Spelling suggestions: "subject:"zwitterionic""
21 |
Interactions du cation sodium avec des molécules d'intérêt biologique acides aminés et oligopeptides.Kapota, Catherine 04 July 2005 (has links) (PDF)
Il existe, aujourd'hui, de nombreuses et efficaces méthodes de caractérisation structurale tridimensionnelle de composés biologiques en phase condensée (RMN, diffraction des rayons X ou dichroïsme circulaire). Depuis une dizaine d'années, ce champ d'études s'est étendu à la phase gazeuse. Ce travail s'inscrit dans ce contexte et concerne le rôle structurant de Na+ sur les acides aminés Gly et Pro et sur des oligo-peptides de Gly et Ala, en combinant approches théoriques et expérimentales de spectroscopie infrarouge d'ions gazeux par dissociation multiphotonique (IRMPD) couplée à la spectrométrie de masse. Les spectres IRMPD expérimentaux des complexes sodiés d'acide aminé, nous ont permis d'identifier la présence exclusive de la forme zwitterionique dans le cas de Pro-Na+ et la présence de la forme non-zwitterionique dans le cas de Gly-Na+, conformément aux résultats de chimie quantique. Ainsi nous avons fourni la première démonstration directe de la présence d'un zwitterion d'acide aminé en phase gazeuse. Il s'agissait des premiers spectres infrarouge d'ions biologiques en phase gazeuse. L'étude théorique des complexes Glyn-Na+ et Alan-Na+ a montré que, pour n<=5, les conformères de plus basse énergie maximisent l'interaction électrostatique du métal avec les n groupements carbonyles, avec ou sans l'amine terminale. Ce comportement a été confirmé d'une part, par des expériences de spectroscopie IRMPD pour n=2,3 et d'autre part, par la détermination des énergies de liaison de ces complexes par la méthode cinétique de Cooks (n=2-4). Pour l'étude théorique de Glyn-Na+, 5<=n<=10, nous avons couplé des recherches conformationnelles Monte-Carlo basées sur des calculs de champ de forces AMBER, à des optimisations par calculs de type ri-BLYP utilisant l'approximation "résolution de l'identité". Cette approche a permis d'explorer en détail des sur! faces de potentiel très complexes. On peut distinguer deux classes limites de conformères, celle où le peptide est globulaire et celle où il adopte une conformation en hélice alpha ou 310. Nous avons montré que les structures les plus basses en énergie présentent le plus souvent une complexation tétradentate avec une forte auto-solvatation. Ces structures sont toutes globulaires pour n<10. Dans le cas de Gly10-Na+, le conformère le plus bas en énergie a une structure globulaire autour du sodium et un domaine de cinq résidus en hélice 310.
|
22 |
Análise estrutural de complexos derivados de telúrio / Structural analysis of tellurium based complexesSantos, Sailer Santos dos 18 March 2011 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / This work describes the synthesis and structural analysis of different kinds of
tellurium based compounds, depicting the preparation of zwitterions, coordination
polymers and also heteronuclear complexes, using 4-ditellurobispyridine (4) and N ,
N , N , N -tetraethyl-N,N -pyridine-2,6-dicarbonyl-bis(thiourea) (12) as starting
materials. These ligands are able to form complexes with tellurium allowing the
simultaneous coordination of transition metals, producing novel compounds. The
materials were characterized by single crystal X-ray diffraction, vibrational
spectroscopy and 1H and 125Te nuclear magnetic resonance (when applicable). The
methodology using the ligand 12 provided the preparation of three different classes
of compounds: complexes with inorganic tellurium, complexes with organic
derivatives of tellurium and tellurium based complexes with transition metals. The
later ones are the most interesting owing the selectivity of the ligand, that coordinates
to tellurium just with the softer site (sulfur atom), leaving the other donor atoms free
to coordinate to another metallic center. / Este trabalho apresenta a síntese e a análise estrutural de diferentes
classes de complexos derivados de telúrio, com a obtenção de zwitterions,
polímeros de coordenação, e também, complexos heteronucleares, a partir de
ditelureto de bis-4-piridila (4) e do ligante N , N , N , N -tetraetil-N,N -piridina-2,6-
dicarbonil-bis(tioureia) (12). Os ligantes utilizados neste trabalho são capazes de
formar complexos com telúrio permitindo a coordenação simultânea de metais de
transição, de tal modo que as metodologias de síntese empregadas são capazes de
fornecer compostos inéditos na literatura. Os materiais foram caracterizados por
difração de raios-X em monocristal, espectroscopia no infravermelho, análise
elementar, e ressonância magnética nuclear de 1H e de 125Te nos exemplos em que
as técnicas são aplicáveis. As metodologias envolvendo o ligante 12 permitiram a
obtenção de três classes distintas de compostos: complexos com telúrio inorgânico,
com derivados orgânicos de telúrio e complexos em combinação com metais de
transição. Os complexos envolvendo metais de transição têm especial destaque,
pois o ligante 12 mostrou excelente seletividade, ocorrendo a coordenação ao átomo
de telúrio exclusivamente pelo sítio macio (átomo de enxofre), deixando os outros
sítios doadores livres para coordenação com outro centro metálico.
