)=\sum_{n\geq1}f(n)n^{-s}$ and $\zeta_\alpha(s)=\sum_{n\geq1}\lfloor P(\alpha n+\beta)\rfloor^{-s}$ are hypertranscendental, where $f:\mathbb{N}\to\mathbb{C}$ is a {\it Besicovitch almost periodic arithmetical function}, $\alpha,\beta>0$ are such that $\lfloor\alpha+\beta\rfloor>1$ and $P\in\mathbb{Z}[X]$ is such that $P(\mathbb{N})\subseteq\mathbb{N}$. / Der Ausgangspunkt dieser Dissertation ist die folgende {\it Universalit\"atseigenschaft} der Riemannschen Zetafunktion $\zeta(s)$, die von Voronin 1975 nachgewiesen wurde: {\it Zu gegebenem $\varepsilon>0$ und einer analytischen nullstellenfreien Funktion $f$, die auf einer kompakten Teilmenge $\mathcal{K}$ des Streifens $\left\{s\in\mathbb{C}:1/2 < \Re s< 1\right\}$ mit zusammenh\"angendem Komplement definiert ist, existiert eine reelle Zahl $\tau$, so dass \begin{align}\label{continuouus} \max\limits_{s\in \mathcal{K}}|\zeta(s+i\tau)-f(s)|<\varepsilon.\tag*{(1)} \end{align} } Im Jahr 1980 bewies Reich folgendes diskrete Analogon des Voroninschen Satzes, welches auch als {\it diskretes Universalit\"atstheorem} f\"ur $\zeta(s)$ bekannt ist: {\it Sind $\mathcal{K}$, $f$ und $\varepsilon$ wie oben, so gilt \begin{align}\label{discreteeee} \liminf\limits_{N\to\infty}\dfrac{1}{N}\sharp\left\{1\leq n\leq N:\max\limits_{s\in \mathcal{K}}|\zeta(s+i\Delta n)-f(s)|<\varepsilon\right\}>0,\tag*{(2)} \end{align} wobei $\Delta$ eine beliebige, aber fest gew\"ahlte positive reelle Zahl bezeichnet. } Unser Ziel ist die Entwicklung einer Theorie, welche die Mehrheit der bislang bewiesenen diskreten Universalit\"atstheoreme im Fall Dirichletscher $L$-Funktionen $L(s,\chi)$ und Hurwitzscher Zetafunktionen $\zeta(s;\alpha)$ (wobei $\chi$ ein Dirichlet-Charakter ist und $\alpha\in(0,1]$) umfasst. Beide genannten Funktionenklassen verallgemeinern $\zeta(s)$, denn $\zeta(s)=L(s,\chi_0)=\zeta(s;1)$, wobei $\chi_0$ der Hauptcharakter modulo 1 ist. Neben anderen Resultaten beweisen wir Aussage (2) mit $L(s,\chi)$ f\"ur einen beliebigen Dirichlet-Charakter $\chi$ bzw. $\zeta(s;\alpha)$ f\"ur ein transzendentes oder rationales $\alpha\in(0,1]$ anstelle von $\zeta(s)$ sowie $(\Delta n)_{n\in\mathbb{N}}$ ersetzt durch eine der nachstehenden Folgen: \begin{enumerate} \item \textit{Beatty-Folgen,} \item \textit{Folgen von Imagin\"arteilen der $c$-Punkte einer beliebigen Zetafunktion der Selbergklasse,} \item \textit{Folgen, die durch ein Polynom generiert werden.