|
23 |
Controlled Interfacial Adsorption of AuNW Along 1-Nm Wide Dipole Arrays on Layered Materials and The Catalysis of Sulfide OxygenationAshlin G Porter (6580085) 12 October 2021 (has links)
<p>Controlling the
surface chemistry of 2D materials is critical for the development of next
generation applications including nanoelectronics and organic photovoltaics
(OPVs). Further, next generation nanoelectronics devices require very specific
2D patterns of conductors and insulators with prescribed connectivity and
repeating patterns less than 10 nm. However, both top-down and bottom-up
approaches currently used lack the ability to pattern materials with sub 10-nm
precision over large scales. Nevertheless, a class of monolayer chemistry
offers a way to solve this problem through controlled long-range ordering with
superior sub-10 nm patterning resolution. Graphene is most often functionalized
noncovalently, which preserves most of its intrinsic properties (<i>i.e.,</i> electronic conductivity) and
allows spatial modulation of the surface. Phospholipids such as
1,2-bis(10,12-tricsadiynoyl)-<i>sn</i>-glycero-3-phosphoethanolamine
(diyne PE) form lying down lamellar phases on graphene where both the
hydrophilic head and hydrophobic tail are exposed to the interface and resemble
a repeating cross section of the cell membrane. Phospholipid is made up of a complex
headgroup structure and strong headgroup dipole which allows for a diverse
range of chemistry and docking of objects to occur at the nonpolar membrane,
these principals are equally as important at the nonpolar interface of 2D
materials. A key component in the development of nanoelectronics is the
integration of inorganic nanocrystals such as nanowires into materials at the
wafer scale. Nanocrystals can be integrated into materials through templated
growth on to surface of interest as well as through assembly processes (i.e.
interfacial adsorption). </p>
<p>In this work, I
have demonstrated that gold nanowires (AuNWs) can be templated on striped
phospholipid monolayers, which have an orientable headgroup dipoles that can
order and straighten flexible 2-nm diameter AuNWs with wire lengths of ~1 µm. While AuNWs in
solution experience bundling effects due to depletion attraction interactions,
wires adsorb to the surface in a well separated fashion with wire-wire
distances (e.g. 14 or 21 nm) matching multiples of the PE template pitch. This
suggests repulsive interactions between wires upon interaction with dipole
arrays on the surface. Although the reaction and templating of AuNWs is
completed in a nonpolar environment (cyclohexane), the ordering of wires varies
based on the hydration of the PE template in the presence of excess oleylamine,
which forms hemicylindrical micelles around the hydrated headgroups protecting
the polar environment. Results suggest that PE template experience
membrane-mimetic dipole orientation behaviors, which in turn influences the
orientation and ordering of objects in a nonpolar environment.</p>
<p>Another
promising material for bottom-up device applications is MoS<sub>2 </sub>substrates
due to their useful electronic properties. However, being able to control the