} \end{enumerate} In all diesen F\"allen spielt der Begriff einer {\it gleichverteilten Folge} eine wichtige Rolle, und wir schenken diesem Aspekt besondere Beachtung im Folgenden. Speziell f\"ur den Fall der Polynome benutzen wir weitere fortgeschrittene Techniken der Analytischen Zahlentheorie, wie besipielsweise Schranken f\"ur Exponentialsummen und Nullstellen-Dichtigkeitsabsch\"atzungen f\"ur Dirichletsche $L$-Funktionen. Dies erlaubt uns, die Existenz gewisser diskreter quadratischer Momente f\"ur $L(s,\chi)$ und $\zeta(s;\alpha)$ links der vertikalen Geraden $1+i\mathbb{R}$ im Polynom-Fall zu beweisen. Im Fall der Hurwitzschen Zetafunktion $\zeta(s;\alpha)$, wobei $\alpha$ transzendent oder rational, aber ungleich $1/2$ oder 1 ist, kann die zu approximierende Funktion $f$ in (1) oder (2), wobei $\zeta(\cdot)$ durch $\zeta(\cdot;\alpha)$ zu ersetzen ist, sogar Nullstellen besitzen. Bis vor kurzem waren hinsichtlich der Universalit\"at von $\zeta(s;\alpha)$ in der Literatur f\"ur algebraisch-irrationale $\alpha$ keine Ergebnisse erzielt worden. Im zweiten Teil der Dissertation beweisen wir eine schwache Version der Aussage \eqref{continuous} f\"ur $\zeta(s;\alpha)$ f\"ur alle algebraisch-irrationalen $\alpha\in[A,1]$ bis auf h\"ochstens endlich viele Ausnahmen, wobei $A\in(0,1]$ eine beliebige, aber fest gew\"ahlte reelle Zahl ist. Schlie\ss{}lich weisen wir die Hypertranszendenz der gew\"ohnlichen Dirichlet-Reihen $\zeta(s;f)=\sum_{n\geq1}f(n)n^{-s}$ und $\zeta_\alpha(s)=\sum_{n\geq1}\lfloor P(\alpha n+\beta)\rfloor^{-s}$ nach, wobei $f:\mathbb{N}\to\mathbb{C}$ irgendeine {\it Besicovitch-fastperiodische zahlentheoretische Funktion} ist, $\alpha,\beta>0$ der Ungleichung $\lfloor\alpha+\beta\rfloor>1$ gen\"ugt und $P\in\mathbb{Z}[X]$ die Bedingung $P(\mathbb{N})\subseteq\mathbb{N}$ erf\"ullt.
13