surface chemistry of different materials, like MoS<sub>2</sub>, is relatively
understudied, resulting in very limited examples of MoS<sub>2 </sub>substrates
used in bottom-up approaches for nanoelectronics devices. Diyne PE templates adsorb
on to MoS<sub>2 </sub>in an edge-on conformation in which the alkyl tails
stack on top of each other increasing the overall stability of the monolayer. A
decrease in lateral spacing results in high local concentrations of orientable
headgroups dipoles along with stacked tails which could affect the interactions
and adsorption of inorganic materials (i.e. AuNW) at the interface. </p>
<p>Here, I show
that both diyne PE/HOPG and diyne PE/MoS<sub>2</sub> substrates can template
AuNW of various lengths with long range ordering over areas up to 100 µm<sup>2</sup>. Wires on
both substrates experience repulsive interactions upon contact with the
headgroup dipole arrays resulting in wire-wire distances greater than the
template pitch (7 nm). As the wire length is shortened the measured distance
between wires become smaller eventually resulting in tight packed ribbon
phases. Wires within these ribbon phases have wire-wire distances equal to the
template. Ribbon phases occur on diyne
PE/HOPG substrates when the wire length is ~50 nm, whereas wire below ~600 nm
produce ribbon phases on diyne PE/MoS<sub>2 </sub>substrates. </p>
<p>Another
important aspect to future scientific development is the catalysis of organic
reactions, specifically oxygenation of organic sulfides. Sulfide oxygenation is
important for applications such as medicinal chemistry, petroleum
desulfurization, and nerve agent detoxification. Both reaction rates and the
use of inexpensive oxidants and catalysts are important for practical
applications. Hydrogen peroxide and <i>tert</i>-butyl
hydroperoxide are ideal oxidants due to being cost efficient and
environmentally friendly. Hydrogen peroxide can be activated through transition
metal base homogeneous catalysts. Some of the most common catalysts are homo-
and hetero-polyoxometalates (POMs) due their chemical robustness. Heptamolybdate
[Mo<sub>7</sub>O<sub>24</sub>]<sup>6-</sup><sub> </sub>is a member of the
isopolymolybdate family and its ammonium salt is commercially available and low
in cost.<sup>22</sup> Heteropolyoxometalates have
been widely studied as a catalyst for oxygenation reactions whereas heptamolybdate
has been rarely studied in oxygenation reactions. </p>
<p> Here
I report sulfide oxygenation activity of both heptamolybdate and its peroxo
derivate [Mo<sub>7</sub>O<sub>22</sub>(O<sub>2</sub>)<sub>2</sub>]<sup>6-</sup>.
Sulfide oxygenation of methyl phenyl sulfide (MPS) by H<sub>2</sub>O<sub>2 </sub>to
sulfoxide and sulfone occurs rapidly with 100 % utility of H<sub>2</sub>O<sub>2</sub>
in the presence of [Mo<sub>7</sub>O<sub>22</sub>(O<sub>2</sub>)<sub>2</sub>]<sup>6-</sup>,
suggesting the peroxo adduct is an efficient catalyst. However, heptamolybdate
is a faster catalyst compared to [Mo<sub>7</sub>O<sub>22</sub>(O<sub>2</sub>)<sub>2</sub>]<sup>6-</sup>
for MPS oxygenation and all other sulfides tested under identical conditions.