Rundum das Benfordsche Gesetz

Uhlig, Nico 20 November 2017 (has links)
Ziel der Arbeit ist es das von Simon Newcomb und Frank Bedford beobachtete Benfordsche Gesetz mathematisch zu formalisieren. Zunächst wird der Begriff der signifikanten Dezimalziffer präzisiert. Danach wird eine exakte mathematische Formulierung der beobachteten Benford-Eigenschaft für verschiedene Objekte erfolgen, um schließlich verschiedenste Kriterien für die Gültigkeit der Gesetzmäßigkeit aufzustellen. Hierbei werden vor allem Methoden der Wahrscheinlichkeitstheorie, der Gleichverteilung modulo 1, der Fourier-Analysis, der Spieltheorie und der Ergodentheorie benötigt. Schließlich werden noch asymptotische Betrachtungen für Folgen von Zufallsgrößen im Hinblick auf die Konvergenz in Verteilung gegen das Benfordsche Gesetz angestellt.
14

Weighted uniform distribution related to primes and the Selberg Class / Gewichtete Gleichverteilung im Zusammenhang mit Primzahlen und der Selberg-Klasse

Rehberg, Martin January 2020 (has links) (PDF)
In the thesis at hand, several sequences of number theoretic interest will be studied in the context of uniform distribution modulo one. <br> <br> In the first part we deduce for positive and real \(z\not=1\) a discrepancy estimate for the sequence \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \), where \(\gamma_a\) runs through the positive imaginary parts of the nontrivial \(a\)-points of the Riemann zeta-function. If the considered imaginary parts are bounded by \(T\), the discrepancy of the sequence \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \) tends to zero like \( (\log\log\log T)^{-1} \) as \(T\rightarrow \infty\). The proof is related to the proof of Hlawka, who determined a discrepancy estimate for the sequence containing the positive imaginary parts of the nontrivial zeros of the Riemann zeta-function. <br> <br> The second part of this thesis is about a sequence whose asymptotic behaviour is motivated by the sequence of primes. If \( \alpha\not=0\) is real and \(f\) is a function of logarithmic growth, we specify several conditions such that the sequence \( (\alpha f(q_n)) \) is uniformly distributed modulo one. The corresponding discrepancy estimates will be stated. The sequence \( (q_n)\) of real numbers is strictly increasing and the conditions on its counting function \( Q(x)=\#\lbrace q_n \leq x \rbrace \) are satisfied by primes and primes in arithmetic progessions. As an application we obtain that the sequence \( \left( (\log q_n)^K\right)\) is uniformly distributed modulo one for arbitrary \(K>1\), if the \(q_n\) are primes or primes in arithmetic progessions. The special case that \(q_n\) equals the \(\textit{n}\)th prime number \(p_n\) was studied by Too, Goto and Kano. <br> <br> In the last part of this thesis we study for irrational \(\alpha\) the sequence \( (\alpha p_n)\) of irrational multiples of primes in the context of weighted uniform distribution modulo one. A result of Vinogradov concerning exponential sums states that this sequence is uniformly distributed modulo one. An alternative proof due to Vaaler uses L-functions. We extend this approach in the context of the Selberg class with polynomial Euler product. By doing so, we obtain two weighted versions of Vinogradov's result: The sequence \( (\alpha p_n)\) is \( (1+\chi_{D}(p_n))\log p_n\)-uniformly distributed modulo one, where \( \chi_D\) denotes the Legendre-Kronecker character. In the proof we use the Dedekind zeta-function of the quadratic number field \( \Bbb Q (\sqrt{D})\). As an application we obtain in case of \(D=-1\), that \( (\alpha p_n)\) is uniformly distributed modulo one, if the considered primes are congruent to one modulo four. Assuming additional conditions on the functions from the Selberg class we prove that the sequence \( (\alpha p_n) \) is also \( (\sum_{j=1}^{\nu_F}{\alpha_j(p_n)})\log p_n\)-uniformly distributed modulo one, where the weights are related to the Euler product of the function. / In der vorliegenden Arbeit werden verschiedene zahlentheoretisch interessante Folgen im Kontext der Theorie der Gleichverteilung modulo eins untersucht. <br> <br> Im ersten Teil wird für positiv reelles \( z\not = 1\) für die Folge \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \) eine Diskrepanzabschätzung hergeleitet, wobei \( \gamma_a\) die positiven Imaginärteile der nichttrivialen \(a\)-Stellen der Riemannschen Zetafunktion durchlaufe: Sind die eingehenden Imaginäteile durch \(T\) beschränkt, dann strebt für \(T\rightarrow \infty\) die Diskrepanz der Folge \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \) wie \( (\log\log\log T)^{-1}\) gegen Null. Der Beweis knüpft an das Vorgehen von Hlawka an, welcher eine Diskrepanzabschätzung für die Folge, in der die positiven Imaginärteile der nichttrivialen Nullstellen der Riemannschen Zetafunktion eingehen, ermittelte. <br> <br> Der zweite Teil der Arbeit widmet sich einer Folge deren Wachstumsverhalten durch Primzahlen motiviert ist. Ist \(\alpha\not = 0\) reell und \(f\) eine logarithmisch wachsende Funktion, dann werden mehrere Bedingungen an \(f\) angegeben, unter denen die Folge \( (\alpha f(q_n)) \) gleichverteilt modulo eins ist. Entsprechende Diskrepanzabschätzungen der Folgen werden angegeben. Die Folge reeller Zahlen \( (q_n) \) ist selbst streng wachsend und die Bedingungen, die dabei an deren Zählfunktion \(Q(x)=\#\lbrace q_n \leq x \rbrace\) gestellt werden, sind von Primzahlen und Primzahlen in arithmetischen Progressionen erfällt. Als Anwendung ergibt sich, dass die Folge \( \left( (\log q_n)^K\right) \) für beliebiges \(K>1\) gleichverteilt modulo eins ist, etwa wenn die \(q_n\) Primzahlen oder Primzahlen in arithmetischen Progessionen durchlaufen. Der Spezialfall das \(q_n\) als die \(n\)te Primzahl \(p_n\) gewählt wird, wurde von Too, Goto und Kano untersucht. <br> <br> Im letzten Teil der Arbeit wird für irrationales \(\alpha\) die Folge \( (\alpha p_n) \) irrationaler Vielfacher von Primzahlen im Rahmen der gewichteten Gleichverteilung modulo eins untersucht. Nach einem Resultat von Vinogradov über Exponentialsummen ist diese Folge gleichverteilt modulo eins. Ein alternativer Beweis von Vaaler verwendet L-Funktionen. Dieser Ansatz wird im Kontext von Funktionen aus der Selberg-Klasse mit polynomiellem Eulerprodukt ausgebaut. Dabei werden zwei gewichtete Versionen des vinogradovschen Resultats gewonnen: Die Folge \( (\alpha p_n) \) ist \( (1+\chi_{D}(p_n))\log p_n\)-gleichverteilt modulo eins, wobei \(\chi_{D}\) den Legendre-Kronecker Charakter bezeichnet. Der Beweis verwendet die Dedekindsche Zetafunktion zum quadratischen Zahlkörper \(\Bbb Q (\sqrt{D})\). Als Anwendung ergibt sich etwa für \(D=-1\), dass \( (\alpha p_n) \) gleichverteilt modulo eins ist, wenn die durchlaufenen Primzahlen kongruent zu eins modulo vier sind. Unter zusätzlichen Bedingungen an die Funktionen aus der Selberg-Klasse lässt sich weiter zeigen, das die Folge \( (\alpha p_n) \) auch \( (\sum_{j=1}^{\nu_F}{\alpha_j(p_n)})\log p_n\)-gleichverteilt modulo eins, wobei die Gewichte in direktem Zusammenhang mit dem Eulerprodukt der Funktion stehen.
15