Pseudo-first order <i>k</i><sub>cat</sub>
constants from initial rate kinetics show that [Mo<sub>7</sub>O<sub>24</sub>]<sup>6-</sup><sub>
</sub>catalyzes sulfide oxygenation faster. The significant difference in the <i>k</i><sub>cat</sub> suggests differences in
the active catalytic species, which was characterized by both UV-Vis and
electrospray ionization mass spectrometry. ESI-MS suggest that the active
intermediate of [Mo<sub>7</sub>O<sub>24</sub>]<sup>6-</sup><sub> </sub>under
catalytic reaction conditions for sulfide oxygenation by H<sub>2</sub>O<sub>2</sub>
is [Mo<sub>2</sub>O<sub>11</sub>]<sup>2-</sup>. These results show that
heptamolybdate is a highly efficient catalyst for H<sub>2</sub>O<sub>2 </sub>oxygenation
of organic sulfides.</p>
|
24 |
Synthèse et étude des propriétés hôte-invité de récepteurs hétéroditopiques de type calix[6]crypt-(thio)uréeCornut, Damien 19 December 2014 (has links)
La chimie supramoléculaire est un domaine qui porte sur l’étude des interactions<p>faibles entre molécules. Ces interactions sont très répandues dans les systèmes naturels et de<p>nombreux récepteurs moléculaires synthétiques ont été développés, soit pour un apport<p>théorique à la compréhension de ces processus de reconnaissance, soit pour d’éventuelles<p>applications en biologie ou en chimie analytique par exemple.<p>Les calix[6]arènes sont des composés intéressants pour la reconnaissance moléculaire.<p>Ils possèdent une cavité idéale pour l’inclusion de petites molécules et peuvent être modifiés<p>par l’ajout de divers motifs de reconnaissance. Le premier calix[6]crypturée préalablement<p>étudié au sein du Laboratoire de Chimie Organique est un récepteur dont la cavité aromatique<p>est juxtaposée à un motif de reconnaissance pour anions. Ce dernier est composé d’un<p>chapeau à base de tren (tris(2-aminoéthyl)amine) portant trois groupes urée. Ce récepteur<p>possède notamment une forte sélectivité pour le chlorure et une forte affinité pour les paires<p>d’ions organiques de type chlorure d’ammonium, dans un solvant apolaire (CDCl3).<p>Cependant, ces propriétés de reconnaissance sont beaucoup plus limitées dans un solvant<p>protique (CD3OD), ce qui restreint les éventuelles applications. L’objectif de ces travaux a été<p>de synthétiser de nouveaux dérivés avec une modification autour du site tris-urée pour<p>renforcer les propriétés de reconnaissance, notamment en milieu protique.<p>La première stratégie a consisté à agrandir le chapeau cryptant reliant les trois groupes<p>urée. Trois modes différents de complexation d’ammonium intra-cavitaire ont été mis en<p>évidence dans un solvant apolaire, dont deux sont remarquables. Avec un anion peu<p>coordinant (le picrate), le récepteur protoné inclut l’ammonium selon un processus<p>allostérique pour donner un complexe dicationique. Avec la protonation du récepteur et un<p>anion dichargé (SO4<p>2-), l’inclusion de l’ammonium constitue un complexe cascade, stable en<p>milieu protique.<p>La deuxième stratégie a consisté à supprimer les groupes méthyle du petit col<p>calixarénique via une réaction de déméthylation sélective pour obtenir le calix[6]crypturée<p>1,3,5-trishydroxyle. Dans un solvant apolaire, ce récepteur a montré une plus forte sélectivité<p>pour la complexation de paires d’ions par rapport à la complexation d’anions, permettant par<p>exemple de complexer le chlorhydrate de O,O-diméthyldopamine.<p>La troisième stratégie a été de synthétiser le calix[6]cryptothiourée, un récepteur dont<p>le chapeau comporte trois groupes thiourée. Cette modification structurale a fortement<p>renforcé la complexation d’anions mais n’a pas favorisé la complexation de paires d’ions dans<p>un solvant protique.<p>Enfin, la complexation de zwittérions a été testée sur l’ensemble de ces récepteurs et le<p>calix[6]cryptothiourée s’est avéré être un remarquable complexant de la B-alanine bétaïne.<p>Dans un mélange protique (CD3OD/CDCl3 1:1) la constante d’association est élevée (K ≈ 104<p>M-1) et supérieure d’au moins trois ordres de grandeur par rapport aux autres zwittérions<p>testés. C’est à notre connaissance un des rares récepteurs de bétaïnes et le premier à être<p>sélectif pour la B-alanine bétaïne. Enfin, le biomimétisme du mode de reconnaissance a été<p>montré par comparaison avec une protéine transporteur de bétaïne (Corynebacterium<p>glutamicum). / Doctorat en sciences, Spécialisation chimie / info:eu-repo/semantics/nonPublished
|
25 |
CO2 Capture on Polymer-Silica Composites from Molecular Modeling to Pilot ScaleWillett, Erik Amos 23 May 2018 (has links)
No description available.
|
Page generated in 0.1011 seconds