The Quintic Gauss Sums / Die Gaussschen Summen von Ordnung fuenf

Fossi, Talom Leopold 25 October 2002 (has links)
No description available.
16

Cryptography and number theory in the classroom -- Contribution of cryptography to mathematics teaching

Klembalski, Katharina 02 May 2012 (has links) (PDF)
Cryptography fascinates people of all generations and is increasingly presented as an example for the relevance and application of the mathematical sciences. Indeed, many principles of modern cryptography can be described at a secondary school level. In this context, the mathematical background is often only sparingly shown. In the worst case, giving mathematics this character of a tool reduces the application of mathematical insights to the message ”cryptography contains math”. This paper examines the question as to what else cryptography can offer to mathematics education. Using the RSA cryptosystem and related content, specific mathematical competencies are highlighted that complement standard teaching, can be taught with cryptography as an example, and extend and deepen key mathematical concepts.
17

Zur Konstruktion einfacher Charaktere und der Fortsetzungen ihrer Heisenbergdarstellungen für lokale zentral-einfache Algebren

Grabitz, Martin 05 July 2000 (has links)
In dieser Dissertationsschrift soll erkl{\"a}rt werden, wie auf der Grundlage von einfachen Strata, wie sie in einer gemeinsamen Arbeit mit Broussous \cite{BG} betrachtet wurden, einfache Charaktere f{\"u}r lokale einfache Algebren konstruiert werden k{\"o}nnen, wobei die Konstruktion den Vorbildern von Bushnell und Kutzko im zerfallenden Fall \cite{BK1} und von Zink \cite{Z7} im Falle eines Schiefk{\"o}rpers folgt. Der Begriff des einfachen Charakters geht auf die Arbeit \cite{BK1} zur{\"u}ck und bezeichnet eine ausgezeichnete Auswahl von Heisenbergcharakteren, die zu einem stabilen Darstellungsfilter geh{\"o}ren, der gem{\"a}{ss} \cite{Z2}(Hauptsatz 1.4) einem Darstellungsfilter zugeordnet wird, der zu einer absteigenden Normalreihe $$1+\R\supset1+\R^2\supset\ldots$$ geh{\"o}rt, wobei $\R$ das Jacobsonradikal einer erblichen Ordnung bezeichnet. Wir werden hier nur von Hauptordnungen ausgehen, d.h. von dem Fall, da{ss} $\R$ und seine Potenzen gebrochene Hauptideale sind. Diese Vorgehensweise und auch die besondere Auswahl der Heisenbergcharaktere in Form von einfachen Charakteren, wird durch die Konstruktion im Falle eines Schiefk{\"o}rpers \cite{Z7} und durch den abstrakten Matchingsatz \cite{BDKV} gerechtfertigt. Im Falle eines lokalen zentralen Schiefk{\"o}rpers ist n{\"a}mlich der Bewertungsring die einzige erbliche Ordnung und die einfachen Charaktere sind alle Heisenbergcharaktere die zu einem stabilen Darstellungsfilter geh{\"o}ren, der gem{\"a}{ss} \cite{Z2}(Hauptsatz 1.4) einem Darstellungsfilter, der zur absteigenden Normalreihe $$1+\pin_D\supset1+\pin_D^2\supset\ldots$$ geh{\"o}rt, zugeordnet wird, wobei $\pin_D$ das Bewertungsideal des Schiefk{\"o}rpers $D$ bezeichnet. Der abstrakte Matchingsatz liefert nun die Existenz einer Bijektion zwischen den irreduziblen glatten Darstellungen der multiplikativen Gruppe des lokalen zentralen Schiefk{\"o}rpers $D$ und den irreduziblen quadratintegrierbaren glatten Darstellungen einer beliebigen anderen lokalen zentraleinfachen Algebra vom selben reduzierten Grad {\"u}ber demselben nicht-archimedischen Grundk{\"o}rper $F$, welche den Charakter einer Darstellung in dem Sinne erh{\"a}lt, da{ss} die Charakterwerte auf den Konjugationsklassen elliptischer Elemente der verschiedenen Algebren, welche mithilfe ihrer Minimalpolynome identifiziert werden k{\"o}nnen, bis auf ein Vorzeichen {\"u}bereinstimmen. Wir werden hier kanonische Bijektionen zwischen den einfachen Charakteren f{\"u}r verschiedene zentraleinfache Algebren vom selben reduzierten Grad {\"u}ber demselben Grundk{\"o}rper angeben, von denen wir erwarten, da{ss} sie mit der Abbildung des abstrakten Matchingsatzes vertr{\"a}glich sind. Das dieses in der Tat der Fall ist, wurde bisher nur in einfachen F{\"a}llen wie \cite{He} und \cite{BH2} gezeigt, jedoch wurde in der Arbeit \cite{Z4} bereits mithilfe der Konstruktionen von \cite{Z7} und \cite{BK3} eine Bijektion zwischen den irreduziblen glatten Darstellungen der multiplikativen Gruppe des lokalen zentralen Schiefk{\"o}rpers $D$ vom Index $N$ {\"u}ber einem Grundk{\"o}rper $F$ und den irreduziblen essentiell quadratintegrierbaren glatten Darstellungen von $Gl_N(F)$ konstruiert, welche den Artinf{\"u}hrer und den formalen Grad einer Darstellung erh{\"a}lt. Da die Abbildung des abstrakten Matchingsatzes dieselben Forderungen erf{\"u}llt, kommt dies der gew{\"u}nschten Vertr{\"a}glichkeit schon sehr nahe und wir erf{\"u}llen mit unserer Konstruktion insbesondere die in der Arbeit \cite{Z4} gemachte Forderung die dort im Bezug auf die einfachen Charaktere getroffen Auswahlen noch unabh{\"a}ngiger von den jeweiligen Algebren zu gestalten. Die hier getroffene Auswahl wird durch die Verwendung sogenannter spezieller approximierender Folgen getroffen, welche sich aus einer Verallgemeinerung der in \cite{BG} gemachten {\"U}berlegungen ergeben. Im Anschlu{ss} an die Konstruktion und den Vergleich einfacher Charaktere werden wir in einer gro{ss}en Anzahl von F{\"a}llen zeigen, da{ss} sich die Heisenbergdarstellungen, die wir zu den einfachen Charakteren erhalten, in kanonischer Weise fortsetzen lassen und wir erwarten von diesen Fortsetzungen, da{ss} sie analoge Eigenschaften besitzen, wie die sogenannten ``$\beta$-Fortsetzungen'' von \cite{BK1}(5.2.1) im zerfallenden Fall. Damit k{\"o}nnen wir in diesen F{\"a}llen eine Liste von hypothetischen einfachen Typen angeben, von denen wir vermuten, da{ss} sie alle Bernsteinkomponenten parametrisieren, welche irreduzible essentiell quadratintegrierbare Darstellungen enthalten. Insbesondere vermuten wir, da{ss} sich die supercuspidalen Darstellungen mittels kompakter Induktion aus Fortsetzungen solcher einfacher Typen auf eine kompakt modulo Zentrum Untergruppe gewinnen lassen. Um die Vollst{\"a}ndigkeit dieser Konstruktion zu demonstrieren, h{\"a}tten wir allerdings noch die Eigenschaft ``Verkettung impliziert Konjugation'' zu zeigen, welche wir ebenfalls auf eine Folgearbeit verschieben m{\"u}ssen. Beabsichtig w{\"a}re dann ein Vollst{\"a}ndigkeitsbeweis mit dem abstrakten Matchingsatz wie bei L. Corwin \cite{Co} oder in \cite{Z4}. Wir weisen hier nur in Spezialf{\"a}llen nach, dass die Typendarstellungen, welche wir hier angegeben haben, tats{\"a}chlich Typen im Sinne von \cite{BK4}(4.1)(4.2) sind. Insbesondere sind es auch unsere Berechnungen in der Arbeit \cite{GSZ}, welche dem von uns im Geiste von \cite{Z7} und \cite{BK1} gemachten Ans{\"a}tzen hohe Evidenz geben. / In this thesis, we try to explain how simple characters for arbitrary central simple algebras over a non-archimedian local field $F$ can be constructed. Moreover, we introduce a kind of matching of simple characters between different algebras of fixed reduced degree. If the index of the algebra $A$ is odd or $A=M_l(D)$, where $l$ is an arbitrary prime number and $D$ a central division algebra over $F$, we can extend the Heisenberg representations associated to the simple characters to level-0 and obtain a hypothetical list of simple types. For $A=M_l(D)$ and if the residual field of $F$ is not the field with two elements, we can proof that all so-called maximal simple types in our list are simple types in the sense of \cite{BK4} and their extensions to their stabelizers induce supercupidal representations of $G_l(D)$. Using the the heuristical relation via the abstract matching theorem of \cite{BDKV} to the cases of a division algebra due to \cite{Z5} and to the split case due to \cite{BK1}, we conjecture that all supercuspidal representations of $Gl_l(D)$ can be obtained by this way.
18

Twisted Kloosterman sums and cubic exponential sums / Getwisteten Kloosterman Summen und kubischen exponentialen Summen

Louvel, Benoît 15 December 2008 (has links)
No description available.
19

Cryptography and number theory in the classroom -- Contribution of cryptography to mathematics teaching

Klembalski, Katharina 02 May 2012 (has links)
Cryptography fascinates people of all generations and is increasingly presented as an example for the relevance and application of the mathematical sciences. Indeed, many principles of modern cryptography can be described at a secondary school level. In this context, the mathematical background is often only sparingly shown. In the worst case, giving mathematics this character of a tool reduces the application of mathematical insights to the message ”cryptography contains math”. This paper examines the question as to what else cryptography can offer to mathematics education. Using the RSA cryptosystem and related content, specific mathematical competencies are highlighted that complement standard teaching, can be taught with cryptography as an example, and extend and deepen key mathematical concepts.

Page generated in 0.0515 seconds